
Towards Low-Cost and Energy-Aware Inference
for EdgeAI Services via Model Swapping
Demetris Trihinas

Department of Computer Science
University of Nicosia
trihinas.d@unic.ac.cy

Panagiotis Michael
Department of Computer Science

University of Nicosia
michael.p15@live.unic.ac.cy

Moysis Symeonides
Department of Computer Science

University of Cyprus
msymeo03@ucy.ac.cy

Abstract—Over the past decade, key advancements in Artificial
Intelligence (AI) and Edge Computing (EC) have led to the devel-
opment of EdgeAI services to provide intelligent and low latency
responses essential for mission-critical applications. However, the
expansion of EdgeAI services to the network extremes can face
challenges such as load fluctuations causing delays in AI inference
and concerns over energy efficiency. This paper proposes “model
swapping” where the model employed by the EdgeAI service is
swapped on-the-fly with another readily available model so that
cost and energy savings are achieved during runtime inference
tasks. The ModelSwapper can achieve this by employing a low-
cost algorithmic technique that explores meaningful trade-offs
between the computational overhead and the model accuracy. By
doing so, edge nodes adapt to load fluctuations by substituting
complex models with simpler ones, thus meeting desired latency
requirements, albeit with potentially higher uncertainty. Our
evaluation with two EdgeAI services (object detection, NLU)
demonstrates that ModelSwapper can significantly reduce energy
usage and inference delays by at least 27% and 68% respectively,
with only a 1% reduction in accuracy.

Index Terms—Machine Learning, Edge Computing

I. INTRODUCTION

For a while now, AI and Edge Computing have had a
synergistic relationship propelled by breakthroughs in mobile
computing, wireless networks, and deep learning [1]. This has
led to the emergence of Edge Intelligence, or simply EdgeAI,
a paradigm where compute-intensive and time consuming
model training is conducted offline at the cloud, while runtime
inference is executed by nodes at the network edge hosting
the trained model [2] [3]. This framework is particularly
advantageous for latency-sensitive applications, such as ob-
ject detection for autonomous vehicles [4], natural language
understanding (NLU) for humanitarian assistance services [5],
and remote patient monitoring [6].

With AI gaining acceptance as a driver for new and emerg-
ing applications, the state-of-the-art in deep learning models
are becoming more complex by capturing more nuances and
patterns in the data to increase outputted accuracy [7]. A
study by OpenAI showed that since 2012 the amount of
computational effort required by such models is exponentially
increasing and doubling every 4 months [8]. However, while
IoT and EC hardware are vastly improving, they are not
doing so at a rate capable of catering for the advancements
in deep learning [9]. This need for additional computational
effort is negatively impacting the user experience of resource-

constraint EdgeAI services due to rising inference delays [10].
To make matters worse, more compute effort results in more
energy consumption and this may result in a significant toll
for EdgeAI services and the environment in general [11].
According to recent estimates, the energy footprint for data
center computing has well surpassed the 1% of the global
energy demand and is growing at a 4.3% annual rate [12].
Recent advancements in DL, such as GenAI, are further
accelerating this growth [13] [14]. With recent projections
showing that more than 50% of new IT infrastructure will
be deployed at the edge by 2027 [15] it is not surprising that
more initiatives in the form of policy changes (i.e., EU green
deal, UK net zero) are calling for the migration to sustainable
edge computing practices [16].

This brings us to the focal point of our work. Edge nodes
can frequently present temporal resource constraints (i.e., low
battery, disconnect from the cloud) or load fluctuations (i.e.,
incoming requests, background jobs) [17]. When these occur
significant delays are observed as the employed model requires
compute and memory capacity not currently available. To
minimize these effects, model compression techniques such
as quantization (i.e., reduce precision of the model parame-
ters) and pruning (i.e., reduce number of model parameters)
have been proposed for resource-constraint AI services [18].
However, while model compression methods can succeed in
reducing the inference delay, they have a fixed cost and can
significantly reduce accuracy even in cases where perhaps only
a modest increment in uncertainty is required.

To overcome these challenges, we propose the adoption
of model swapping for EdgeAI services. In this paradigm,
an algorithmic decision-making module is employed by the
EdgeAI service so that in the presence of limited resource
capacity, the model in use can be swapped on-the-fly with
another readily available, but less complex, model. With model
swapping, EdgeAI services can achieve energy savings by
employing less computational effort for runtime inference
tasks and at the same time, user experience is not negatively
impacted with latency bounded by using a less complex model.
Moreover, in contrast to compression methods, accuracy (and
complexity) reduction is only employed when the EdgeAI
service is actually faced with limited resource capacity and
otherwise, unaffected. Although model training is extremely
resource hungry, it is also performed infrequently and may

only add up to only a small percentage of the total ML
costs [19]. Hence, we focus on inference that is performed con-
tinuously and in situ by EdgeAI services that require latency
guarantees. The key for accomplishing model swapping is for
the edge node to maintain a model store supporting model
recycling so that snapshots of pre-trained models with varying
properties (i.e., layers, batch size) are available. A decision for
which model to employ is performed by monitoring the load
and resource availability of the edge node and opting for the
model that can meet the current resource limitations, while
also preserving any user-desired requirements.

The contributions of our work are:
• We provide a generalized problem description and low-

cost algorithmic framework based on heuristic observa-
tions for model swapping. EdgeAI services can exploit
this framework during the runtime inference of AI tasks
to reduce their energy footprint, while also striving to
maintain QoS requirements imposed by users.

• We introduce ModelSwapper a python toolkit imple-
menting the proposed algorithmic framework that can be
deployed alongside EdgeAI services to embrace on-the-
fly model swapping for runtime AI inference tasks.

• We demonstrate the efficacy of ModelSwapper via 2
EdgeAI services for object detection and natural language
understanding with each service employing popular DL
model structures (EfficientNet, BERT) under different
model configurations (network depth, width, etc) and
real-world datasets (ImageNet, glue-mrpc). Evaluation
artifacts are made publicly available and can be used to
reproduce our results and (potentially) be used for future
workload services1.

