
Knowledge and Data
Management in GRIDS

Knowledge and Data
Management in GRIDS

edited by

Domenico Talia
University of Calabria

Italy

Angelos Bilas
ICS-FORTH

Greece

Marios D. Dikaiakos
University of Cyprus

Cyprus

Springer -

Domenico Talia
Universitk Calabria
Dipto. Elettronica Informatica
Sistemistica (DEIS)
via P. Bucci,41 c
87036 RENDE
ITALY

Angelos Bilas
ICS-FORTH
P 0 BOX 1385
7 1 1 10 HERAKLION
GREECE

Marios D. Dikaiakos
75 Kallipoleos Str.
University of Cyprus
Dept. Computer Science
P.O.Box 20537
1678 NICOSIA
CYPRUS

Library of Congress Control Number: 2006935054

Knowledge and Data Management in GRIDS
edited by Domenico Talia, Angelos Bilas and Marios D. Dikaiakos

ISBN- 13: 978-0-387-37830-5
ISBN-10: 0-387- 37830-8
e-ISBN-13: 978-0-387-3783 1-2
e-ISBN-10: 0-387- 3783 1-6

Printed on acid-free paper.

O 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

Contents

Foreword

Preface

Contributing Authors

vii

ix
. . .

Xll l

Part I Grid Data Management

Accessing Data in Grids Using OGSA-DAI 3
Neil R Chue Hong, Mario Antonioletti, Konstantinos A. Karasavvas, and Malcolm
Atkinson

Service Choreography for Data Integration on the Grid 19
Anastasios Gounaris, Rizos Sakellariou, Carmela Comito, and Domenico Talia

Accessing Web Databases using OGSA-DAI in BDWorld 35
Shirley Crompton, Brian Matthews, Alex Gray, Andrew Jones, and Richard White

Failure Recovery Alternatives in Grid-Based Distributed Query Processing: A Case
Study 5 1

Jim Smith and Paul Watson

Part I1 Grid Data Storage

Conductor: Support for Autonomous Configuration of Storage Systems 67
Zsolt Ngmeth, Michail D. Flouris, Renaud Lachaize, and Angelos Bilas

Violin: A Framework for Extensible Block-level Storage
Michail D. Flouris, Renaud Lachaize, and Angelos Bilas

ClusteriX Data Management System (CDMS) - Architecture and Use Cases 99
Konrad Karczewski and Lukasz Kuczynski

Part 111 Semantic Grid

Architectural Patterns for the Semantic Grid 119
Ioannis Kotsiopoulos, Paolo Missiel; Pinar Alpel; Oscar Corcho, Sean Bechhofel; and
Carole Goble

vi KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

A Metadata Model for the Discovery and Exploitation of Scientific Studies 135
Shoaib Sufi, and Brian Matthews

Ideas for the Provision of Ontology Access in Grid Environments
Miguel Esteban Gutitrrez and Asuncidn Gdmez-Pirez

Semantic Support for Meta-Scheduling in Grids
Paolo Missier, Philipp Wieder, and Wolfgang Ziegler

Semantic Grid Resource Discovery in Atlas 185
Zoi Kaoudi, Iris Miliaraki, Matoula Magiridou, Erietta Liarou, Stratos Idreos, and
Manolis Koubarakis

Part IV Distributed Data Mining

WSRF-based Services for Distributed Data Mining
Antonio Congiusta, Domenico Talia, and Paolo Trunfio

Mining Frequent Closed Itemsets from Distributed Repositories 22 1
Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Claudio Silvestri

Distributed Data Mining and Knowledge Management with Networks of Sensor
Arrays 235

Maurice Dixon, Simon C. Lambert, and Julian R. Gallop

Index 25 1

Foreword

While Grids have initially emerged from the need to get access to more
computing power by combining several high-performance computers, it has
been quickly evident that there is a similar need to get access to data, such
as databases, file systems, and digital libraries which are widely spread in the
Internet. By accessing these distributed data and processing them using Grid
computing resources to produce knowledge, we can expect to extend the scope
of Grid Technologies to new applications. In fact, research activities in this
area are being pursued by several research teams and, at the same time, big
companies are very active in the area.

The huge amount of dispersed data and information repositories have arisen
new challenges in the field of Grid computing. Grids are evolving towards
flexible and knowledge-based infrastructures, in which services will be dy-
namically composed, allowing applications to access heterogeneous resources
to be exploited in complex distributed applications. The field of Grid com-
puting can take advantage of related paradigms, such as Workflows, Services,
and Ontologies in order to provide an infrastructure with mentioned features.
This new approach can be referred as the Knowledge and Data Management in
Grids, and it must address issues related to data services composition, knowl-
edge discovery, data and knowledge integration to provide the ability for ex-
tracting useful knowledge from unmanageable volume of data, by exploiting
storage management, database and data mining techniques in a Grid context.

The strategic importance of Data and Knowledge Management in the con-
text of Grid Technologies, have led CoreGRID, the only one Network of Excel-
lence in Grid and P2P technologies funded by EU 6th Framework Programme,
to have a dedicated institute to investigate research issues in this area. This
book is the result of the efforts carried out by researchers involved in this
CoreGRID Institute during the first year. While the CoreGRID ambition is
to foster integration and collaboration, the first year was mainly to let Core-
GRID researchers to know one each other. Several meetings and workshops
were organized to give the opportunity to researchers to exchanged and con-
front their ideas. This was the goal of the first Workshop on Knowledge and
Data Management in Grids that has been held in Poznan (Poland) on Septem-

...
vlll KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

ber 13-14, 2005. 1 would like to take this opportunity to express my gratitude
to the organizers of this workshop as well as to all contributors.

Thierry Priol, CoreGRID Scientific Co-ordinator

Preface

Data and knowledge play a key role in current and future Grid applications
and services. The issues concerning representation, querying, discovery, and
integration of data and knowledge in dynamic distributed environments can
be addressed by exploiting features offered by Grid Technologies. Current
research activities are leveraging the Grid for the provision of generic- and
domain-specific solutions and services for data management and knowledge
discovery. The goal is to promote a wide diffusion and use of knowledge-based
Grid services for the Semantic Grid and the Knowledge Grid. To this end, re-
searchers are focusing on problems related to (i) providing commodity-based
distributed frameworks for storing, accessing, and handling data, (ii) develop-
ing semantic-based techniques and tools for supporting data intensive applica-
tions, and (iii) designing distributed data analysis techniques and services for
information and knowledge extraction on Grids.

The CoreGRID Network of Excellence aims at strengthening and advanc-
ing scientific and technological excellence in the area of Grid and Peer-to-Peer
technologies. To achieve its objectives, CoreGRID brings together a critical
mass of well-established researchers from more than forty European institu-
tions active in the fields of distributed systems and middleware, models, algo-
rithms, tools and environments.

In the CoreGRID NoE, the Institute on Knowledge and Data Management
(KDM) has the objective to improve integration of research activities in the
fields of data management, knowledge discovery and Grid computing for pro-
viding knowledge-based Grid services for the Semantic Grid through a tight
coordination of European researchers active in those areas. The research tasks
undertaken in the context of the KDM Institute compose a unified scenario of
the data and knowledge management in GRIDS through a layered approach that
starts from efficient data storage techniques up to information management and
knowledge representation and discovery. At the same time, joint research ac-
tivities pursued by the Institute partners are providing single solutions for data
and knowledge management that will bring benefits to research and industry in
GRID technology. Within its activities. the KDM Institute organized the first
Workshop on Knowledge and Data Management in Grids that has been held in

x KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Poznan (Poland) on September 13-14,2005. The purpose of the workshop was
bringing together CoreGRID researchers and invited external scientists doing
research in Knowledge and Data Management in Grid and Peer-to-Peer Sys-
tems. The workshop provided a forum for the presentation and exchange of
views on the latest Grid Technology research in the area of knowledge and
data management.

This book is the third volume of the CoreGRID series and, as a result of
that workshop and some additional invited papers, it brings together scien-
tific contributions by researchers and scientists working on storage, data, and
knowledge management in Grid and Peer-to-Peer systems. The book chapters
present the latest Grid solutions and research results in key areas of knowledge
and data management such as distributed storage management, Grid databases,
Semantic Grid and Grid-aware data mining. All the addressed topics are dis-
cussed in the context of recent research projects.

The book includes four parts: Grid Data Management, Grid Data Storage,
Semantic Grid, and Distributed Data Mining. All those sections are concerned
with key topics in the area of knowledge and data management on Grids.
They provide a general view of the main challenges in implementing data-
and knowledge-intensive applications in a Grid computing scenario.

The first part includes four chapters. The first one presents an overview of
the OGSA-DAI (Open Grid Service Architecture - Data Access and Integra-
tion) software, which provides a uniform and extensible framework for access-
ing structured and semi-structured data and provide some examples of its use
in significant Grid projects. The second chapter discusses data integration and
query reformulation in service-based Grids. The XMAP data integration algo-
rithm is presented and service-based architecture for data integration-enabled
query processing on the Grid is discussed. In the third chapter are evaluated the
benefits of using OGSA-DAI in bioinformatics GRIDS by establishing commu-
nication between OGSA-DAI and GRID project developers as well as through
practical case studies involving current projects. The last chapter of this part
discusses fault-tolerance in Grid-based distributed query processing. A new
scheme for adding fault-tolerance to distributed query processing through a
rollback-recovery mechanism is evaluated in the context of the OGSA-DQP
system.

The Grid Data Storage part includes a chapter on Conductor, a rule-based
production system providing the ability to configure storage systems to meet
resource constraints and application requirements. Conductor is able to eval-
uate alternatives and minimize system costs based on certain criteria. Then
an autonomous distributed system built on top of the Violin framework is pre-
sented that is able to configure and reconfigure the storage hierarchy by detect-
ing service breaches and take actions to eliminate them. The third chapter of
this part presents the Clusterix Data Management System (CDMS), a solution

PREFACE xi

for data management on Grids. Taking into account Grid specific network-
ing conditions - different bandwidth, current load and network technologies
between geographically distant sites, CDMS tries to optimize data throughput
via replication and replica selection techniques.

The third part includes five chapters discussing key topics in the Semantic
Grid area. The first chapter describes the dynamic aspects of the Semantic
Grid reference architecture, S-OGSA, by presenting the typical patterns of in-
teraction among these services. The next chapter describes a science metadata
model developed at CCLRC providing interoperability of scientific informa-
tion systems in the organization and form a specification of the type and cate-
gories of metadata that studies should capture about their investigations. Then
the Semantic Grid part includes a chapter that argues that providing the appro-
priate means for accessing and using ontologies effectively is a key factor in
enriching current Grid with semantic technologies and supporting progress to-
wards the next generation Grid. That work was performed in the OntoGrid
project. The fourth chapter in this part proposes an ontology-based meta-
scheduler as a Grid service for co-allocating resources on multiple grid nodes
based on semantic information. Finally, the part finishes with a chapter that
presents the implementation of Atlas, a P2P system for the distributed storage
and querying of RDF(S) metadata describing OntoGrid resources and services.

The last part of the book includes contributions on Distributed Data mining
in Grids. The first chapter describes the composition of distributed knowl-
edge discovery services according to the WSRF model by using the Knowl-
edge Grid environment. The chapter focuses in particular on the application
modeling. Applications are designed using a UML model, which is translated
into a BPEL representation, in turn processed by the Knowledge Grid services
for its execution. The second chapter addresses the problem of mining fre-
quent closed itemsets in a highly distributed setting like a Grid. Authors show
how frequent closed itemsets, mined independently at each site, can be merged
in order to derive globally frequent closed itemsets. The last chapter reports
progress made by using data mining techniques in the TELEMAC project con-
cerned with enhancing the efficacy of anaerobic digestion in potentially unsta-
ble digesters. After placing the specific TELEMAC situation in a generic Grids
context, authors present a classification approach to attributes for metadata and
indicate some examples of model resource discovery.

From recent developments we can see the Grid moving from a computa-
tion platform to a data and knowledge management infrastructure. This trend
needs new models, tools and solutions for enabling Grid computing to support
advanced Grid applications. This book discusses some of the key technolo-
gies needed to support this trend and presents solutions recently designed to
implement scalable applications.

xii KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

We would like to thank all the participants for their contributions to making
the KDM workshop a success. The workshop program committee for review-
ing the submissions; the PSNC colleagues in Poznan for their support, and all
the authors that contributed chapter for publication in this volume. A special
thank to the Springer staff, Vladimir Getov and Paolo Trunfio for their assis-
tance in editing the book.

Our thanks also go to the European Commission for sponsoring under grant
number 004265 this volume of the CoreGRID project series of publications.