The rest of this paper is structured as follows. Section 2
provides an in-depth problem description. Sections 3 and 4
introduce ModelSwapper and our model-swapping algorithmic
framework. Section 5 provides a comprehensive experimen-
tation analysis. Section 6 presents the related work, while
Section 7 concludes the article and outlines future directions.

II. PROBLEM DESCRIPTION

Let us assume that a user wants to run on an EdgeAI
service a set of ML inference tasks T = t1, t2, ..., tN with
each task ti accompanied by a minimum acceptable quality
qi,min and maximum inference delay δi,max. In turn, the
provider of the EdgeAI service would like to minimize the
energy consumption E of the EdgeAI service to meet certain
sustainability goals or simply, reduce energy costs. The goal
of model swapping is to design a classification function that
selects from a pre-trained set of models M = m1,m2, ...mK

the model that minimizes the E of the EdgeAI service for T
while obeying that the mean quality and inference delay meet
user-given thresholds defined as Q and ∆, respectively.

For simplicity, and without loss of generality, let us assume
that the EdgeAI service is dedicated to a single application
domain (i.e., object detection) and all models in M are of

1 https://github.com/unic-ailab/ModelSwapper

the same architecture (e.g., BERT). Hence, the models deviate
only by their complexity (e.g., layers, neurons, batch size) with
γ ∈ (0, 1) denoting the proportional difference from the most
complex model MK of the model set. For example, assuming
that M is comprised of models that differ only by network
depth (layers), then if MK has a network depth of 10 layers,
a model mj with γ = 0.3 will have a depth of 3 layers.

Moreover, the EdgeAI service has a fixed resource capacity
R and availability of these resources may vary in time (e.g.,
due to background tasks). Compute and memory are the two
resources of interest for ML inference tasks. The availability
of computational power impacts the inference delay of an
inference task as these tasks are compute-intensive and enough
memory must be available to fit the selected model.

With the above description, model swapping can be formal-
ized as an optimization problem summarized as follows:

argmin
mj∈M

E(M, T , Q,∆, R), j = 1, ..., |M| (1)

subject to:

rT ,mem(mj) ≤ Rmem, rT ,comp(mj) ≤ Rcomp (2)

1

N

|N |∑
i

qi(mj) ≥ Q, (3)

qi ≥ qi,min, ∀ ti ∈ T (4)

1

N

|N |∑
i

δi(mj) ≤ ∆, (5)

δi ≤ δi,max, ∀ ti ∈ T (6)

Equation 1 highlights our optimization goal that is to select
the model mj ∈ M that minimizes the energy consumed by
the node hosting the EdgeAI service. The limitation expressed
in Equation 2 ensures that for T , only models where their
resource requirements can be met by the current resource
availability of the edge node will be considered. Energy-
efficiency is an optimization objective where trade-offs with
performance must be explored. We emphasize trade-off as
simply minimizing energy consumption means that opting
for the least computational intensive model will suffice irre-
spective of the resulted QoS that can be heavily penalized.
Hence, Equations 3-6 are in place to guarantee from the user
perspective that the mean outputted quality for T is above the
user-given threshold Q and in turn, the mean inference delay
does not exceed ∆.

This ends up being an optimization problem with competing
constraints. Such problems are NP-hard. However, with the
adoption of various heuristics the complexity of the decision-
making can resort to not creating additional overhead to
the system real-time responsiveness. Approximations through
heuristics are required as the longer the decision-making
takes to select a model for runtime inference, the longer the
delay faced by the users (or applications) submitting inference
tasks to the EdgeAI service. In the next Section we show

Fig. 1. Classification accuracy during model validation for 6 pre-trained
EfficientNet models (avail. by TensorFlow) run with ImageNet dataset

Fig. 2. Classification accuracy during model validation for 20 pre-trained
BERT models (avail. by Google Research) run with glue-mrpc dataset

our heuristic-based algorithmic framework for energy-aware
model-swapping with user-given QoS requirements.

III. ALGORITHMIC METHODOLOGY

This Section provides an overview of the algorithmic
methodology adopted in order to provide low-cost and energy-
aware model swapping where certain assumptions and heuris-
tics are embraced.

A. Heuristic Quantification

The first problem dimension to ease, is the resulting infer-
ence quality. Quality can have a different interpretation among
users and applications. For example, classification accuracy,
logarithmic loss, and confusion matrices are adopted for clas-
sification problems (e.g., object detection), while metrics such
as mean square error (MSE) and R2, are adopted for regression
(e.g., price prediction) [20]. In general, given enough data
during training, quality can be improved by increasing the
complexity of the model γ (e.g., network depth, width), also
known as model scaling, and data clarity ζ (i.e., adopting a
higher resolution for images such as 224x224 vs 148x148).
However, opting to increase any or both, will increase infer-
ence time and energy consumption as well [21]. Moreover, the
learning ratio towards simpler models will plateau at some
point (i.e., Fig 1). For example, Tan et al. [22] show that
although ResNet-1000 is a lot more complex that ResNet-101,
the gains in accuracy are fractional2.

With this in mind, estimating the quality of an inference
task would require a function Q(γ, ζ) where given the model

2 The number followed by ResNet indicates the network depth in layers

Fig. 3. Linear increment of compute load (left) and inference time (right)
towards model complexity for 20 BERT models run with glue-mrpc dataset

complexity and the clarity of the input data, the resulting qual-
ity of an inference task can be estimated. However, although
the expressive power of a model is (somehow) dependent
on the model complexity and data clarity, a mathematical
expression for estimating Q irrespective of the model domain
does not exist [23]. To overcome this challenge, we will
employ classification accuracy as our (expected) quality metric
that is obtained during model training and make the following
assumptions. Assuming the same model architecture (i.e.,
BERT, CNN) and a minimum data clarity (i.e., images of
higher resolution can be down-scaled), a model’s classifica-
tion accuracy has a distinct monotonicity towards the model
complexity. This is shown in both Figures 1 and 2. Thus, a
model with γ = 0.4 is expected to have a higher accuracy
than a model with γ = 0.3. Hence, given a quality threshold
Q by the user, we can estimate the mean accuracy of each
t ∈ T and take the minimum accuracy above the threshold to
then compute the inference delay and consumed energy.

The second problem dimension to ease is the estimation of
the inference delay. As previously mentioned, by considering
models of the same model architecture, when the model
complexity increases, so does the computational overhead and
subsequently inference time. As shown in Figure 3 for both
quantities this is almost linear. Although the relationship to
inference time is not perfect, the distinct monotonicity towards
model complexity is evident here as well. Hence, the inference
time δ per m ∈ M of a given task t ∈ T can be estimated as
follows:

δ(mj , t) =
FLOPsmj

λ · PFLOPS
(7)

In this equation, FLOPs are the Floating Point Operations
required by a model from data ingestion to outputting a result.
Although one can run an extensive FLOPs analysis for all
the models in M (e.g., using flopth3) a linear relationship
among model complexity and FLOPs upholds (Figure 3).
Hence, with slight uncertainty the FLOPs of a model mj can
be estimated by multiplying γ with the FLOPs of the most
complex model in M :

FLOPsmj
= γ · FLOPsMK

(8)

At this point we denote a common misconception. Although
the number of model parameters are usually reported and

3 https://github.com/vra/flopth

Fig. 4. Energy consumption towards towards model complexity for 20 BERT
models run with glue-mrpc dataset

associated with the increase in computational effort of a
model, FLOPs are not directly dependent on parameters.
Parameters affect the network’s depth and width, hence the
model complexity, and by distributing parameters in different
ways will result in different FLOPs [24]. With the FLOPs of a
model in hand, we then proceed by dividing with the PFLOPS
of the edge node. PFLOPS denotes the Peak Floating-Point
Operations per Second (note the capital S) and this metric is
processor dependent and indicates the theoretical max number
of floating-point operations the edge node can process per
second. This is multiplied by λ that is the current compute
availability of the processor(s). For example, if only 40% of
the computational power is currently available for t then the
max capacity in PFLOPS must be proportionally reduced.

Having estimated the inference delay of a task, we then pro-
ceed with the estimation of its energy consumption. Energy-
awareness, and subsequently green computing, is an im-
portant aspect for edge computing that can critically affect
the liveness of the underlying processing infrastructure as
well as the overall carbon footprint of the deployment [11].
In a geo-distributed environment, edge nodes may present
not only resource heterogeneity but also different operating
power levels. Power, denoted as P directly impacts energy
consumption (E = P · τ) as the amount of energy required
by a computing system to execute a specific task is calculated
by multiplying the power drawn with the time (τ) required
for the task to finish. In our case the time is equivalent to
δ, the inference delay. Power usage is reported as the sum
of Pidle + Pdyn, where Pidle denotes the load-independent
power drawn by the computing system, even if no task is
under execution, and Pdyn is load dependent. Patterson et al.
identify the computational overhead (reported in FLOPs) as
the key component contributing to Pdyn [13]. However, we
denote that the relationship among FLOPs and energy is not
proportional (as shown in Figure 4) when voltage scaling is
supported by the underlying processor(s).

Hence, reducing the computational overhead reduces the
inference delay and subsequently, energy consumption. If
energy consumption is the sole metric of interest, then the
most modest model in M will suffice. However, realistically
users would like certain guarantees in both response quality
and inference delay. As such, an energy-aware algorithm for
model swapping must aim to reduce (not minimize) energy

Algorithm 1 ML Model Selection
Input: Model set M, task set T , desired quality Q and delay ∆
Output: Model m ∈M that minimizes energy consumption
Ensure: User requirements Q and ∆ for the task set

1: C.keys ←M //dict with candidate models
2: for each m in M do
3: rmem, rcomp ← getResourceAvailability()
4: if (m.mem() ≥ rmem && m.flops() ≥ rcomp) then
5: C ← C − m
6: continue
7: end if
8: q ← 0, δ ← 0, ϵ← 0
9: for each t in T do

10: q ← q + getModelAccuracy(m, t)
11: δ ← δ + estInfTime(m, t)
12: p← getOperPowerLevel()
13: ϵ← ϵ + estEnergy(m, δ, p)
14: end for
15: if (q/|T | ≤ Q && δ/|T | ≥ ∆) then
16: C ← C − m
17: continue
18: end if
19: C[m] ← e
20: end for
21: m←argmin(C.values())
22: return m //model that minimizes energy

consumption and at the same time ensure certain user-given
requirements are met.

B. Model-Swapping Algorithm

Algorithm 1 summarizes our energy-aware model swapping
methodology. In brief, the decision-making process receives
as input the model set M, task set T and the user-requested
requirements for the the mean quality Q and inference delay
∆. Initially, all models of the model store can be considered
as candidates for selection for the given task set T . At this
point, the current availability in memory (ram) and compu-
tational power (in flops) are extracted from the underlying
edge node (lines 3-7). Models that require more resources
than the currently available, are removed from consideration.
Next, for all tasks t ∈ T (lines 8-14), we estimate and
aggregate their model accuracy (q), inference time (δ), and
energy consumption (ϵ). At this point, any models that cannot
meet the mean quality and delay requirements given by the
user, are removed by consideration (lines 15-18). Finally, for
the models still remaining under examination, the algorithm
opts for the model minimizing energy consumption and returns
that model for selection (lines 21-22).