Domenico Talia, Angelos Bilas, Marios D. Dikaiakos

Contributing Authors

Pinar Alper School of Computer Science, The University of Manchester,
United Kingdom (penpecip@cs.man.ac.uk)

Mario Antonioletti EPCC, The University of Edinburgh, JCMB, The
King's Buildings, Mayfield Road, Edinburgh, EH9 352, United Kingdom
(mario@epcc.ed.ac.uk)

Malcolm Atkinson National e-Science Centre, 15 South College Street, Edin-
burgh, EH8 9AA, United Kingdom (mpa@nesc.ac.uk)

Sean Bechhofer School of Computer Science, The University of Manchester,
United Kingdom (seanb@cs.man.ac.uk)

Angelos Bilas Institute of Computer Science (ICS), Foundation for Research
and Technology - Hellas, P.O.Box 1385, Heraklion, GR 71110, Greece
(bilas@ics.forth.gr)

Neil P. Chue Hong EPCC, The University of Edinburgh, JCMB, The
King's Buildings, Mayfield Road, Edinburgh, EH9 352, United Kingdom
(N.ChueHong@epcc.ed.ac.uk)

Carmela Comito DEIS, University of Calabria, Via P. Bucci 41C, 87036
Rende (CS), Italy (ccomito@deis.unical.it)

Antonio Congiusta DEIS, University of Calabria, Via P. Bucci 41C, 87036
Rende (CS), Italy (acongiusta@deis.unical.it)

xiv KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Oscar Corcho School of Computer Science, The University of Manchester,
United Kingdom (ocorcho@cs.man.ac.uk)

Shirley Crompton CCLRC, Daresbury Laboratory, Warrington WA4 4AD,
United Kingdom (s.y.crompton@dl.ac.uk)

Maurice Dixon Computing, Communications Technology and Mathematics,
London Metropolitan University, 31 Jewry Street, London, EC3N 2EY, UK
(M.Dixon@Londonmet.ac.uk)

Michail D. Flouris Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4, Canada (flouris@cs.toronto.edu)

Julian R. Gallop e-Science, CCLRC Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon, OX1 l OQX, UK (J.R.Gallop@rl.ac.uk)

Carole Goble School of Computer Science, The University of Manchester,
United Kingdom (carole@cs.man.ac.uk)

Asuncidn Gdmez-PCrez Ontology Engineering Group, Universidad
Politkcnica de Madrid, Campus de Montegancedo sln, 28660, Boadilla
del Monte, Madrid, Spain (asun@fi.upm.es)

Anastasios Gounaris School of Computer Science, University of Manchester,
UK (gounaris@cs.man.ac.uk)

Alex Gray Cardiff School of Computer Science, Cardiff University, Cardiff
CF24 3AA, United Kingdom (w.a.gray@cs.cardiff.ac.uk)

Miguel Esteban Gutikrrez Ontology Engineering Group, Universidad
Politkcnica de Madrid, Campus de Montegancedo sln, 28660, Boadilla del
Monte, Madrid, Spain (mesteban@fi.upm.es)

Stratos Idreos CWI, Amsterdam, The Netherlands (S.Idreos@cwi.nl)

Andrew Jones Cardiff School of Computer Science, Cardiff University,
Cardiff CF24 3AA, United Kingdom (Andrew.C.Jones@cs.cardiff.ac.uk)

Contributing Authors xv

Zoi Kaoudi Dept. of Informatics and Telecommunications, National and
Kapodistrian University of Athens, Athens, Greece (zoi@di.uoa.gr)

Konstantinos A. Karasavvas National e-Science Centre, 15 South College
Street, Edinburgh, EH8 9AA, United Kingdom (kostas@nesc.ac.uk)

Konrad Karczewski Institute of Computer and Information Sciences, Czesto-
chowa University of Technology (xeno@icis.pcz.pl)

Ioannis Kotsiopoulos School of Computer Science, The University of Manch-
ester, United Kingdom (ioannis@cs.man.ac.uk)

Manolis Koubarakis Dept. of Informatics and Telecommunications, National
and Kapodistrian University of Athens, Athens, Greece (koubarak@di.uoa.gr)

Lukasz Kuczynski Institute of Computer and Information Sciences, Czesto-
chowa University of Technology (lkucz@icis.pcz.pl)

Renaud Lachaize Institute of Computer Science (ICS), Foundation for Re-
search and Technology - Hellas, P.O.Box 1385, Heraklion, GR 71 110, Greece
(rlachaiz@ics.forth.gr)

Simon C. Lambert e-Science, CCLRC Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon, OX1 I OQX, UK (S.C.Lambert@rl.ac.uk)

Erietta Liarou Dept. of Electronic and Computer Engineering, Technical Uni-
versity of Crete, Greece (erietta@intelligence.tuc.gr)

Claudio Lucchese Dept. of Computer Science, Ca' Foscari University of
Venice, Via Torino 155, 30172 Venezia, Italy (clucches@dsi.unive.it)

Matoula Magiridou Dept. of Informatics and Telecommunications, National
and Kapodistrian University of Athens, Athens, Greece (matoula@di.uoa.gr)

Brian Matthews CCLRC, Rutherford-Appleton Laboratory, Didcot, Oxford-
shire OX1 1 OAX, United Kingdom (b.m.matthews@rl.ac.uk)

xvi KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Iris Miliaraki Dept. of Informatics and Telecommunications, National and
Kapodistrian University of Athens, Athens, Greece (iris@di.uoa.gr)

Paolo Missier School of Computer Science, The University of Manchester,
United Kingdom (pmissier@cs.man.ac.uk)

Zsolt Nitmeth MTA SZTAKI Computer and Automation Research Institute,
P.O. Box 63, Budapest, H-15 18, Hungary (zsnemeth@sztaki.hu)

Raffaele Perego HPC Laboratory, ISTI-CNR of Pisa, via G. Moruzzi 1,56124
Pisa, Italy (perego@isti.cnr.it)

Salvatore Orlando Dept. of Computer Science, Ca' Foscari University of
Venice, Via Torino 155, 30172 Venezia, Italy (orlando@dsi.unive.it)

Rizos Sakellariou School of Computer Science, University of Manchester,
UK (rizos@cs.man.ac.uk)

Claudio Silvestri Dept. of Computer Science, Cay Foscari University of
Venice, Via Torino 155, 301 72 Venezia, Italy (silvestri@dsi.unive.it)

Jim Smith Newcastle University, Newcastle upon Tyne, UK
(Jim.Smith@ncl.ac.uk)

Shoaib Sufi CCLRC, Daresbury Laboratory, Warrington WA4 4AD, United
Kingdom (s.a.sufi@dl.ac.uk)

Domenico Talia DEIS, University of Calabria, Via P. Bucci 41C, 87036 Rende
(CS), Italy (talia@deis.unical.it)

Paolo Trunfio DEIS, University of Calabria, Via P. Bucci 41C, 87036 Rende
(CS), Italy (trunfio@deis.unical.it)

Paul Watson Newcastle University, Newcastle upon Tyne, UK
(Paul. Watson@ncl.ac.uk)

Contributing Authors xvii

Richard White Cardiff School of Computer Science, Cardiff University,
Cardiff CF24 3AA, United Kingdom (r.j.white@cs.cardiff.ac.uk)

Philipp Wieder Grid Computing and Distributed Systems Group, Research
Centre Julich, 52425 Julich, Germany (ph.wieder@fz-juelich.de)

Wolfgang Ziegler Fraunhofer Institute SCAI, Department of Bioinformatics,
53754 Sankt Augustin, Germany (wolfgang.ziegler@scai.fraunhofer.de)

I

GRID DATA MANAGEMENT

ACCESSING DATA IN GRIDS USING OGSA-DAI

Neil P. Chue Hong and Mario Antonioletti
EPCC, The University of Edinburgh
JCMB, The King's Buildings, Mayfield Road,
Edinburgh, EH9 3JZ,
United Kingdom

N.ChueHong@epcc.ed.ac.uk

rnario@epcc.ed.ac.uk

Konstantinos A. Karasavvas and Malcolm Atkinson
National e-Science Centre
15 South College Street,
Edinburgh, EH8 9AA.
United Kingdom
kostas@nesc.ac.uk
rnpa@nesc.ac.uk

Abstract
The grid provides a vision in which resources, including storage and data,

can be shared across organisational boundaries. The original emphasis of grid
computing lay in the sharing of computational resources but technological and
scientific advances have led to an ongoing data explosion in many fields. How-
ever, data is stored in many different storage systems and data formats, with
different schema, access rights, metadata attributes, and ontologies all of which
are obstacles to the access, integration and management of this information.

In this chapter we examine some of the ways in which these differences can
be addressed by grid technology to enable the meaningful sharing of data. In
particular, we present an overview of the OGSA-DAI (Open Grid Service Ar-
chitecture - Data Access and Integration) software, which provides a uniform,
extensible framework for accessing structured and semi-structured data and pro-
vide some examples of its use in other projects. The open-source OGSA-DAI
software is freely available from http://www.ogsadai.org.uk.

Keywords: OGSA-DAI, databases, data access, data management

4 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction
The grid provides a vision [I, 71 in which resources, such as high perfor-

mance computers, people and, for the purposes of this chapter, storage and
data, can be shared across organisational boundaries. Each individual organi-
sation contributes resources to this Virtual Organisation (VO) 121, a dynamic
collection of individuals and institutions sharing resources in a flexible, secure
and coordinated manner, while still maintaining ownership and control of its
own resources. There are clear benefits to a VO's members in allowing re-
sources to be shared, as well as many technological and political obstacles to
overcome. To facilitate the process a number of organisations are develop-
ing middleware: software that allows the VO federation to be realised through
the use of grids. Notable amongst these are: Globus, UNICORE and the UK
OMII, as well as others [4]. By itself, the base middleware provided is usu-
ally insufficient to construct a fully functional VO - it requires configuration
and customisation to achieve full operational status. We, as grid technology
providers, are still some way from being able to produce an out of the box grid
but nevertheless grid toolkits amortise the development costs and ensure a level
of inter-operability between distinct grids, allowing dynamic and hierarchical
VOs to be composed.

The original emphasis in grids lay in the sharing of computational resources.
Technological and scientific advances have led to an ongoing data explosion
in many fields [5-71 and there are clear benefits to being able to share and
combine data from different sources [8-91. With the decreasing cost of storage,
more data is being maintained online and thus readily available. However, data
is stored in many different storage systems and data formats, with different
schema, access rights, metadata attributes, and ontologies. The volumes of
data concerned could vary from small to very large, stored in one system or
across many. All these differences can produce significant obstacles in a grid.
Not all are immediately tractable and trying to solve the general problem is
hard; nevertheless some of these obstacles may be overcome or reduced by
middleware specifically targeted at addressing data management issues. These
products (of which OGSA-DAI is an example) provide an infrastructure which,
in particular contexts, allows the meaningful sharing of data to take place.

The Open Grid Services Architecture - Data Access and Integration
(OGSA-DAI) software is intended to make the process of combining data from
multiple, distributed, heterogenous and autonomously managed data sources
easier to establish, maintain and operate by providing middleware that delivers
many commonly required functions in a form that is easily used. It focuses
on cases where the assembly of all the data into a single data warehouse is in-
appropriate. Instead, it enables application developers to build virtual data
resources that draw on up-to-date data from an identified set of other data

Accessing Data in Grids Using OGSA-DAZ 5

resources. IJsers can then explore these combined virtual data resources by
requesting the enactment of compositions of OGSA-DAI activities, often via
application-specific higher-level tools.

The remainder of this chapter discusses how data access can be managed
in grids, focusing in particular on the perspective taken by the current ver-
sion of OGSA-DAI. The next section discusses why web services are being
used by some of the middleware products to build grids, section 3 examines
some of the data middleware architectural requirements arising from grids,
and sections 4 and 5 provide an overview of OGSA-DAI. Section 6 briefly re-
views how OGSA-DAI is being used in a selection of projects and section 6
considers other currently available middleware products that cater for data in
grids. Finally, before concluding, section 8 examines how OGSA-DAI con-
siders standards as a means of ensuring interoperability between different grid
middlewares.

2. Web Services and Grids
A large number of different types of resources could be contributed by a

member organisation to a VO. Grid middleware needs to be able to accom-
modate these and abstract away some of the inherent differences to facilitate
shared access and use. Web Services (WS) [lo], originating in the business-to-
business world, offered a number of transparencies: platform independence,
programming language neutrality, clearly defined interfaces and transport
neutrality that could be used to construct grids.

However, a number of important perceived grid requirements such as: the
provision of service state with a standard access interface, lifecycle manage-
ment to ensure services are cleaned up, service groups to facilitate the aggrega-
tion and discovery of services and inheritance to facilitate the development of
complex grid services [7] were not provided by web services. The Open Grid
Services Infrastructure (OGSI) [8] specification attempted to add this missing
functionality, but its implemention threatened a schism in the base technology
used by grid and web services. This undesirable outcome was avoided by dep-
recating the OGSI specification and developing a new set of specifications, the
Web Services Resource Framework (WSRF) [12-161, motivated by OGSI and
providing the same functionality in a manner consistent with web services. The
consequence of this forced and rapid change between OGSI, on which a lot of
the grid infrastructure being developed was based, and WSRF led to a reticence
by some in the grid community to adopt emerging standards until they had wide
acceptance and adoption within the community [17]. For this reason, some
products, like OGSA-DAI, have had to support more than one infrastructure, to
allow information to be shared across grid implementations. At present OGSA-
DAI provides support for the Globus Toolkit 4 (www.globus.org), OM11 2

6 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

(www.omii.ac.uk) and Axis 1.2 (xml.apache.org/axis); versions have also been
adapted to run on the GRIA (www.gria.org) and UNICORE (www.unicore.org)
platforms' .