Getting the model accuracy, estimating inference time, and
energy consumption per t ∈ T is of O(1) time. Hence, the
algorithmic complexity of the model selection algorithm is
O(M· T). The number of possible model configurations can
be extremely large when one considers network depth, width,
dropout rate, trained epochs and more. Practically though, a
limited number of models will comprise the model store M
due to both physical constraints of the edge node and in turn,
the retraining “nightmare” that will occur each time these
models must be updated due to data and/or concept drift.
For example, in the NLU use-case presented in our evalu-

Fig. 5. High-Level Overview of ModelSwapper

ation, the number of pre-trained BERT models released by
Google Research and (deemed) suitable for edge-computing
are 24 [25]. Hence, the dominating factor for the algorithm
complexity is the size of the task set. Therefore, the complexity
can be summarized as O(T) where the the running time scales
linearly towards the size of the task set.

IV. MODELSWAPPER

This Section provides a high-level overview of ModelSwap-
per. Figure 5 showcases how ModelSwapper fits within the
ecosystem of an EdgeAI service.

ModelSwapper is implemented as a lightweight python
library that can be added alongside existing EdgeAI services
and is designed so that users interacting with the EdgeAI
service are agnostic to the existence of the “model swapping”.
Hence, users do not need to change the business logic of their
applications. Specifically, users submitting a set of inference
tasks to the EdgeAI service continue doing so and optionally,
can provide mean quality (Q) and inference delay require-
ments (∆) for the submitted set of tasks (T).

We next describe the key components of ModelSwapper
and their interactions. A typical flow for ModelSwapper starts
with the user submitting a set of tasks for inference 1⃝. The
recipient component of the task set is the Task Receiver. This
component will accept the set of tasks and parse the submitted
request to extract if there are any accompanied requirements
for the mean quality and inference delay of the task set. When
finished, the Model Selector will run the model swapping
algorithm described in the previous section. To do so though,
it must interact with two other components 2⃝.

The first component is the Monitoring that interacts with
the underlying edge node to extract the current availability
in computational power and memory 3⃝. The monitoring
component features 2 implementations of monitoring probes
so that data extraction can be automated and not require
any additional coding for service operators unless a custom
probe is something they would want to develop. In brief, the
monitoring features a probe for Netdata4, an open and popular
monitoring tool, and cAdvisor5, another popular monitoring
tool designed for containerized execution environments. In
addition, the monitoring is also tasked with extracting the

4 https://www.netdata.cloud/
5 https://github.com/google/cadvisor

node’s current power operating level. For this, ModelSwapper
embeds a monitoring plugin that supports the extraction of the
power drawn by the underlying edge node from various smart
meters. The probing interface can easily be extended to support
other power metering libraries and devices while users with
no direct access to the underlying processor can use the probe
interface to provide estimated power measurements inferred by
a model. The second component is the Model Store where the
set of pre-trained models reside along with an index providing
elaborate metadata about each model 4⃝. This includes each
model’s configuration differences (i.e., layers, headings) and
their resource requirements. With this information in hand, the
Model Selector can run the model-swapping algorithm each
time a new set of inference tasks is received. Upon determining
the most suitable model, the response is given to the Model
Provider module 5⃝ which will render the availability of
model from the model store and notify the EdgeAI service
accordingly 6⃝.

Finally, we note that ModelSwapper presents one more
component, the Model Profiler, that runs during the initial
deployment 0⃝. Specifically, the Model Profiler is tasked with
computing the normalized model complexity γ and the FLOPs
for each m ∈ M. For the latter, the operators of the EdgeAI
service have 3 options: (i) they may provide the FLOPs in a
csv format; (ii) request the FLOPs to be computed for each
model; or (iii) compute the FLOPs only for the most complex
model and for the rest use the model complexity (Equation 8)
to obtain an estimate.

V. EVALUATION

This section introduces an evaluation of the efficacy and
efficiency of ModelSwapper over two use-cases, multiple
model configurations, and datasets. We note that for our
evaluation we used popular and publicly available pre-trained
models (and datasets) to support both the reproducibility and
verification of the results.

A. Use-Cases and Datasets

The first use-case focuses on object detection where the
EdgeAI service is tasked with accepting a set of inference
tasks where objects must be detected (and classified) within
the provided images. The model architecture embraced for
this use-case is the popular convolutional neural network Effi-
cientNet [22]. The classic EfficientNet version has 8 variants
(B0-B7) where each model differs in network depth, width,
resolution, and dropout rate. For the model store we employ
the first 6 models (B0-B5) from the pre-trained model library
of Keras6 and note that we omit the final two variants (B6,
B7) that are too complex for the edge computing testbed.
For reference, the normalized model complexity (γ) for the
variants B0-B5 are [0.070, 0.082, 0.160, 0.235, 0.597, 1.0].
For the inference tasks we will embrace the popular and
open ImageNet-tiny7 dataset (hosted on huggingface)

6 https://keras.io/api/applications/efficientnet/
7 https://huggingface.co/datasets/zh-plus/tiny-imagenet

where the validation set features 10,000 colored 64×64 images
classified into 200 label classes.

The second use-case focuses on natural language under-
standing where the EdgeAI service is tasked with accepting a
set of text-based inference tasks that use a language model to
semantically interpret the meaning of the provided text. The
language model architecture embraced for the second use-case
is the popular BERT architecture that is a transformers model
pre-trained on a large corpus of English data (wikipedia) in
a self-supervised fashion [26]. For the model store we do not
embrace the classic pre-trained BERT models (i.e., BERT-
base, BERT-large) but rather, we employ the light-weight
models introduced by Google Research8 that are deemed
suitable for edge computing. These models differ in network
depth (layers) and hidden embedding sizes. We note that the
available lightweight models provided by Google Research are
24 but we employ that first 20 (up to 10 layers), excluding the
final 4 models that overwhelm our edge computing testbed.
As the models considered amount to 20, we omit presenting
the model complexity vector here and refer readers to the
plots introduced in Section 3. For the inference tasks we
will embrace the popular and open glue-mrpc dataset that
was released by Microsoft Research9 and includes a corpus
of sentence pairs automatically extracted from online news
sources, with human annotations for whether the sentences in
the pair are semantically equivalent.

B. Testbed

We run our experiments on a HP Proliant DL380 G9 server
with an Intel Xeon E5-2680 processor embedding 44 cores
clocked at 2.50GHz and 176GB memory. We embrace Fogify
to cut and shape the server into an edge host for the EdgeAI
service, streamline experimentation, and inject background
load [27]. Specifically, a Fogify template is used to configure
an edge server for the EdgeAI service with 13 GFLOPS
processing power and 8GB memory. For reference this is
x2 the performance of a Raspberry Pi 4 and on par with
an nvidia Jetson TX1 based on the linpack bechmark10. To
show that different models should be considered when the
EdgeAI is under different load fluctuations, we utilize Fogify’s
compute-capping feature that restricts the available compu-
tational power of the edge server. With this, we can mimic
background processes that affect the resource availability for
the submitted inference tasks.

C. Methods for Comparison

For a comprehensive evaluation, we will compare Model-
Swapper against the following methods:

• Base: this method will be our baseline by adopting the
most complex, and accurate, model (γ = 1.0) per use-
case for all given inference tasks.

• Rand: this method will perform a random selection from
the model store for the EdgeAI service to utilize during

8 https://github.com/google-research/bert/
9 https://www.microsoft.com/en-us/download/details.aspx?id=52398
10 https://www.top500.org/project/linpack/

inference irrespective of the underlying computational
availability.

• Prune: this method is similar to the Baseline, but with
the model having undergone pruning to reduce the feature
space by 50%. This number was opted to show similar
performance gains with ModelSwapper.

D. Experiment Runs for Use-Case 1

The following configurations are specific to this experiment.
We split the validation set of the ImageNet dataset (10K
images) into batches with each batch considered a set of
inference tasks (T) submitted by users in a streaming modality.
For brevity, we note that the batches are fixed in size. In
subsequent experiments we will work with different T ’s to
study the overhead of the algorithmic process. Hence, for this
run the batch size is set to 20 so that each batch is comprised
of 20 randomly selected images. In addition, each batch should
be annotated with a user-desired mean accuracy and inference
delay. For the mean inference delay we select randomly
between the 10 and 40s. For the classification accuracy, we
consider a random selection among 0 (no model is excluded),
> 77% (excludes 1 model), and > 81% (excludes 3 models).
For fairness, we maintain the randomly assembled batches so
that for each method evaluated, the comparison is performed
over the same set of images and user requirements.

Each experiment run is set with a max duration of 30min
and during execution the computational availability of the edge
node fluctuates in time. As previously mentioned, for this we
embrace Fogify that is configured to vary the computational
availability of the edge node between 20% and 90% by deploy-
ing a computational-intensive background process. Similar to
batched images, the derived computational availability of the
edge node is pre-recorded so that all methods under evaluation
are stressed, for fairness, in the same manner.

Figure 6 depicts the results of this experiment run. Within
this figure, we observe (top-to-bottom) for each method un-
der comparison the chronological evolution of the compute
utilization, inference delay per batch, energy consumed per
batch (Kjoules), and the classification accuracy per batch. We
also note that the computational availability of the edge node
and how it fluctuates in time is shown within the top plot
(dashed line). From these plots we can make the following
observations. As expected, and irrespective of the adopted
model, the computational capacity made available is almost ex-
hausted despite fluctuations that are dependent on the images
randomly selected per batch. It is immediately evident that
for the Baseline adopting the most complex EfficientNet model
this results in significant inference delays as the computational
availability of the edge node fluctuates with the mean reported
delay at 36.2s (std 15.8) and some delays reaching 78-80s per
batch. In turn, significant energy is consumed with the energy
per batch well within the range of 0.23-0.71 KJoule and a
mean of 0.41 KJoule. For the Baseline, the mean classification
accuracy per batch is 68.46% (std 2.78). Moreover, from the
plots we observe that a random selection of the model outputs
truly random results with the inference delay and energy

Fig. 6. UC1 performance evaluation with EfficientNet model store

Fig. 7. ModelSwapper diverse selectivity for UC1 (left) and UC2 (right)

consumption presenting extreme variability, while the accuracy
is significantly hampered, increasing the uncertainty by 7.4%
on average (std 3.27).

In contrast to a fixed or random model selection, by mon-
itoring the computational availability of the edge node and
striving to maintain user-given QoS requirements, we observe
that ModelSwapper achieves significant energy savings with
only a slight accuracy degradation. Specifically, we observe
that the inference delay per batch remains relatively stable
irrespective of the computational availability. The mean infer-
ence delay per batch is 11.1s (std 2.9), a 68% reduction in
comparison to the Baseline. This results in significant energy
savings of 27% with the energy consumed per batch within
the range of 0.03-0.36 KJoule and a mean of 0.13 KJoule.
Moreover, these savings are achieved with the classification
accuracy per batch dropping by only 0.88% on average. We
note here that the percentage reduction in energy (27%) is less
than the latency reduction (68%) as energy savings cannot
be harvested when the selected model (to swap) still leaves
the device completely stressed to meet the given latency
request. Moreover, Figure 6 also depicts the experimentation

Fig. 8. UC2 performance evaluation with BERT model store

run with the EdgeAI service adopting parameter pruning so
that the Baseline model employs compression to reduce the
feature vector of the model. From the results, we observe that
Pruning achieves similar results to ModelSwapper in terms
of performance (inference delay, energy consumed). However,
the classification accuracy significantly suffers and is even
lower than the Random model selection. This is attributed to
the fact that compression is a fixed cost imposed throughout
the entire run irrespective of the edge node computational
availability.

Finally, Figure 7 (left) showcases the diversity of the model
swapping process. For the fluctuating computational availabil-
ity of the EdgeAI service, we observe that ModelSwapper
favors the EfficientNet B4 model 43%, B3 29% and models
B2 and B5 14%, while models B1 and B2 are not selected as
they never meet the user-given QoS requirements.