Currently, web services are regarded as a suitable means to construct grids
and, importantly, the abstractions offered are useful to satisfy the requirements
for data sharing [18-191, in particular lowering the barriers created by the het-
erogeneity of different data sources. OGSA-DAI has subscribed to the use
of web services for grids and provides its functionality through web services.
However, web services do not offer a perfect solution: for instance SOAP is
not a a good mechanism for transporting large amounts of data and there are
associated overheads with the processing of XML. We must assume that many
of the current web service limitations will be overcome in the future.

3. Architectural Requirements for Data Middleware

The previous section examined the suitability of web services to build grid
infrastructure. In this section we examine some of the architectural require-
ments that arise from the provision of middleware for grids in general and in
particular to address data requirements of grids.

The fundamental requirement is to provide a middleware layer, between data
resources and their clients, that provides some level of uniformity in terms of
virtualisation, access, federation and data integration. This can be expressed
through a number of goals for these data services:

it must be easy for users to combine data from multiple sources in ways
that suit their particular analysis by assisting:

- application developers building services for a target community of
users

- data integration users through provision of higher-level tools that
compose sets of data services

rn it must provide a uniform access layer that allows data services to be
composed including:

- a common set of access mechanisms covering all the types of data
source and their metadata

- a set of operations providing all of the elemental data selections,
transformations, combinations and partitions

- a set of data movement capabilities suitable for all destinations and
data sizes

'Further porting work will be carried out as part of the EU FP6 OMII-Europe project

Accessing Data in Grids Using OGSA-DAI 7

- an abstraction to allow different security models to be bridged

it must minimise data transfer and copying by allowing:

- composition and enactment of multiple operations on a service

- transfer of computation closer to the data source

- efficient, streaming, data transfer both internally and between ser-
vices

The OGSA-DAI software has aimed to meet these goals by providing:

An extensible framework - which allows new operations, data resources
and security models to be exposed.

Perform Documents - which allow multiple operations to take place in a
single web service interaction.

Activity Framework- which provides a powerful mechanism to combine
activities within sessions, allowing one to specify control and data flows
while creating pipelines to process data in streams.

Interoperability with other grid infrastructure - by working closely with
other grid middleware providers, to ensure that OGSA-DAI services will
interoperate with their software.

Application development support - OGSA-DAI has provided a client
toolkit that makes it easier to develop OGSA-DAI applications and hides
the differences in the message infrastructures supported by OGSA-DAI.

Most of the grid middleware development that is taking place is not aimed
directly at end-users but rather at other developers. This second tier of de-
velopers can customise the middleware functionality for the needs of their
own particular communities, hence the importance of a flexible and extensi-
ble framework.

4. An Overview of OGSA-DAI
OGSA-DAI has adopted a service oriented architecture (SOA) solution for

integrating data and grids through the use of WS. This section presents an
overview of OGSA-DAI features as present in the 2.1 WSRF and WSI releases
of OGSA-DAI. A high-level view of the basic OGSA-DAI components and
their interactions is shown in Figure 1.

The base unit of functionality within OGSA-DAI is the activity. Activities
expose one or more capabilities of an underlying data resource, for instance the
ability to execute an SQL query on a relational database, or they add function-
ality at the service layer: transforming data as it comes out of the data resource

8 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Third-Parly

I Resource I

Figure I . An overview of OGSA-DAI components

while still at the service or delivering data to a third party using a non-SOAP
based protocol. Aperform document collects a number of these activities, rep-
resented as XML fragments in an XML document, chained together using a set
of named inputs and outputs that describes the data flow through the activities.
The data is operated on by each activity as the data flows through it. The details
of perform documents and activities are discussed in more detail in section 5.

An OGSA-DAI interaction thus begins with a client sending a perform doc-
ument to an OGSA-DAI Data Sewice (DS). The DS can expose zero or more
Data Sewice Resources (DSR). A DSR presents a high-level abstraction of a
Data Resource (DR), a WS-Resource in WSRF terms, and contains the OGSA-
DAI infrastructure necessary to interact with the DR. For instance, the DSR
knows about the activities it can execute. In the case where no data resources
are bound to the service only translation and delivery capabilities are sup-
ported. In the case where more than one DSR is associated with a DS then
more capabilities are supported but the client must be able to specify which
DSR a perform document is targeting. As OGSA-DAI supports more than one
messaging framework the way that this is done varies: for the WSRF case
the endpoint reference of the DSR targeted is specified in the SOAP header
using mechanisms specified in WS-Addressing [20]; for the non-WSRF case,
referred to as the WSI flavour of OGSA-DAI, the DSR name, which is deter-
mined when a DSR is instantiated, is appended to the service URL. Once the
message has passed through the DS and the perform document has been ex-

Accessing Data in Grids Using OGSA-DAI 9

tracted the behaviour of OGSA-DAI is identical regardless of the messaging
framework used.

The bulk of the processing in OGSA-DAI takes place at the Data Sentice Re-
source (DSR). The DSR accepts a perform document from the DS and passes
it to its OGSA-DAI Engine (ODE). The ODE is responsible for processing per-
form documents and generating response documents. It checks the syntax of
the perform document, instantiates and starts the activities required and coor-
dinates the data flow between them. If an activity needs to access a resource it
does so through the Data Resource Accessor (DRA). This provides an activity
with the appropriate connection type to communicate with the underlying data
resource. The DRA consists of an interface that, when implemented, provides
the functionality required for any activity to be able to interact with the partic-
ular type of data resource it is trying to access, e.g. for an XML database
it might return an XMLDB connection. This abstraction facilitates the in-
clusion of new types of data resource to operate within the existing OGSA-
DAI framework. Currently, OGSA-DAI supports DRAs for: DB2, Oracle DB,
SQLServer, MySQL, PostgreSQL, HSQLDB, exist, file systems and indexed
files.

The security mechanism provided is also extensible. In order for the DRA
to provide access to the underlying data resource, the grid credentials used to
access the service need be mapped to a suitable usernamelpassword with which
to access the data resource. This is done by the Role Mapper which maps the
distinguished name obtained from the grid credentials to suitable credentials
to access the underlying data resource. This functionality has been separated
from the DRA in order to allow third parties to replace the role mapper func-
tionality with their own version [21-221. For this reason, the role mapper
provided in the OGSA-DAI distribution is intentionally basic and not intended
to be used in a production environment. The current authorisation granular-
ity employed by OGSA-DAI relies on that provided by the existing underly-
ing security infrastructure and associated policies. Support for a finer level
of authorisation at the activity level will be provided within future versions of
OGSA-DAI. These interfaces would provide another extensibility point that
could use external authorisation services such as PERMIS [23].

Assuming that all activities successhlly run to completion, the results from
the activities are aggregated into a response document by the ODE which is
then sent back to the original client. This will contain any data produced, un-
less a delivery activity has been explicitly used in which case the data will be
transferred separately (note that data may also be pulled into the service using
a delivery activity, rather than just extracted from a DR). The original requester
will still get a response document with the completion status of all the activi-
ties present in their perform document. In the case where not all the activities
complete successfully, the client will be informed about the completion status

10 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

of each activity including those that failed. Currently no transactional capabil-
ities are supported by OGSA-DAI so such an outcome would mean that some
modifications will have been done and others will not. However, the final sta-
tus should be clear from the response document. Transactional capabilities
will be supported in future OGSA-DAI releases, including roll back mecha-
nisms and distributed transactional capabilities. Early prototyping work has
shown the viability of wrapping the transactional capabilities of an underlying
resource and running a set of activities atomically and identified the appropri-
ate interfaces that could be implemented for resources that not provide their
own transactional functionality.

This completes the description of a simple interaction with an OGSA-DAI
service. In addition, a perform request can create a session in order for its ac-
tivities to store state within a named context. A follow-on perform document
can then re-join a session to access any previously stored state. This avoids
having to pass a context through in the request-response messages and allows
intermediate state to be stored at the service. Sessions facilitate the external
decision-making process to take place. For example, storing intermediate re-
sults in a session allows a client to decide how the process should continue
in a follow-on request: results could be delivered or collected at a later time
depending on their size. In addition, sessions will help in the provision of
transactional behaviour, and provide a naming scheme for status monitoring,
logging and diagnostics.

Finally, in order to help support the development of OGSA-DAI applica-
tions a Client Toolkit (CTk) has been developed that provides an Application
Programmer's Interface (API) that facilitates the programmatic construction
of perform documents and interaction with OGSA-DAI services. The CTk
also abstracts away the differences between the WSRFtWSI messaging frame-
works supported by OGSA-DAI - the same API can be used for flavours of
OGSA-DAI running on different underlying platforms.

5. Activities and Perform Documents
Activities constitute the logical unit of work within OGSA-DAI. They are

defined by an XML Schema fragment that dictates the syntax of its XML repre-
sentation in perform documents, a service side Java implementation that imple-
ments the functionality at the service and a CTk representation that allows the
activity to be used by the client toolkit. Activities can provide any kind of func-
tionality, but typically they fall into one of the three broad categories: statement
activities interact with a data resource; transformation activities transform the
data while it is still at the service; and delivery activities deliver, or collect, data
totfrom third parties (which could include the original client). A comprehen-
sive set of activities are provided with each OGSA-DAI distribution covering

Accessing Data in Grids Using OGSA-DAI 11

general functionality including SQL and XPath queries, XSLT transformations
and delivery via GridFTP, FTP and SOAP, as well of examples of some sta-
tistical (projections) and data integration (SQLBag) operations - consult the
documentation for more details. However, it is unlikely that all the required
functionality for a particular application will be there. Thus, OGSA-DAI has
been designed to allow new activities to be easily added, or existing function-
ality customised, to operate within the same OGSA-DAI framework.

As we have seen a perform document collects together activities so that
these can be sent to a DS in a single request, reducing the number of interac-
tions required between client and DS to achieve a desired outcome. Figure 2 -

schematically shows two perform documents being executed at the service.

Perform Documenl

Translation
Merge
Acllviy

Figure 2. An example of two perform documents; (a) a perform document containing two re-
quests, and (b) a perform document that contains parallel execution and multiple inputs/outputs
to activities

In case (a) the perform document contains two independent sets of requests
(activity pipelines) which, by default, will be executed in parallel. For each
activity its name, parameters, inputs and outputs are defined. The data flow
between activities can be set up by chaining them together; the output of the
first becomes the input of the second and so on. This creates a pipeline between
activities where data is streamed between them.

It is possible express the control flow that takes place between activities in
a perform document more explicitly. In the previous case the control flow was
implicitly sequential as the inputs of activities down the pipeline depend on the
output of earlier activities (though the order of the execution of the pipelines
cannot be determined). However, if activities are not explicitly linked it is
possible to guararitee sequential processing. In some instances, you may also
want to declare that a set of activities should be run in parallel. For exam-
ple, in case (b) in Figure 2 we can see that two queries and the subsequent
transformations are executed in parallel up to the synchronised point at the

12 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Transformation-Merge activity. The example also demonstrates that activities
can have multiple inputs and outputs.

A taxonomy for activities will be published by the OGSA-DAI team in the
near future which will help with the composition and semantics of activities.
The perform document represents a powerful and efficient way for managing
data access and integration within grids. We aim to extend perform documents
to be able to target multiple data resources within the same document, along
with new generic data integration and transform activities. Finally support for
distributed transactions will enable multi-resource perform documents to run
atomically. This should facilitate several types of simple data integration use
cases and provide users with a powerful set of tools for data integration.

6. How OGSA-DAI is being Used
OGSA-DAI has been used by a number of projects as a means of providing

them with uniform data access to data resources. Only a very brief overview of
some projects is given here, a more complete list with more projects is available
from www.ogsadai.org.uWabout/projects.php.

OGSA-DQP (www.ogsadai.org.uWdqp) [24] a sister project to OGSA-DAI,
provides distributed query processing across read-only data resources using
OGSA-DAI to provide access to these. OGSA-DQP provides an additional set
of services over and above the OGSA-DAI ones: a coordinator that coordi-
nates the various services involved in a distributed query and a set of evalua-
tors that accept query partitions and evaluate them. OGSA-DQP provide data
integration capabilities using OGSA-DAI.

The e-Diamond project (www.ediamond.ox.ac.uk) [25] was a pilot project
within the UK to pool and distribute information on breast cancer treatement
allowing specialists to review mammographs produced at different institutions.
OGSA-DAI was used to provide access to the databases where the images were
stored, and was extended to include a wrapper for IBM Content Manager.

The STORM project (storm.bmi.ohio-state.edu) [26] provides a framework
designed to support processing of large datasets in a distributed environment.
STORM allows SQL-type queries on file-based datasets by providing data
model abstractions, e.g. object-relational. To leverage the existing framework
in grids, STORM uses OGSA-DAI. The latter regards STORM as a data re-
source and provides the standard grid interfaces to it. Moreover, OGSA-DQP
can now be used on top to provide distributed query processing over the large
datasets (virtualised via STORM).

The ConvertGrid project (pascal.mvc.mcc.ac.uk:9080/convert/) produced a
demonstrator which showed how grid technologies could automate complex
social science workflows and facilitate the integrated use of multiple geo-
referenced datasets. It used OGSA-DAI to access a subset of UK census

Accessing Data in Grids Using OGSA-DAI 13

and neighbourhood statistics data and allows relationships between data to be
graphically represented based on postcode.

The LEAD project (1ead.ou.edu) 1271 is a large US initiative to improve the
forecasting of medium scale weather phenomena such as tornados. OGSA-
DAI was used in the LEAD project to provide a metadata catalogue, myLEAD,
which aims to provide a personal workspace for users faced with enormous
amount of information. In this case, LEAD extended OGSA-DAI to allow the
use of streaming data.

7. Related Work

Data access and integration is a large domain which features a variety of
software and techniques which address at least some of the issues raised in
earlier sections. However, there are relatively few products which aim to pro-
vide general solutions, in particular for grids. Here we restrict our discussion
to middleware that provides some form of abstracted access to data.

Storage Resource Broker (SRB): (http://www.sdsc.edu/srb/) is produced by
San Diego Supercomputer Center (SDSC). An SRB server provides a way of
accessing collections, a logical name given to a set of data objects, based on
their attributes andlor logical names rather than their physical names andlor
locations. SRB supported data objects are file and archival systems, BLOBS
in DBMSs, database objects that can be queried using SQL and tape library
systems. In addition SRB servers may be combined to form a federation using
zoneSRB.

SRB is mainly file orientated and uses its own protocols. By default it is
not WS enabled. OGSA-DAI is mainly database orientated and can only be
accessed through WS mechanisms. In both cases there is some cross over
where SRB can support databases and OGSA-DAI has some support for files.
Indeed the two architectures do not prevent OGSA-DAI being used to access
SRB servers or for OGSA-DAI resources to be exposed through SRB.

WebSphere Information Integrator (WSII): (www.ibm.corn/software/data/
integration/) from IBM provides a number of desirable capabilities to deal with
data in a VO. These include: search operation across the organisational do-
mains, data federation, data replication, data transformation and data event
publishing. The data federation can allow multiple data sources to be queried
and accessed through a single access point. For a comparison between earlier
versions of this product and OGSA-DAI see [28].

The abstraction capabilities provided by OGSA-DAI have been exploited
through the provision of a grid wrapper that uses OGSA-DAI to wrap data
resources that WebSphere Information Integrator can then access [29-301 al-
lowing more data resources to be associated with this product.

14 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Virtual Data System (VDS): (vds.uchicago.edu) developed within the Gri-
PhyN project and work with the Virtual Data Toolkit (vdt.cs.wisc.ed). This
allows a Directed Acyclic Graph (DAG) to express a workflow, similar to the
OGSA-DAI perform document but wider in scope, that allows a data recipe to
be specified to generate derived data from a number sources with a number of
transformations acting on the source data. The workflow is then stored as the
provenance for the data that has been generated.

Mobius: (projectmobius.osu.edu) aims to create a set of tools and services
to provide data as well as metadata sharing and management in a grid andlor
a distributed computing environment. To expose a resource in Mobius it must
be described in an XML schema which will be shared via the Global Model
Exchange (GME) and then later accessed by querying that schema using for
example XPath. OGSA-DAI does not require an XML schema to be cre-
ated for a resource, rather it directly exposes that information (data and meta-
datalschema) to be queried by the resource's querying mechanisms.

There are a number of other products that attempt to provide access to data
in the context of grids, including ELDAS (www.edikt.org/eldas/) and Spitfire
(edg-wp2.web.cern.ch/edg-wpYspitfire/) but it is not clear whether these are
currently being actively developed at the moment.

8. Importance of Standards
In order to provide some cohesion to the disparate efforts that are going on to

produce components to construct grids at the moment it is important to ensure
that these inter-operate at some level. For this reason standards are important.
Bodies such as the Global Grid Forum (www.ggf.org), OASIS (www.oasis-
open.org), W3C (www.w3c.org) and the IETF (www.ietf.org) are providing
the basic blue prints for grid components. Of course, a standard by itself is
not sufficient condition as it also requires adoption and consensus. One prob-
lem is that the ecosystem is rather too rich in standards and it is difficult to
understand what will be successful and what will not, e.g. OGSI. At some
level this richness is good in that the space will be sufficiently explored and
the best candidate standards will be adopted. Of course, in order for grids to
become successful there has to be some stability in the standards space, and
their implementations, so that end-users gain sufficient confidence to migrate
to the new technology.

Within the context of OGSA-DAI the intent was to have a twin track ap-
proach: OGSA-DAI would be the implementation and through the GGF DAIS
Working Group (forge.gridforum.org/projects/dais-wg) the implementation
would both be standardised and at the same time inform the standardisation
process - a symbiotic process. In reality, the implementation and DAIS spec-
ifications diverged, with the implementation having to support existing users

Accessing Data in Grids Using OGSA-DAI 15

and the specification having to agree details with all parties. Nevertheless,
the resulting Web Services - Database Access and Integration (WS-DAI) [32,
3 11 family of specifications attempt to promote databases to be first class cit-
izens within the grid world. Currently, relational and XML databases are
catered for but the model is extensible to allow other types of data models such
as files, object databases and RDF data sources2. The intent is for OGSA-DAI
to track and implement these where possible.

Standards help to enable interoperability between implementations, some-
thing which we have pursued through DIALOGUE (www.datagrids.org). In
particular, OGSA-DAI has been keen to see the emergence of a standard for
bulk data transfer between web services (for which we currently provide the
proprietary Grid Data Transport porttype).

Thus despite the proliferation of standards, they still serve to provide the vi-
sion, such as OGSA [34], and the basic nuts and bolts to allow the construction
of interoperable grids.

9. Conclusions
This chapter has reviewed the benefits of being able to construct grids that

address the data requirements of a VO and how web services offer one pos-
sible abstraction that facilitates this process. OGSA-DAI has taken the web
service approach to sharing data - particularly structured data like databases
- within grids. OGSA-DAI has been constructed with extensibility in mind
allowing additional functionality to be added through activities, new data re-
sources through data resource accessors and the security mechanisms to be ex-
tended through the authorization callouts. A number of design principles have
been employed which attempt to maximise the benefits in using OGSA-DAI:
minimising data movement, encapsulating multiple web service interactions
in a single document - the perform document - and to moving computation
close to the data. As such, OGSA-DAI occupies a unique position with regard
to related products that also facilitate access to data on grids. Development of
OGSA-DAI is driven by user requirements and scenarios and future extensions
include extensions to the perform document, support for transactions, security
at the activity level and general data integration activities.

The grid world is progressing rapidly and we hope OGSA-DAI will con-
tinue to evolve and satisfy the needs of those building grids. The OGSA-DAI
project continues to address the differences that prevent data sharing and en-
able the acheivement of additional data scenarios. Up-to-date information on
the project is available from our website (www.ogsadai.org.uk).

2~ prototype implementation of RDF as an OGSA-DAI resource already exists, see
www.gtrc.aist.go.jp/dbgrid/sc05/.

16 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Acknowledgments
We would like to thank the following people: Bartosz Dobrzelecki, Ally

Hume, Mike Jackson, Amy Krause, Steven Lynden, Arijit Mukherjee, Mark
Parsons, Norman Paton, Jen Schopf, Tom Sugden, Elias Theocharopoulos,
Paul Watson, as well as others not mentioned above but that have been in-
volved in the OGSA-DAI project in the past.

This work has been supported by the UK eScience Core Programme, EP-
SRC and the DTI.

References

[I] I. Foster and C. Kesselman (editors). The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Pub. December 2003.

[2] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J Supercomputer Applications, 1 5(3), 200 1.

[3] I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Open Grid Service Infrastruc-
ture WG, Global Grid Forum, June 22,2002.

[4] K. Krauter, R. Buyya, M. Maheswaran. A taxonomy and survey of grid resource man-
agement systems for distributed computing. Software: Practice and Experience Vol 32,
~135-164,2002.

[5] T. Hey and A. Trefethen. The data deluge: An e-Science perspective. Chapter 36, In Grid
Computing, Editors: F. Berman, G. Fox, T. Hey. John Wiley & Sons, Ltd, 2003.

[6] J. Thornton. The future of bioinformatics. Trend in Ecology and Evolution. VOL 13;
NUMBER 1 I ; SUPP 1, pages 30-3 1, 1998.

[7] L. Reiser, L.A. Mueller, S.Y. Rhee. Surviving in a sea of data: a survey of plant genome
data resources and issues in building data management systems. Plant Molecular Biology,
Volume 48, Issue 1-2, Jan 2002, Pages 59-74.

[8] Virtual observatory finds black holes in previous data. News in brief. Nature 429, 494-
495, June 2004.

[9] Astronomers Detect New Category of Elusive 'Brown Dwarf. The New York Times,
Tuesday, June 1 1999.

[lo] D. Booth, H. Haas, F. McCabe, M. Champion, C. Ferris, D. Orchard. Web Services Ar-
chitecture. W3C Working Group Note, February 2004.

[I 11 S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T.
Sandholm, P. Vanderbilt and D. Snelling. Open Grid Services Infrastructure (OGSI) Ver-
sion 1 .O. Global Grid Forum Draft Recommendation GFD. 15, June 2003.

[12] S. Graham, J. Tredwell. Web Services Resource Properties 1.2 (WS-ResourceProperties).
OASIS, January 2006

[13] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, I. Sedukhin. Web Services Re-
source 1.2 (WS-Resource). OASIS, January 2006.

[I41 L. Srinivasan, T. Banks Web Services Resource Lifetime 1.2 (WS-ResourceLifetime)/
OASIS, January 2006.

Accessing Data in Grids Using OGSA-DAZ 17

[I51 T. Maguire, D. Snelling, T. Banks. Web Services Service Group 1.2 (WS-ServiceGroup),
OASIS, January 2006.

[I61 L. Liu, S. Meder. Web Services Base Faults 1.2 (WS-BaseFaults). OASIS, January 2006.

[I71 M. Atkinson, D. DeRoure, A. Dunlop, G. Fox, P. Henderson, T. Hey, N. Paton, S. New-
house, S. Parastratidis, A. Trefethen, P. Watson, J. Webber Web Service Grids: an evolu-
tionary approach. Concurrency and Computation: Practice and Experience, 2005. 17(2):
p. 377-390.

[18] M.P. Atkinson, V. Dialani, L. Guy, I. Narang, N.W. Paton, D. Pearson, T. Storey, and P.
Watson. Grid Database Access and Integration: Requirements and Functionalities. DAIS-
WG, Global Grid Forum Informational Document (GFD. 13), March 2003.

[I91 V. Raman, C. Crone, L. Haas, S. Malaika, T. Mukai, D. Wolfson and C. Baru. Services for
Data Access and Data Processing on Grids. DAIS-WG, Global Grid Forum Informational
Document (GFD. 14), February 2003.

[20] M. Gudgin, M. Hadley, T. Rogers. Web Services Addressing 1.0 - Core (WS-Addressing).
W3C Proposed Recommendation, 21 March 2006.

[21] D. Power, M. Slaymaker, E. Politou and A. Simpson. A Secure Wrapper for OGSA-DAI.
Lecture Notes in Computer Science, Volume 3470, Pages 485-494, June 2005.

[22] A.L. Pereira, V. Muppavarapu and S.M. Chung. Role-Based Access Control for Grid
Database Services. First DIALOGUE Workshop: Applications-Driven Issues in Data
Grids, Columbus, Ohio, 2005.

[23] D. W. Chadwick and A. Otenko The PERMIS X.509 role based privilege management
infrastructure. Future Generation Computer Systems, 19(2):277-289,2003.

[24] N. Alpdemir, A. Mukherjee, A. Gounaris, N.W. Paton, P. Watson, and A.A.A. Fernandes.
OGSA-DQP: A grid service for distributed querying on the grid. LNCS Volume 2992, p
858-861,2004.

[25] J.M. Brady, D.J. Gavaghan, A.C. Simpson, M. Mulet-Parada, R.P. Highnam. eDiaMoND:
A grid-enabled federated database of annotated mammograms. In Berman, F., Fox, G.C.,
Hey, A.J.G., eds.: Grid Computing: Making the Global Infrastructure a Reality. Wiley
Series (2003) 923-943.

[26] S. Narayanan, T. M. Kurc, U. V, Catalyurek, J. H. Saltz. Servicing Seismic and Oil
Reservoir Simulation Data through Grid Data Services. In Very Large Databases (VLDB)
Workshop on Data Management in Grids Trondheim, Norway, 2005.