E. Experiment Runs for Use-Case 2

UC2 features a similar experiment setting with the previous.
For brevity, we denote only the different configurations. For
this experiment, we set the batch size to 15 so that each
batch is comprised of 15 randomly selected sentences. In turn,
the user-given mean inference delay per batch is randomly
selected within the range of 1s and 4s. For the classification
accuracy, we consider a random selection among 0 (no model
is excluded), > 72.5% (excludes 3 models), and > 75%
(excludes 6 models). As a reminder, for fairness across exper-
iment runs, we maintain the randomly assembled batches so
that for each method evaluated, the comparison is performed
over the same set of sentences and user requirements.

Figure 8 depicts the results of UC2 where we output the
same performance metrics as in the previous use-case. For both
the Baseline and the Random execution we observe a similar
pattern as with before. The Baseline employing the most

complex model (γ = 1.0) utilizes the computational resources
completely and when availability is low, the inference delay
per batch is significantly hampered. Specifically, the mean
inference delay of the Baseline is 7.10s (std 3.61) with batches
run over low compute availability incurring inference delays
well within the 17-22s range. This significantly impacts energy
consumption, with the reported energy per batch between 0.03-
0.12 KJoule with a mean of 0.07 (std 0.02) KJoule. With 20
models to select from, the Random execution can, in several
instances, reduce the inference time and energy consumption
per batch. However, this (again) comes with a significant re-
duction in accuracy. For UC2, the mean classification accuracy
per batch of the Random execution is reduced to 74.3% (std
1.4) in comparison to the Baseline with a mean accuracy of
79% (std 1.05).

In contrast, ModelSwapper is able to both reduce the
inference delay per batch and it’s variability, exploit significant
energy savings, and do so while keeping the classification
accuracy in line with the Baseline execution. Specifically,
the mean inference delay per batch is 1.74s (std 0.43) that
amounts to a 74% reduction in comparison to the Baseline.
In turn, the mean energy consumed per batch is 0.017 KJoule
(std 0.007) amounting to a 29% reduction in the total energy
consumption. Most importantly, and as shown in Figure 8
(bottom plot), these savings are achieved with a minor re-
duction in classification accuracy of only 1.1%. Moreover, and
similar to UC1, employing Pruning produces similar inference
and energy savings with ModelSwapper. However, accuracy
takes a significant hit, performing even worse that a random
selection, as the compression is applied irrespective of the
computational (un-) availability.

Finally, Figure 7 (right) showcases the diversity of the model
swapping process for UC2. We note that in this figure the x-
axis depicts the model complexity as the 20 BERT models do
not have a naming convention. We observe that ModelSwapper
performs a diverse selection from the model store to meet both
the computational load of the edge node and the QoS demands
of the userbase. The selection opts for 9 different models with
some from the low-, mid-, and high-complexity spectrum.

F. Overhead Study

In this experimentation, focus is given in assessing the ad-
ditional overhead imposed by the model swapping algorithmic
framework to the EdgeAI service.

Although the algorithmic process is decoupled from the
actual inference process of the EdgeAI service, we run this
experimentation under realistic conditions. Specifically, we
deploy ModelSwapper alongside UC1 that employs the Ef-
ficientNet models and performs inference on the ImageNet-
tiny dataset. For the evaluation we run the ModelSwapper
algorithm under different inference task set sizes (T) and
number of pre-trained models made readily available in the
model store (M). We consider T within the range of 10
and 10K, with the later denoting that the entire ImageNet-
tiny validation set is considered a single batch. In turn, we
assess the impact of 3 different model stores, where M =

Fig. 9. ModelSwapper algorithm overhead analysis

20, 40, and 60. To generate different model configurations we
use the EfficientNet model builder to randomly output models
with different network depth, width, and dropout rate. We note
that, for the majority of these model configurations, accuracy
is low but is expected as a byproduct of having to generated
up to 60 different models.

Figure 9 depicts the results of this experimentation. The
results confirm the complexity analysis performed in Sec-
tion III-B. Specifically, we observe a linear increment in the
running time of the model swapping algorithmic process as
T increases. We also observe that adding more models to
the model store M, has a multiplier effect. Finally, we note
that in comparison to the total inference time of a batch, the
algorithmic overhead for small (and more realistic) batch sizes
(< 100), is under 1% and as T increases, the ratio drops well
under 0.1% for more than 1000 images in the batch.

VI. RELATED WORK

The advent of open and publicly accessible ML/DL frame-
works are facilitating the realization of EdgeAI services by
easing the design and deployment of deep neural networks
(DNNs) on resource-constrained devices [2]. Examples of such
frameworks include TensorFlow-Lite11, Glow12, and ONNX13.
With AI technology maturing and capable of training more
accurate and versatile models, efficient inference serving out
in the “wild” is becoming a key interest of both the systems
and AI communities. Relevant inference serving tools for geo-
distributed and edge computing realms are Clipper [28] and
Nexus [29] with both enabling multi-client request serving
and the definition of app-level SLOs for inference execution.
In turn, ClockWork [30] is a distributed model serving system
that mitigates tail latency for inference with the scheduling re-
ordering the execution of inference tasks based on their targets
and avoiding interference on worker nodes.

Efficiency for EdgeAI inference serving boils down to
achieving desired latency and, more recently, energy saving
requirements. For the former several works propose the in-
troduction of model compression techniques to achieve faster

11 https://www.tensorflow.org/lite
12 https://github.com/pytorch/glow
13 https://onnx.ai/

execution [18]. Examples of model compression techniques
include quantization (i.e., reduce precision of the model pa-
rameters) [31] and pruning (i.e., reduce number of model
parameters) [32]. While model compression methods can
succeed in reducing the inference delay, they have a fixed
cost and can significantly reduce accuracy even in cases where
perhaps only a modest increment in uncertainty is required. To
compensate, model adaptation can be embraced. For example,
Teerapittayanon et al. introduce BranchyNet [33], where exit
points are added to the (layered) network structure so that
samples can exit the network early if the classification is
confident, thus reducing the cost of inference. In turn, Bateni
et al. [34] and Venkataramani et al. [35] propose ApNet
and AxNN, respectively. These frameworks are designed to
guarantee model execution under strict latency requirements
by introducing layer-based approximation methods for DNNs
that explore the trade-off between the approximation degree
and the resulting execution reduction.