[27] B. Plale, Using Global Snapshots to Access Data Streams on the Grid, Lecture Notes in
Computer Science, Volume 3 165, Jan 2004, Pages 191 - 201.

[28] R.O. Sinnott, D. Houghton. Comparison of Data Access and Integration Technologies in
the Life Science Domain. Proceedings of the UK e-Science All Hands Meeting 2005,
September 2005.

[29] IBM Alphaworks. Grid Wrapper for Websphere Information Integrator.
http://www.alphaworks.ibm.com/tech/gridwrapper

[30] A. Lee, J. Magowan, P. Dantressangle, F. Bannwart. Bridging the integration gap, Part 1:
Federating grid data. IBM Developer Works. August 2005.

[3 I] M. Antonioletti, A. Krause, S. Hastings, S. Langella, S. Laws, S.Malaika andN.W. Paton.
Web services data access and integration -the XML realization (WS-DAIX), Version 1 .O.
GGF, 2005

18 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

[32] M. Antonioletti, M. Atkinson, A. Krause, S. Laws, S. Malaika, N.W. Paton, D. Pearson,
G. Riccardi. Web services data access and integration 5013 the core (WS-DAI) Specifi-
cation, Version 1.0. GGF, 2005.

[33] M. Antonioletti, B. Collins, A. Krause, S. Laws, S. Malaika, J. Magowan andN.W. Paton.
Web services data access and integration - the relational realization (WS-DAIR), Version
1.0. GGF, 2005.

[34] I. Foster, H. Kishimoto, A. Sawa, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Ma-
ciel, F. Siebenlist, R. Subramaniam, J. Treadwell, J. Von Reich The Open Grid Services
Architecture, Version l .O. GGF Document (GFD30), January 2005.

SERVICE CHOREOGRAPHY
FOR DATA INTEGRATION ON THE GRID

Anastasios Gounaris and Rizos Sakellariou
School of Computer Science, University of Munchester; UK

gounaris@cs.man.ac.uk
rizos@cs.man.ac.uk

Carrnela Comito and Domenico Talia
DEIS, University of Calabria, Italy

ccomito@deis.unical.it

talia@deis.unical.it

Abstract To date there have been several efforts with a view to developing services that
support and enable data integration on the Grid; however there is a lack of a
comprehensive solution to this issue. This paper summarises the work thus far on
the XMAP data integration framework and query reformulation algorithm and
on middleware with regard to Grid query processing services, namely OGSA-
DQP. Furthermore, it presents an architecture for data integration-enabled query
processing on the Grid, which combines the two aforementioned pieces of work
and provides an extended set of e-Services. These services allow users to submit
queries over a single database and receive the results from multiple databases
that are semantically correlated with the former one. The paper focuses on the
service choreography involved by elaborating on the interactions between the
services, and discusses the extensions to OGSA-DQP that are required in order
to make the services interoperable.

Keywords: service choreography, data integration, XMAP, OGSA-DQP

20 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

The Grid, as an emerging infrastructure for the discovery, access and use of
distributed computational resources [15], offers new opportunities and raises
new challenges in data management. Many aspects differentiate the Grid from
a traditional distributed environment; such aspects include the large scale, dy-
namic, autonomous, and distributed nature of data sources. A Grid can include
related data resources maintained in different syntaxes, managed by different
software systems, and accessible through different protocols and interfaces.
Due to this diversity in data resources, one of the most demanding issue in
managing data on Grids is reconciliation of data heterogeneity [8]. There-
fore, in order to provide facilities for addressing requests over multiple hetero-
geneous data sources, it is necessary to provide data integration models and
mechanisms.

Data integration is one of the most persistent problems that the database and
information management community has to deal with. Although significant
progress has been made in several aspects of data integration, the increase in
availability of web-based data sources has led to new challenges. More specif-
ically, efficient techniques have been developed and approaches have been de-
vised to schema mediation languages, query answering algorithms, optimi-
sation strategies, query execution policies, industrial development, and so on
[17]. However, effective techniques for the generation and handling of seman-
tic mappings are still in their infancy. The need for semantic correlation of data
sources is particularly felt in Grid settings. Moreoever, in a Grid, a centralized
structure for coordinating all the nodes may not be practical because it can be-
come a bottleneck and, more importantly, it cannot accommodate the dynamic
and distributed nature of Grid resources.

Data access and integration services have been attracting significant inter-
est from the Grid community. Data Grids that rely on the coordinated sharing
of and interaction across multiple autonomous database management systems
play a key role in many industrial and scientific initiatives. To this end, middle-
ware services have been developed. Two notable examples are the OGSA Data
Access and Integration (OGSA-DAI) [6] and the OGSA Distributed Query
Processor (OGSA-DQP)' [5,4] projects. These projects have moved toward
a servide-oriented architecture quite early in their lifecycle. OGSA-DAI ex-
poses database management systems (including Oracle, MySQL, SQLServer,
DB2, and so on) in a uniform way, whereas OGSA-DQP provides distributed
query processing functionalities on top of OGSA-DAI. As such, OGSA-DQP
can combine and integrate data from multiple data sources. To enhance per-
formance, it employs parallel query execution techniques; nevertheless it relies

'OGSA-DQP is publicly available in open source form from www.ogsadai.org.uk/dqp.

Service Choreography for Data Integration on the Grid 2 1

on the user for the semantic interpretation of the data and does not address any
schema integration requirements.

To date, only few projects (e.g., [l l , 91) actually meet the schema-
integration requirements that are necessary for establishing semantic connec-
tions among heterogeneous data sources. To address this limitation, the use of
the XMAP framework for integrating heterogeneous data sources distributed
over a Grid has been proposed [12] . The aim of this framework is to develop
a decentralized network of semantically related schemas, so that the formula-
tion of distributed queries over heterogeneous data sources is enabled. XMAP
employs a decentralized point-to-point mediation approach to connect differ-
ent data sources based on schema mappings in order to combine remote XML
documents. The XMAP framework is also exposed as an additional e-Service,
called Grid Data Integration Service (GDIS). The contribution of the paper is
the presentation of a unifying infrastructure for distributed query processing
and query reformulation driven by semantic connections. The infrastructure
proposed exploits the middleware provided by OGSA-DQP and OGSA-DAI,
to provide schema-integration services. The integration and coordination of
different services is the topic of service choreography. In this paper, we exam-
ine in detail how OGSA-DAIIDQP and GDIS are combined.

The remainder of the paper is organized as follows. Section 2 presents a
short analysis of data integration systems focusing on the issues that are more
relevant to Grids. The integrative architecture that combines the query refor-
mulation and the query processing services, along with their interaction, is the
subject of Section 3. Section 4 presents the XMAP integration framework, and
describes the underlying integration model and the XMAP query reformulation
algorithm. Section 5 discusses a simple example of applying the XMAP algo-
rithm to OGSA-DQP supported relational databases, elaborating on how the
service integration is achieved in practice and how the architecture proposed
can be further extended. Finally, Section 6 concludes the paper.

2. Background

Both areas of data integration and Grid computing benefit from their com-
bination:

data integration is a key issue for exploiting the availability of large,
heterogeneous, distributed and highly dynamic data volumes on Grids;

a integration formalisms can benefit from an OGSA-based Grid infrastruc-
ture, since such an infrastructure facilitates dynamic discovery, alloca-
tion, access, and use of both data and computational resources, which
are required to support computationally demanding database operations
such as query reformulation, compilation and evaluation.

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Data integration on Grids has to deal with unpredictable, highly dynamic
data volumes provided by unpredictable membership of nodes that happen to
be participating at any given time. So, traditional approaches to data integra-
tion, such as federation database management systems (FDBMS) [22] and the
use of mediatorlwrapper middleware [21], are not suitable in Grid settings.

The federation approach is a rather rigid configuration where resource al-
location is static and optimization cannot take advantage of evolving circum-
stances in the execution environment. The design of mediatorlwrapper inte-
gration systems must be done globally, and the coordination of mediators is
performed by a central administrator, which is an obstacle to the exploitation
of evolving characteristics of dynamic environments. As a consequence, these
approaches are insufficient when data sources change often and to a significant
extent, since such changes may violate the mappings to the mediated schema.

Recently, several works on data management in peer-to-peer (P2P) systems
are moving towards decentralized, wide-scale sharing of semantically-related
data [7, 10, 16, 18, 191. All these systems focus on an integration approach,
which is not based on a global schema: each peer represents an autonomous
information system, and data integration is achieved by establishing mappings
between the various peers.

To the best of our knowledge, there are only few works designed to pro-
vide schema-integration in Grids. The most notable ones are Hyper [I 11 and
GDMS [9]. Both systems are based on an approach similar to ours, i.e., to
build data integration services by extending the reference implementation of
OGSA-DAI. The Grid Data Mediation Sewice (GDMS) is part of the Grid-
Miner project [16] and uses a wrapperlmediator approach based on a global
schema. GDMS presents heterogeneous, distributed data sources as one logi-
cal virtual data source in the form of an OGSA-DAI service. The main differ-
ence from our work is that it relies on the existence of a global schema, which
is not that realistic in Grids. Hyper is a framework that integrates relational
data in P2P systems built on Grid infrastructures. As in other P2P integration
systems, the integration is achieved without using any hierarchical structure
for establishing mappings among the autonomous peers. In that framework,
the authors use a simple relational language for expressing both the schemas
and the mappings. Our integration model follows an approach not based on a
hierarchical structure as well, however it focuses on XML data sources and is
based on schema-mappings that associate paths in different schemas. Finally,
semantic mapping across relational databases coupled with a global-as-view
approach is investigated in the context of the SASF project 131.

Service Choreography for Data Integration on the Grid 2 3

Figure I . Data integration-enabled query processing on the Grid: service interactions.

3. Architecture and Service Interactions

The XMAP query reformulation algorithm, presented in more detail in the
following section, is deployed as a stand-alone service, called Grid Data In-
tegration Service (GDIS). Given an XPath query over a local database, it re-
turns the equivalent XPath queries that retrieve semantically similar data from
remote databases. Figure 1 provides an overview of the service interactions
involved in the incorporation of data integration functionality in distributed
query processing on the Grid. It focuses on the interactions that concern the
GDIS, and thus it hides all the complexities that relate to (distributed) query
submission and execution. As such, it complements the service interactions
between the OGSA-DAI and DQP services.

OGSA-DQP is an open source service-based Distributed Query Processor;
as such, it supports the evaluation of queries over collections of potentially re-
mote data access and analysis services. OGSA-DQP uses Grid Data Services
provided by OGSA-DAI to hide data source heterogeneities and ensure con-
sistent access to data and metadata from any database resource. The current
version of OGSA-DQP, OGSA-DQP 3.0 is Globus Toolkit 4 compliant [9].
Thus OGSA-DQP builds upon the WSRF infrastructure.

OGSA-DQP provides two additional types of services, Grid Distributed
Query Services (GDQSs) and Grid Query Evaluation Services (GQESs) or sim-
ply Query Evaluation Services (QESs). The former are visible to end users, ac-
cept queries from them, construct and optimise the corresponding query plans
and coordinate the query execution. GQESs implement the query engine, inter-
act with other services (such as OGSA-DAI services, ordinary Web Services

24 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

and other instances of GQESs), and are responsible for the execution of the
query plans created by a GDQS. The interactions and functionality of OGSA-
DQP services are described in detail in [4]. In the latest OGSA-DQP version,
GQESs have been refactored as ordinary Web Services, augmenting the ap-
plicability of OGSA-DQP, as its deployment has been simplified significantly,
whereas several interdependencies have been removed.

For the unifying architecture, the following architectural assumptions are
made. A GDIS is deployed at each site participating in a dynamic database
federation and has a mechanism to load local mapping information. It imple-
ments an additional portQpe, namely Query Reformulation Algorithm (QRA)
portType, which accepts XPath expressions, applies the XMAP algorithm to
them, and returns the results. A database can join the system as in OGSA-
DQP: registering itself in a registry and informing the GDQS. The only differ-
ence is that, given the assumptions above, it should be associated with both a
GQES and a GDIS.

Also, there is one GQES per site to evaluate (sub)queries, and at least one
GDQS. As in classical OGSA-DQP scenarios, the GDQS contains a view of
the schemas of the participating data resources, and a list of the computational
resources that are available. The users interact only with a GDQS service
through a client application that need not be exposed as a service.

A comprehensive data integration architecture needs to combine both the
query reformulation and the query processing services. The interactions of the
services, which form the choreography for data integration, are as follows (see
also Figure 1):

I The client contacts the GDQS and requests a view of the schema for each
database helshe is interested in. At this point, there is no assumption
that the user has an a-priori knowledge of the semantics of this and the
semantically-related databases.

2 Based on the retrieved schema, helshe composes an XPath query, which
is sent to the GDQS, and not directly to the corresponding database ser-
vice, following the OGSA-DQP approach.