To avoid fixed costs, model selection methods can be
employed. A notable model selection framework is Jellyfish,
proposed by Nigate et al. [36]. Jellyfish selects a subset of
available DL models to run a batch of inference tasks with
the intent of achieving high accuracy guarantees through the
ensemble of the models. As this incurs a high (resource)
cost, the batch size must be dynamically adjusted to reduce
the network latency incurred by remote and distant clients.
Similary, Salmani et al. propose InfAdapter [37], a framework
that also selects a subset of model variants that run on compute
workers (within a Kubernetes cluster) to meet latency SLOs
and maximize an objective function of accuracy and cost
defined as a computational budget.

Closer to our work are the following frameworks. Shu et
al. introduce IF-CNN [10] that embeds a CNN-based model,
denoted as the recognition predictor (RP), to select among 3
models the most efficient to run a given set of inference tasks.
To select among the 3 models the RP outputs a prediction for
the top-1 accuracy of each model and the one above a user-
given threshold with the lowest complexity is selected. Scaling
to more than 3 models is a challenge as the training process
must learn the top-1 probabilities per model and due to the
inference delay of the RP itself, significant gains are observed
only when the task set is large. On the other hand, Marco
et al. [38] introduce a lightweight ML framework capable of
selecting among models the most accurate for inference based
on the feature set of the input sample. The feature set is app-
dependent, e.g., for image classification brightness, hue and
edge length, and for machine translation number of words
and word length; are deemed the most important during the
training process of the model selector. A key observation made
by the authors is that selecting the most suitable model for
the given input can potentially also reduce inference time.
Finally, Park et al. [39] introduce Big/Little, a framework
for image classification that selects for inference tasks among
two available model variants (little, big), in an attempt to re-
duce energy consumption on edge nodes without significantly
impacting accuracy. To achieve this, Big/Little computes the

score margin, a metric that represents the difference between
the 1st and 2nd score at the last classification layer and if the
margin is above a threshold (e.g. 0.7) then the “little” model
can be run with the expectation that the accuracy will not be
significantly affected.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

With the pressing need to move towards sustainable prac-
tices for Edge Computing, AI cannot be the exception. Our
work tackles energy-aware model swapping by introducing
ModelSwapper. When resource constraint EdgeAI services
are faced with pressing loads, the algorithmic mechanism of
ModelSwapper is designed to select among a set of pre-trained
models a less computationally complex model that is best
suited to reduce energy consumption for the runtime inference
tasks imposed by users to the EdgeAI service. With model
swapping, energy savings are harvested by employing less
computational effort and at the same time, user experience
is not negatively impacted as ModelSwapper balances among
energy saving and user-desired QoS requirements in the form
of inference delay and accuracy. To showcase both the efficacy
and efficiency of ModelSwapper, we perform a comprehensive
evaluation featuring EdgeAI services for object detection and
NLU, with each service employing popular model structures
(EfficientNet, BERT), under different model configurations
(network depth, width, etc) and real-world datasets. The
evaluation demonstrates that ModelSwapper can significantly
reduce energy usage and inference delays by at least 68% and
27% respectively, with only a 1% reduction in accuracy.

The future directions of our work are two-fold. First, the
algorithmic framework for energy-aware model swapping will
be extended to acknowledge DL models of different structure
where the relationship among model complexity towards ef-
ficiency (flops per watt) and accuracy can significantly differ
between model structures. Second, the algorithmic framework
will be extended to propose the computational placement
of a set of inference tasks by considering, other than local
execution, the placement to other neighboring edge nodes.

ACKNOWLEDGEMENT

This work is part of AdaptoFlow that has indirectly received
funding from the European Union’s Horizon Europe research
and innovation action programme, via the TRIALSNET Open
Call issued and executed under the TrialsNet project (Grant
Agreement no. 101017141).

REFERENCES

[1] H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge
computing with artificial intelligence: A machine learning perspective,”
ACM Comput. Surv., vol. 55, no. 9, jan 2023. [Online]. Available:
https://doi.org/10.1145/3555802

[2] R. Singh and S. S. Gill, “Edge AI: A survey,” Internet of Things and
Cyber-Physical Systems, vol. 3, pp. 71–92, 2023.

[3] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–
7469, 2020.

[4] A. Balasubramaniam and S. Pasricha, “Object detection in autonomous
vehicles: Status and open challenges,” 2022.

[5] K. Mabuntham and W. Marurngsith, “Mobile edge nlu with on-device
inference for humanitarian assistance during disasters,” in 2022 IEEE
5th International Conference on Electronics and Communication Engi-
neering (ICECE). IEEE, 2022, pp. 239–243.

[6] J. P. Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund, “Edge-ai in
lora-based health monitoring: Fall detection system with fog computing
and lstm recurrent neural networks,” in 2019 42nd international confer-
ence on telecommunications and signal processing (TSP). IEEE, 2019,
pp. 601–604.

[7] C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng,
G. Chang, F. Aga, J. Huang, C. Bai, M. Gschwind, A. Gupta, M. Ott,
A. Melnikov, S. Candido, D. Brooks, G. Chauhan, B. Lee, H.-H.
Lee, B. Akyildiz, M. Balandat, J. Spisak, R. Jain, M. Rabbat, and
K. Hazelwood, “Sustainable AI: Environmental Implications, Challenges
and Opportunities,” in Proceedings of Machine Learning and Systems,
D. Marculescu, Y. Chi, and C. Wu, Eds., vol. 4, 2022, pp. 795–813.

[8] D. Amodei and D. Hernandez, “AI and Compute,” https://openai.com/
research/ai-and-compute, 2018.