3 The GDQS transforms, parses, optimises, schedules and compiles a
query execution plan [23]. This process entails the identification of the
relevant sites, and consequently their local GQES and GDIS. The re-
sulting query execution plan is sent to the corresponding GQES, which
returns the results asynchronously, after contacting the local database via
an OGSA-DAI service.

4 The initial XPath expression is sent to the GDIS that is co-located with
the GQES of the previous step to perform the XMAP algorithm. GDIS

Service Choreographyfor Data Integration on the Grid 2 5

retrieves the locally stored mapping schema, which contains the map-
ping information that links the paths in the submitted query with paths
referring to other databases.

5 As long as the call to the GDIS returns at least one XPath expression that
has not been considered yet in the same session, the following steps are
executed in an iterative manner.

(a) The results of the call to the GDIS, which contain a set of XPath
expressions, are collected by the GDQS. Subsequently, the GDQS
filters out the ones that have already been processed in the current
session.

(b) Each remaining XPath expression is processed as in Step 3 to col-
lect results from databases other than the one initially considered.

(c) The same XPath expressions are processed as in Step 4 to find
additional correlated queries. 1.e. there is a loop which continu-
ously generates XPath queries until all the relevant data has been
retrieved.

4. The XMAP Integration Framework
The primary design goal of the XMAP framework is to develop a decentral-

ized network of semantically related schemas that enables the formulation of
queries over heterogeneous, distributed data sources. The environment is mod-
elled as a system composed of a number of Grid nodes, where each node can
hold one or more XML databases. These nodes are connected to each other
through declarative mappings rules.

The XMAP integration [12] model is based on schema mappings to trans-
late queries between different schemas. The goal of a schema mapping is to
capture structural as well as terminological correspondences between schemas.
Thus, in [12], we propose a decentralized approach inspired from [18] where
the mapping rules are established directly among source schemas without rely-
ing on a central mediator or a hierarchy of mediators. The specification of map-
pings is thus flexible and scalable: each source schema is directly connected
to only a small number of other schemas. However, it remains reachable from
all other schemas that belong to its transitive closure. In other words, the sys-
tem supports two different kinds of mapping to connect schemas semantically:
point-to-point mappings and transitive mappings. In transitive mappings, data
sources are related through one or more "mediator schemas ".

We address structural heterogeneity among XML data sources by associ-
ating paths in different schemas. Mappings are specified as path expressions
that relate a specific element or attribute (together with its path) in the source
schema to related elements or attributes in the destination schema. The map-

26 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

ping rules are specified in XML documents called XMAP documents. Each
source schema in the framework is associated to an XMAP document contain-
ing all the mapping rules related to it.

The key issue of the XMAP framework is the XPath reformulation algo-
rithm. When a query is posed over the schema of a node, the system uti-
lizes data from any node that is transitively connected by semantic mappings,
and reformulates the given query expanding and translating it into appropriate,
equivalent queries over semantically related nodes. Every time the reformu-
lation reaches a node that stores no redundant data, the appropriate query is
posed on that node, and additional answers may be found. As a first step, we
consider only a subset of the full XPath language.

Figure 2 shows the service interface of the Grid Data Integration Service,
which defines Query Reformulation Algorithm (QRA) portType. Such a service
is interoperable with any other common Web and Grid Services.

5. Combining query processing and reformulation
services

The XMAP algorithm can be used for data integration-enabled query pro-
cessing in OGSA-DQP. The example discussed in this section aims to show
how the XMAP algorithm can be applied on top of the OGSA-DAI and OGSA-
DQP services. In the example, we will assume that the underlying databases,
of which the XML representation of the schema is processed by the XMAP
algorithm, are, in fact, relational databases, like those supported by the current
version of OGSA-DQP.

We assume that there are two sites, each holding a separate, autonomous
database that contains information about artists and their works. Figure
3 presents two self-explanatory views: one hierarchical (for native XML
databases), and one tabular (for object-relational DBMSs).

In OGSA-DQP, the table schemas are retrieved and exposed in the form of
XML documents, as shown in Figure 4.

The XMAP mappings need to capture the semantic relationships between
the data fields in different databases, including the primary and foreign keys.
This can be done in two ways, which are illustrated in Figures 5 and 6, respec-
tively. Both the ways seem to be feasible. However, the second one is slightly
more comprehensible, and thus more desirable.

The actual query reformulation occurs exactly as described in [12]. Ini-
tially, the users submit XPath queries that refer to a single physical database.
E.g., /Sl/Art ist [style= llCubismll I /name extracts the names of the
artists whose style is Cubism and their data is stored in the SI database. Sim-
ilarly, / S 1 /Artefact / t i t 1 e returns the titles of the artifacts in the same
database. When the XMAP algorithm is applied for the second query, two

Service Choreography for Data Integration on the Grid

c?xml version="l.O"?> c!-- root element wsd1:definitions defines
set of related services-->

cwsd1:definitions name="QueryReformulation"
xmlns:qr="http:// . . . /QueryReformulation.wsdl'~
xmlns:qrxsd="http:// . . . /QueryReformulation.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/~~
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"~

cwsdl:types>
cxsd:schema targetNamespace=" . . . "

xmlns:xsd="http://www.w3.org/l999/XMLSchema">
<xsd:element name="ArrayOfStringn>
cxsd:complexType >
cxsd:sequence>
cxsd:element name="XPathQueryU

type="xsd:string0' minOccurs="O" maxOccurs="unbounded"/>
c/xsd:sequence>
c/xsd:complexType>
c/xsd:element>
c/xsd:schema>
c/wsdl:types> cwsd1:message name='squeryToReformulate" >
cwsd1:part name="inputQueryM element="~sd:string'~/>
c/wsdl:message> cwsd1:message name="reformulatedQueriesv >
<wsdl:part name="reformulatedQuery" element="qrxsd:ArrayOfString0'/>
c/wsdl:message> cwsd1:portType name="QRAPortType">
<wsdl :operation name="reformulation">

cwsdl: input message="qr:queryToReformuate/>
cwsdl: input message="qr:reformulatedQueries/>

cwsdl:operation/>
<wsdl:portType/> <wsdl:binding
name="QueryRef ormulationSoapBinding" type="qr : QmPortType" >
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/httpq~/>
cwsd1:operation name="reformulation">
<soap:operation soapAction=" . . . " / >
<wsdl:input>
csoap:body use="literalU namespace='*..."/>

c/wsdl:input>
cwsd1:outputr
<soap:body use="literaltt namespace="..."/>

c/wsdl:output>
<wsdl:fault>
csoap:body use="literalm namespace="..."/>

</wsdl:fault>
c/wsdl:operation>

</wsdl:binding>
cwsd1:service name="QueryReformulationService">
<wsdl:documentation> . . . c/wsdl:documentation>
<wsdl :port name="QFAPortType"

binding="qr:QueryReformulationSoapBinding">
<soap:address location="..."/>

c/wsdl:port>
c/wsdl:service>
c/wsdl:definitions>

Figure 2. The interface of the Grid Data Integration Service.

more XPath expressions will be created that refer to the S2 database:
/ S 2 / P a i n t i n g / T i t l e and / S 2 / S c u l p t o r / A r t e f a c t . At the back-
end, the following queries will be submitted to the underlying databases (in
SQL-like format):

se lec t t i t l e f r o m A r t e f a c t ; ,

2 8 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Site S2 Info

// \\
code first-name last-name kind

/\

Site S l Artist Artefact

Sculptor painter

School Painting Artfact style

I

id style name artefact

title category

title

Figure 3. The example schemas.

.

id

se lect t i t l e f r o m P a i n t i n g ; , and
se lec t A r t e f a c t f r o m S c u l p t o r ;
Note that the mapping of simple ~ ~ a t h expressions to SQL/OQL is feasible

[20]. However, solving the mismatch between OQL and XPath, is not the
only problem. The grid querying services provided from OGSA-DQP cannot
support the proposal of this paper as they are. The modifications required are
presented in more detail in the following subsection.

style

5.1 A Summary of the Extensions Envisaged to the
Current Querying Services

name

The afore-mentioned architecture, apart from the development of the new
GDIS service, implies some extensions to the current services and clients that
are available from OGSA-DAI and OGSA-DQP. These extensions are, in our
view, reasonable and feasible, and thus make the overall proposal of practical
interest. They are summarised below:

Currently, GDQS does not reveal any information on the database to
which a table belongs, as the purpose of OGSA-DQP is to present a
unified view of all the database schemas to the user hiding the locality
details. However, in the proposed architecture, the user requirements
change and the queries are submitted to a single physical database. As
such, the client should expose the schemas per database rather than as a

Service Choreography for Data Integration on the Grid

cdatabaseschema dbname="SlM>
ctable name="ArtistU>

<column name="idW / >
ccolumn name="style" / >
ccolumn name="nameu / >
<primaryKey>

<columnName>idc/columnName>
c/primaryKey>

</table>
<table name="Artefact">

<column name="artist-idt* / >
ccolumn name="titleU / >
ccolumn name="categoryU />

</table>
</databaseschema>

<databaseschema dbname="SZ">
<table name="InfoM>

<column name="idU / >
<column name="codeU / >
ccolumn name="first-name" / >
<column name="last-name" / >
ccolumn name="kindU / >
<primaryKey>

<columnName>idc/columnName~
</primaryKey>

</table>
ctable name="PainterU>

ccolumn name="painter-id" / >
<column name="info-id" / >
ccolumn name="school" / >
<primaryKey>

<columnName~painter_idc/columnName>
c/primaryKey>

</table>
ctable name="Painting">

ccolumn namenupainter id' / >
ccolumn name="titleu 7>
<primaryKey>

<columnName>title</columnName>
c/primaryKey>

</table>
ctable name="Sculptor">

<column name="info-idu / >
ccolumn name="artefactV / >
ccolumn name="styleU / >

</table>
</databaseschema>

Figure 4. The XML representation of the schemas of the example databases.

iii) databaseschema[@dbname=Sll/table[~me=Artist/column@name=id - >
database~chema[@dbname=~2l/table[@name=1nfo/column~@name=idl

iv) database~chema[@dbname=~ll/table[@name=~rtefactl/column[@name=artist~idl
- > databaseSchema[@dbname=S2l/table[@name=Painterl/column[@name=info~idl,
databaseSchema~@dbname=S2l/table[@name=Sculptorl/column~@name=info~idl

Figure 5. The XMAP mappings.

30 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 6. A simpler form of the XMAP mappings.

unified view, so that it becomes evident what exactly data each database
holds.

GDQS should be capable of accepting XPath queries, and of transform-
ing these XPath queries to OQL before parsing, compiling, optimizing
and scheduling them. Such a transformation falls in an active research
area (e.g., [14, S]), and, in our architecture, is realised as an additional
component within the query compiler.

GDQS should implement an additional XMAP-related activity that,
given an XPath expression, finds the corresponding GDIS, and calls the
XMAP on it. The activity returns a set of corresponding XPaths.

The client should be capable of aggregating results stemming from mul-
tiple queries.

GDQS should be capable of accepting requests that contain more than
one (XPath) statement.

Also, GDIS should be capable of processing requests that clean, update
and install mapping documents.

Looking Ahead

The proposed architecture provides added value to the existing querying
services, and increases the scope of the applications that may use them. It cre-
ates a middleware infrastructure that can be enhanced with more functionality.
With a view to incorporating more features, the following stages of extensions
have been identified:

Stage A: XPath is a simple language, and, as such, it cannot cover many of
the common user requests. It is expected that more extensive use of the
knowledge about keylforeign-key relationships will be required in order
to reformulate more expressive queries (such as XQuery, SQL and OQL
correctly) or to support a more complete set of XPath. When the paths in
a XPath query refer to different branches of the tree of the correspond-
ing XML document, the relevant OQLISQL query typically contains a

Service Choreography for Data Integration on the Grid 3 1

join, as it is more convenient to map such branches to distinct relational
tables. However, the join condition is implied and cannot be directly
derived from the XPath expression. Consequently, the knowledge of the
keylforeign-key between tables is essential for the correct reformulation
of a wider range of XPath queries in our proposal.

Stage B: OGSA-DQP naturally provides the capability to submit queries over
distributed sources in a manner that is transparent to the user. The
XMAP reformulation algorithm, as presented in [12], returns a new
query only if that query can be evaluated across a single database as
well; this is one of the validity criteria. In order to use the capability
of OGSA-DQP to evaluate distributed queries across multiple databases
in the future, some (non-extensive) changes in the validity criteria of
reformulated queries in the XMAP algorithm will be required.

Stage C: A more challenging problem is to allow distributed query reformu-
lation. This raises a new set of issues, which include the selection of the
site that should hold the mappings, the identification of any further meta-
data at the GDQS-level that is required, and ensuring that non-duplicate
results are produced. More specifically, in the proposed architecture,
the decision on which GDI Service should perform the query reformula-
tion is straightforward; it is the one that is co-located with the database
that holds the data retrieved by the relevant query, and this service con-
tains the full set of the mapping information required. However, when
multiple databases are accessed in the same query, this policy has to be
revised.

Stage D: Finally, we plan to explore alternative architectures, and especially
architectures in which the GDISs may not be co-located with GQESs,
and can be shared between multiple sites. A simple approach could be
to have a single GDI Service that contains the full mapping informa-
tion concerning all the semantically similar databases. However, such
an approach is not scalable. If there are multiple GDZSs, which are not
co-located with GQESs, then a co-ordination issue arises as to how (i.e.,
according to which protocol) the services interact and exchange knowl-
edge. To this end, adopting techniques from peer-to-peer models is a
promising strategy.

6. Conclusions

The contribution of this work is the proposal of a unifying architecture and
of an approach that integrates a data integration methodology with existing
e-Services for querying distributed databases with a view to providing an en-
hanced, data integration-enabled service middleware. The resulting architec-

3 2 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

ture remains service-oriented, and, as such, the service choreography issues are
important. The paper explains in detail how the distinct services can interact in
order to accomplish the non-trivial task of evaluating remote queries submitted
by the user, while, at the same generating automatically new queries that return
semantically similar results from different data sources. The data integration
is based upon the XMAP framework that takes into account the semantic and
syntactic heterogeneity between different data resources, and provides a recur-
sive query reformulation algorithm. The Grid services used as a basis are the
outcome of the OGSA-DAIIDQP projects, which have paved the way towards
uniform access and combination of distributed databases.

In summary, in this paper (i) we propose an integrated service-oriented ar-
chitecture; (ii) we explain how we can achieve interaction between the various
services; (iii) we show how these services can be used together through an ex-
ample; (iv) we discuss in detail the implementation issues involved; and (v)
finally, we provide insights into how the architecture can be further extended.

Acknowledgments

The collaboration between the Universities of Manchester and Calabria is
supported through the CoreGrid European Research Network on Foundations,
Software Infrastructures and Applications for large scale distributed, GRID
and Peer-to-Peer Technologies project. We are pleased to acknowledge their
support.

References
[I] The Globus toolkit, http://www.globus.org.

[2] GridMiner, http://www.gridminer.org/.

[3] SASF: service-based approach to schema federation, http://sasf.grid.leena34.corn/.
[4] M. N. Alpdemir, A. Mukherjee, N. W. Paton, P. Watson, A. A. Fernandes, A. Gounaris

and J. Smith. Service-based distributed querying on the grid. In Maria E. Orlowska, San-
jiva Weerawarana, Mike P. Papazoglou, and Jian Yang, editors, Service-Oriented Com-
puting - ICSOC 2003, First Int. Conference, Trento, Italy, December 15-18, 2003, Pro-
ceedings, pages 467482. Springer, 2003.

[5] M. N. Alpdemir, A. Mukherjee, A. Gounaris, N. W. Paton, P. Watson, A. A. Fernan-
des and D. J. Fitzgerald. OGSA-DQP: A service for distributed querying on the grid.
In Advances in Database Technology - EDBT 2004, 9th Int. Conference on Extending
Database Technology, pages 858-861, March 2004.

[6] M. Antonioletti et al. OGSA-DAI: Two years on. In Global Grid Forum 10 -Data Area
Workshop, March 2004.

[7] Ph. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini and I.
Zaihrayeu. Data management for peer-to-peer computing : A vision. In Proc. of the 5th
Int. Workshop on the Web and Databases (WebDB 2002), pages 89-94, June 2002.

[8] K. S. Beyer, R. Cochrane, V. Josifovski, J. Kleewein, G. Lapis, G. M. Lohman, B. Lyle,
F. Ozcan, H. Pirahesh, N. Seemann, T. C. Truong, B. Van der Linden, B. Vickery and

Service Choreography for Data Integration on the Grid 3 3

C. Zhang. System rx: One part relational, one part xml. In SlGMOD Conference 2005,
pages 347-358,2005.

[9] P. Brezany, A. Woehrer and A. M. Tjoa. Novel mediator architectures for grid information
systems. Future Generation Computer Systems, 21(1):107-114,2005.

[lo] D. Calvanese, E. Damaggio, G. De Giacomo, M. Lenzerini and R. Rosati. Semantic data
integration in P2P systems. In Proc. of the First Int. Workshop on Databases, Information
Systems, and Peer-to-Peer Computing (DBISP2P), pages 77-90, September 2003.

[l 11 D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati and G. Vetere. Hyper: A frame-
work for peer-to-peer data integration on grids. In Proc. of the Int. Conference on Seman-
tics of a Networked World: Semantics for Grid Databases (ICSNW 2004), volume 3226
of Lecture Notes in Computer Science, pages 144157,2004.

[12] C. Comito and D. Talia. Xml data integration in ogsa grids. In 1st Int. Workshop on Data
Management in Grids (DMG), pages 4-1 5,2005.

[13] K. Czajkowski et al. The WS-resource framework version 1.0. The Globus Alliance,
Draft, March 2004. http: //www. globus. org/wsrf /specs/ws-wsrf .pdf.

[14] W. Fan, J. Xu Yu, H. Lu and J. Lu. Query translation from xpath to sql in the presence of
recursive dtds. In VLDB Conference 2005,2005.

[15] I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Int. J. Supercomputer Applications, 15(3), 200 1.

[I61 E. Franconi, G. M. Kuper, A. Lopatenko and L. Serafini. A robust logical and com-
putational characterisation of peer-to-peer database systems. In Proc. of the First Int.
Workshop on Databases, Information Systems, and Peer-to-Peer Computing (DBISPZP),
pages 64-76, September 2003.

[17] A. Y. Halevy. Data integration: A status report. In B W , pages 24-29, 2003.
[18] A. Y. Halevy, D. Suciu, I. Tatarinov and Z. G. Ives. Schema mediation in peer data

management systems. In Proc. of the 19th Int. Conference on Data Engineering, pages
505-5 16, March 2003.

[19] A. Kementsietsidis, M. Arenas and R. J. Miller. Mapping data in peer-to-peer systems:
Semantics and algorithmic issues. In Proc. of the 2003 ACM SIGMOD Int. Conference
on Management ofData, pages 325-336, June 2003.

[20] G. Lapis. Xml and relational storage - are they mutually exclusive? available
at http:Nwww.idealliance.org/proceedingslxtechO5/papers/O2-05-01/ (accessed in july
2005).

[21] A. Y. Levy, A. Rajaraman and J. J. Ordille. Querying heterogeneous information sources
using source descriptions. In Proc. of 22th Int. Conference on Very Large Data Bases
(VLDB'96), pages 25 1-262, September 1996.

[22] A. P. Sheth and J. A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3): 183-236,
1990.

[23] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. Fernandes and R. Sakellariou. Dis-
tributed query processing on the grid. In Manish Parashar, editor, Grid Computing - GRID
2002, Third Int. Workshop, Baltimore, MD, USA, November 18,2002, Proceedings, pages
279-290. Springer, 2002.

ACCESSING WEB DATABASES USING OGSA-DAI
IN BDWORLD*

Shirley Crompton
CCLRC, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

s.y.crornpton@dl.ac.uk

Brian Matthews
CCLRC, Rutherford-Appleton Laboratory, Didcot, Oxfordshire OX11 OAX, United Kingdom

b.rn.rnatthews@rl.ac.uk

Alex Gray, Andrew Jones, Richard White
CardlffSchool of Computer Science, Cardzff University, Card~ff CFZ4 3AA, United Kingdom
w.a.gray@cs.cardiff.ac.uk

Andrew.C.Jones@cs.cardiff.ac.uk

r.j.white@cs.cardiff.ac.uk

Abstract

Keywords:

The BioDA project is investigating how Bioinformatics Grids, a data and com-
pute intensive domain, could benefit from using a standard framework, such as
OGSA-DAI, to manage access and integration of distributed heterogeneous data
resources. In this paper, we outline the common data access and integration
requirements from the bioinformatics community. We then highlight some spe-
cific issues encountered while designing an OGSA-DAI exemplar application for
BiodiversityWorld, a Biodiversity Grid that specialises in extracting knowledge
from correlating a plethora of distributed heterogeneous data sources accesible
via the Web in the study of biodiversity patterns.

bioinformatics, biodiversity, biodiversity informatics, data access, data integra-
tion, OGSA-DAI.

'Work supported by Biotechnology and Biological Sciences Research Council grant BBICS 1084011

36 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

Within the diverse field of bioinformatics, there are many types of data anal-
ysis, both inter- and intra-disciplinary, which generate as many types of data
and databases. The increased computational capacity of the Grid makes it
possible for scientists to correlate and combine large numbers of datasets to
identify patterns and formulate hypotheses, which can be tested using further
datasets and transformed into useful knowledge [I]. The output from such
research activities, in turn, generate yet more datasets that will need to be inte-
grated into further analyses.

The bioinformatics projects supported within the UK eScience programme
have recognised the need for accessing and integrating data from both new
and legacy data sources. As a consequence, solutions to the data management
problems have been implemented individually by each project according to
their needs.

For example, the Biodiversity World (BDWorld [2-41) Project is creating
a problem-solving environment (PSE) targeted at providing support for biodi-
versity researchers to use common software tools in a Grid environment, and
to use them to analyse data held in a variety of databases and data stores. BD-
Worlds middleware for data access and communications has been developed
so that it can cope with changes caused by the evolving Grid middleware. BD-
World is being interfaced to software previously developed by project partners
in the SPICE project [5] to co-ordinate access to some of the databases and an-
alytic tools that have been made available to BDWorld. In SPICE a CAS (Com-
mon Access System) hub was created to allow heterogeneous databases (often
managed by legacy database systems) to be wrapped, accessed and linked to
form a Catalogue of Life for the international Species 2000 project [6]. In
the BDWorld project this prototype Catalogue of Life is used to provide taxo-
nomic data about species which is then linked with data from biotic and abiotic
datastores. These are wrapped in a somewhat different way from the SPICE
databases, since a fixed common data model is not appropriate for the more
diverse range of data used in BDWorld (see Section 3). This data includes
geographical data about the distribution of species, climate data, genetic struc-
ture and sequence data. Existing analytic tools, such as tools for modelling
a species climatic niche, are also wrapped for inclusion in the PSE. The data
is linked by the PSEs tools to enable bioinformatics users to investigate sci-
entific questions such as the biodiversity richness in regions of interest; the
effect of climate change on the biodiversity of a region, and the usefulness of
geographical data in refining phylogenetic hypotheses.

In parallel with the application projects in bioinformatics, the Open Grid
Services Architecture - Data Access and Integration (OGSA-DAI) project [7]
has been designing generic middleware to assist with access and integration of

Accessing Web Databases using OGSA-DAI in BDWorld 37

data from disparate data sources across the Grid, for use in a wide variety of e-
Science projects. The first releases of OGSA-DAI implemented the Open Grid
Services Infrastructure (OGSI) specification [8] and were built on the Globus
toolkit (GT) [9] platform. Using the OGSA-DAI framework, external data re-
sources can be incorporated within the OGSA framework and made accessible
via a standard Grid service interface, offering uniform interfaces for accessing,
querying and processing data stored in relational and XML databases as well
as flat files. Figure 1 gives a basic example of using OGSA-DAI OGSI grid
services to access a database. The software has since evolved from OGSI to
the WS-RF [8] and WS-I [l 11 specifications.

1. request to reglstry for
sources of data

//2. reglstry responds wlth
GDSF factory handle

................. > SOAPMTTP

........................) service creatlon

I f > API Interactions

GDSF
5. factory returns

GDS handle
1 4. factory creates a
I translent GDS

to Inanage access

RelattonallXM
7. GDS lneracts

---_____L---L--- with data
resource

Figure 1. Basic data access using OGSA-DAI OGSI Grid services.

In spite of the functionality offered by OGSA-DAI, it became clear that the
middleware was not being used in bioinformatics projects to any great extent.
In discussions with investigators from various projects we found that this was
mostly due to reluctance on their part to use emerging prototype software part-
way through their projects. These projects were high risk developments be-
cause of the large scale collaborations involved and the utilisation of immature
Grid software. Thus the staff of these projects did not want to add another un-
known factor into their development strategies. It should also be remembered
that the start of the OGSA-DAI project coincided approximately with the start
of these projects.

The Bioinformatics and DAIT (BioDA [12]) project is a one-year study
funded by the UK Biotechnology and Biological Sciences Research Council
to investigate the benefits of using OGSA-DAI in bioinformatics Grids. The

38 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

project aimed to establish communication between bioinformatics projects and
DAIT (the team continuing OGSA-DAI development), to elicit requirements
from bioinformatics projects, and to collate case studies involving existing
bioinformatics projects. The latter includes prototyping an OGSA-DAI ex-
emplar for BDWorld to access remote web databases. BDWorlds database
handling is characterised by the diversity of the types of database used, the
heterogeneity of the data with respect to its representation, and the variety
of data being held and used in the analysis environment. This makes it an
ideal test bed for OGSA-DAI as it will present many of the problems that such
database middleware should be able to overcome more easily than traditional
approaches to interoperability

In this paper we will highlight the generic data integration requirements
gathered from the bioinformatics community, and examine some specific data
integration issues arising from introducing OGSA-DAI to the BDWorld Grid.