[9] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Brandenburg,
“Swayam: distributed autoscaling to meet slas of machine learning
inference services with resource efficiency,” in Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, ser. Middleware ’17, New
York, NY, USA, 2017, p. 109–120.

[10] G. Shu, W. Liu, X. Zheng, and J. Li, “IF-CNN: Image-Aware Inference
Framework for CNN With the Collaboration of Mobile Devices and
Cloud,” IEEE Access, vol. 6, pp. 68 621–68 633, 2018.

[11] D. Trihinas, L. Thamsen, J. Beilharz, and M. Symeonides, “Towards
energy consumption and carbon footprint testing for ai-driven iot ser-
vices,” in 2022 IEEE International Conference on Cloud Engineering
(IC2E), 2022, pp. 29–35.

[12] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey, “Recalibrating
global data center energy-use estimates,” Science, vol. 367, no. 6481,
pp. 984–986, 2020.

[13] D. A. Patterson, J. Gonzalez, Q. V. Le, C. Liang, L. Munguia,
D. Rothchild, D. R. So, M. Texier, and J. Dean, “Carbon emissions
and large neural network training,” CoRR, vol. abs/2104.10350, 2021.

[14] J. Vincent, “How much electricity does ai consume?” 2024.
[15] G. Inc, “Gartner Says 50% of Critical Enterprise Applications Will

Reside Outside of Centralized Public Cloud Locations Through 2027,”
https://tinyurl.com/4ud5tsp6, 2023.

[16] L. Saint-Martin, J. Delesse, and J. Tual, “Study on the economic
potential of far edge computing in the future smart internet of things –
final study report,” Publications Office of the European Union, 2023.

[17] D. Trihinas, G. Pallis, and M. Dikaiakos, “Low-cost adaptive monitoring
techniques for the internet of things,” IEEE Transactions on Services
Computing, 2018.

[18] J. Kim, S. Chang, and N. Kwak, “Pqk: model compression via
pruning, quantization, and knowledge distillation,” arXiv preprint
arXiv:2106.14681, 2021.

[19] R. Desislavov, F. Martı́nez-Plumed, and J. Hernández-Orallo, “Trends in
ai inference energy consumption: Beyond the performance-vs-parameter
laws of deep learning,” Sustainable Computing: Informatics and Sys-
tems, vol. 38, p. 100857, 2023.

[20] G. Varoquaux and O. Colliot, “Evaluating machine learning models and
their diagnostic value,” Machine Learning for Brain Disorders, pp. 601–
630, 2023.

[21] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 2820–2828.

[22] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[23] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein,
“On the expressive power of deep neural networks,” in international
conference on machine learning. PMLR, 2017, pp. 2847–2854.

[24] R. Desislavov, F. Martı́nez-Plumed, and J. Hernández-Orallo, “Compute
and energy consumption trends in deep learning inference,” CoRR, vol.
abs/2109.05472, 2021. [Online]. Available: https://arxiv.org/abs/2109.
05472

[25] I. Turc, M. Chang, K. Lee, and K. Toutanova, “Well-read students learn
better: The impact of student initialization on knowledge distillation,”
CoRR, vol. abs/1908.08962, 2019.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[27] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D.
Dikaiakos, “Fogify: A fog computing emulation framework,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC), 2020, pp. 42–54.

[28] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A Low-Latency online prediction serving system,”
in 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17). Boston, MA: USENIX Association, Mar. 2017,
pp. 613–627.

[29] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose,
A. Krishnamurthy, and R. Sundaram, “Nexus: a gpu cluster engine
for accelerating dnn-based video analysis,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles, ser. SOSP ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
322–337. [Online]. Available: https://doi.org/10.1145/3341301.3359658

[30] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann,
Y. Vigfusson, and J. Mace, “Serving DNNs like clockwork: Performance
predictability from the bottom up,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 443–462. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/gujarati

[31] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein, J. Montgomery,
B. Maher, S. Nadathur, J. Olesen, J. Park, A. Rakhov, M. Smelyanskiy,
and M. Wang, “Glow: Graph lowering compiler techniques for neural
networks,” 2019.

[32] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention
architecture with cascade token and head pruning,” CoRR, vol.
abs/2012.09852, 2020. [Online]. Available: https://arxiv.org/abs/2012.
09852

[33] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” CoRR, vol.
abs/1709.01686, 2017. [Online]. Available: http://arxiv.org/abs/1709.
01686

[34] S. Bateni and C. Liu, “Apnet: Approximation-aware real-time neural
network,” in 2018 IEEE Real-Time Systems Symposium (RTSS), 2018,
pp. 67–79.

[35] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn:
Energy-efficient neuromorphic systems using approximate computing,”
in 2014 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), 2014, pp. 27–32.

[36] V. Nigade, P. Bauszat, H. Bal, and L. Wang, “Jellyfish: Timely inference
serving for dynamic edge networks,” in 2022 IEEE Real-Time Systems
Symposium (RTSS), 2022, pp. 277–290.

[37] M. Salmani, S. Ghafouri, A. Sanaee, K. Razavi, M. Mühlhäuser,
J. Doyle, P. Jamshidi, and M. Sharifi, “Reconciling high accuracy,
cost-efficiency, and low latency of inference serving systems,”
in Proceedings of the 3rd Workshop on Machine Learning and
Systems, ser. EuroMLSys ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 78–86. [Online]. Available:
https://doi.org/10.1145/3578356.3592578

[38] V. S. Marco, B. Taylor, Z. Wang, and Y. Elkhatib, “Optimizing deep
learning inference on embedded systems through adaptive model selec-
tion,” ACM Trans. Embed. Comput. Syst., vol. 19, no. 1, feb 2020.

[39] E. Park, D. Kim, S. Kim, Y.-D. Kim, G. Kim, S. Yoon, and S. Yoo,
“Big/little deep neural network for ultra low power inference,” in 2015
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2015, pp. 124–132.