2. Generic Bioinformatics Data Access and Integration
Requirements

The first BioDA workshop brought together architects and infrastructure
developers from the bioinformatics domain and DAIT project to examine the
communitys data access and integration needs with particular reference to
OGSA-DAI.

The workshop identified 17 key requirements and these were refined through
a survey of 8 bioinformatics projects at various stages of development [13].
Our findings indicate that these projects are particularly keen to see OGSA-
DAI offering more support for the following features.

1 schema integration;

2 schema mapping;

3 mixed language query;

4 complex join across databases;

5 provenance data;

6 flexible resource discovery facilitated by a richer metadata registry;

7 RDF database access.

The first four requirements map directly to data integration functionalities.
The remaining three items reflect implicit needs for better metadata which
will facilitate the selection and the location of distributed data resources via
a metadata-driven two-step access to data [14]. These priorities are a conseqe-
unce of the nature of bioinformatics, where data sources typically have large,

Accessing Web Databases using OGSA-DAI in BDWorld 39

complex structures which reflect the richness of the scientific concepts that
they model. Many of these data sources are related and cover roughly the same
domain, eg. genes, sequence annotations, digital protein models [15]. The
ability to integrate related but heterogeneous data will greatly facilitate the
task of scientific discovery. The OGSA-DAI interfaces expose heterogeneous
data sources as a single logical one and allow a client application to access the
data in a uniform manner. But OGSA-DAI on its own does not make a data
grid. Client programmers will still need to be aware of the types of data re-
sources being accessed and accounts for the structural heterogeneities and the
differences between query dialects.

The DAIT team may see many of the listed items as outside its original
remit, and, therefore, as features which could be provided elsewhere. For
instance, schema mapping has been implemented by projects such as Grid-
Miner [16] as part of a higher-level mediation service layered over OGSA-
DAI. We recognise this argument, but these requirements are highly desirable
to bioinformatics project practitioners and their implementation would greatly
enhance OGSA-DAIS appeal to potential users in this domain.

Apart from the calls for more functionality, our findings show that bioin-
formatics projects with commercial userslpartners are very anxious about the
security of their data. They have sought reassurance over the security of the
data delivery mechanisms and even the latency of the subsequent footprint that
the data leaves on the server. The issue is further complicated by the lack of
coherent security models with the evolving WS-RF and WS-I specifications
which OGSA-DAI now supports. This issue needs to be resolved, if bioin-
formatics projects with commercial userslpartners are not to be deterred from
adopting the product despite its utility.

OGSA-DAIS recent migration to Globus WS-RF, WS-I and OM11 WS-
I+ [17] platforms has also affected users confidence in the product. Infra-
structural changes are disruptive and perceived as risky to project develop-
ment. Our respondents have highlighted the need for OGSA-DAI to provide
backward compatibility and to minimise the effects of migration on current
client users. On the issue of support, we suggest that an official policy relating
to the establishment of a medium to long-term support service, i.e. beyond the
current funding lifetime of the OGSA-DAIIDAIT project, would help reassure
potential users that the product is not going to become unusable through the
lack of continued maintenance.

In this section, we have highlighted the principal data access and integration
requirements gathered via the BioDA workshop and survey. Further details
may be found in the BioDA Final Report [13]. The information gathered has
been fed back to the OGSA-DAIIDAIT team to assist with the development of
their product.

40 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

3. BDWorld Data Integration Issues

In this section, we outline the design and some data access and integration
issues encountered while developing an OGSA-DAI (R5) exemplar for BD-
World. The exemplar is based on the bio-climatic and ecological niche BDW
use case and focuses specifically on the retrieval of geo-spatial locality data
from globally distributed databases. The bio-climatic exemplar uses the known
localities of a species and cross-references these with present day climate data
to derive the species climate preference profile. This profile is then used to lo-
cate other geographical areas where such a climate exists and would be suitable
habitat for the target species [3].

I BDW HarnessMTorMow Manager I

Figure 2. BDWorld locality data resource layer

First we review the distinctive characteristics of the BDWorld Grid that have
influenced the design. A particular feature of BDWorld is its use of heteroge-
neous, legacy data resources with diverse structures and data standards. Many
of these are Internet information resources only accessible via the HTTP pro-
tocol in XML format, or even as HTML pages, in which case screen scrap-
ing techniques are required. BDW currently has 11 locality data resources,
comprising five local databases under the BDW administrative domain and six
globally distributed data providers (see Figure 2). The remote data resources
are autonomous web data servers exposed through different frameworks, eg.

Accessing Web Databases using OGSA-DAI in BDWorld 4 1

HTMLICGI, JSP and web services. OGSA-DAI does not currently support
access to these types of resources.

The user interface to BDWorld is provided through the Triana [18] workflow
management system, BDWorld has also taken the position that any computa-
tionally intensive tasks within a scientific workflow, such as a data access, will
be carried out within a single node, rather than distribute tasks across a num-
ber of steps [2] . This has influenced the design of the BDWorld architecture
to focus on achieving resource inter-operability rather than maximising perfor-
mance. It includes an abstraction layer (the BDWorld-Grid Interface (BGI)),
which provides a syntactically uniform interface with a uniform resource in-
vocation mechanism to all BDWorld resources (Figure 3), both databases and
analytic tools. Resources are wrapped to conform to this interface; wrapped
resources are then able to interact with various Grid or Grid-like implementa-
tions via an adaptor specific to the Grid infrastructure currently in use. Other
BDWorld components are designed to use the same mechanism, and in partic-
ular Triana has been extended to act as a BGI client.

engine
RIeteclata
repository

Resources

Figure 3. BDWorld architecture overview

To tap into these global repositories on biotic and abiotic information, BD-
World still needs the knowledge to discover and uses them correctly. As high-
lighted in the requirements survey above, metadata is crucial to facilitate the
selection and the location of distributed data resources. To this end, BDWorld
is building a metadata repository connected to an ontology in order to man-
age resource heterogeneity. This component is designed to support semantic
equivalence testing when locating, and in particular, integrating datasets from

42 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

autonomous data providers which, for example, may employ non-standard
species names to index their data, or may use an unusual data representation.

To access and harvest data from the remote data resources, BDWorld re-
source wrappers must publish metadata on their capabilities and implement
the BGI. This includes implementing the uniform resource invocation method:
invokeoperation. This method takes three string parameters: the tar-
get resource handle; the name of the operation; and the serialized operation-
specific input wrapped in a standard BDWorld communication object. An im-
plication of this uniform resource invocation mechanism is that BGI data calls
are not expressed in terms of standard SQL queries. Another feature is that
data passing to and from the resources is communicated over the BGI as an
XML document or a simple string. This permits the transmission of either the
data or, if the volume is large, the handle for the data.

There are two main ways we could introduce OGSA-DAI into BDWorld,
bearing in mind the BGI specifications and communication protocol. One pos-
sibility is to augment the BGI to make it possible for queries to be included
in workflows and to be sent directly to OGSA-DAI enabled databases. Dis-
tributed query processing facilities could be developed to the point where they
could assist in planning the execution and distribution of data-orientated parts
of a workflow. However, this would be a very major revision to the BDWorld
protocols, and does not take account of the fact that many of the resources of
interest are simply not exposed as databases. The other option is to provide
facilities within individual wrappers that benefit from OGSA-DAI. We opted
for the latter approach in building our exemplar.

Before embarking on our building own custom solution, we first verified if
it is possible to leverage existing OGSA-DAI based solutions, such as OGSA-
DQP [I91 and OGSA-WebDB [20]. The latter is developed by the Japan
AIST to Grid-enable existing web database resources via OGSA-DAI. OGSA-
WebDB may just be the right tool for BDWorld as it needs to access au-
tonomous web data sources. However, both DQP and WebDB accept queries
in formally structured query languages (e.g. SQL, OQL), which we feel would
not be compatible with the BGI architecture without significant customization.

4. The BioDA Exemplar

Figure 4 gives the UML class diagram of our exemplar, which is developed
with OGSA-DAI R5 OGSI. It has two main components: the custom OGSA-
DAI activities and the data resource wrappers. The wrappers support custom
interactions with the data resources being wrapped. These wrappers are simpli-
fied versions of the existing BDWorld localities data wrappers, and have been
modified to remove non-essential dependencies on BDWorld components. We

Accessing Web Databases using OGSA-DAI in BD World

Figure 4. UML diagram of the BioDA exemplar

have implemented three wrappers which we feel are sufficiently representative
of the remote localities data resources used by BDWorld.

To make the OGSA-DAI Grid Data Service (GDS) accessible to the cur-
rent BDWorld Grid implementation, which is based on web services, we have
configured the exemplar as a web service, using the Axis library 1211 (see
Figure 5). Note that we have opted to use a single virtual GDS instead of
deploying separate GDSs for each resource. Our virtual GDS is configured
for a postgresql database, which is the chosen database platform for BDWorld
internal data resources. We adopted this strategy for the following reasons.
Firstly, none of the data source specific capabilities exposed or provided by
OGSA-DAI activities, eg. data resource mediators, SQLJXML operations, are
applicable to our remote web data resources. There is no particular advantage
in maintaining a one-to-one relationship between a GDS and a particular data
resource. Secondly, there are various overheads associated with starting up an
OGSI GDS [22-231. We could minimize the overhead cost by sticking to one
single GDS. Thirdly, this virtual GDS could potentially be extended to handle
interactions with all BDWorld data resources, including the local postgresql
resources.

Apart from delivering existing BDWorld functionalities, our exemplar also
provides additional features which could be adopted with minor adjustments to
the BDWorld workflow. In the existing design, the BDWorld workflow issues
a synchronous data request to each resource wrapper. It also aggregates the

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Client
Wapper Module

Abdract

Figure 5. Principal software components of the BioDA exemplar

results and passes them onto the next workflow unit. We feel that we could add
value by enabling one or more resources to be queried via a single data call to
OGSA-DAI. We could also minimize unnecessary transfer of data by using a
separate channel for data delivery, for instance to a compute node within the
Ganglia Cluster that BDWorld is building. In fact, third party delivery may
become necessary. If the exemplar is used to query several data resources con-
currently, the aggregated result set could well exceed the size limit for SOAP.
OGSA-DAI does not currently support SOAP with attachment. Our exemplar
returns the gridFTP handles to the cache data files in addition to the actual
data. Should BDWorld change its data delivery channel from SOAP to third
party mechanisms, we could simply switch off the codes in our exemplar that
package the data for SOAP delivery.

4.1 Usage of the BioDA Exemplar
Figure 6 shows the usage of the exemplar which goes through the steps as

follows.

Step 1: We use an Axis web service (BioDaClient) to expose the OGSA-DAI
OGSI GDS to non-GT clients. This web service supports the BGI uni-
form resource invocation mechanism.

Step 2: The web service contacts the OGSA-DAI Grid Data Service Factory
and requests a GDS to perform the required database searches (for clar-
ify, Figure 6 does not show this GDS instantiation process). Our exem-

Accessing Web Databases using OGSA-DAI in BDWorld

1. BGI
InvokeOperation() OGSA-DAI R5 GDS

--~BDWlnputActivity, 1

Wrapper Module /

1 ,, 5. Write cac

Cache File

/ ~ u e l y , transform

:he file

Figure 6. Principal software components of the BioDA exemplar

plar uses the OGSA-DAI client toolkit API and a custom client activity
(BDWInputActivity) to generate the Perform Document and to manage
the interactions with the GDS. It would be possible to bypass the use
of client activities and submit a Perform Document directly to the GDS.
Using the client toolkit introduces additional coding on the client side,
however, the client toolkit provides ready-made components for use as
basic building blocks to speed up application development, and, impor-
tantly, the API protects developers from changes in the OGSA-DAI spec-
ifications.

Step 3: The GDS processes the Perform request and instantiates the required
activity. Our exemplar, in fact, uses two separate Perform documents:
one to orchestrate the asynchronous delivery of input and one to manage
the database searches. Our BiodaClient uses threads to explicitly or-
chestrate the execution of these documents. Newer OGSA-DAI releases
provide client toolkit support for sequence and control flow. This moves
the complexity of managing the operations from the client to the server,
and simplifies the process of using OGSA-DAI.

Step 4: The individual database wrapper searches the remote data resource
that it represents concurrently, downloads the results (if any) and per-
forms the required data transformation.

46 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Step 5: The individual wrapper writes the formatted localities data to a cache
file on the local server.

Step 6: The individual wrapper packages the data into a standard XML docu-
ment. The activity aggregates the results and returns the XML document
to the BioDaClient via the web service to the BGI.

We have tested the exemplar with the BDWorld workflow and successfully
used it in place of the existing BDWorld database wrappers. The next logical
step is to amend the workflow manager to generate a single data call for multi-
ple localities data resources and test the extended capability of the exemplar.

4.2 OGSA-DAI Usage Experience and Lessons Learnt
Our experience in implementing the BDWorld use case has demonstrated

that OGSA-DAI is highly flexible and extensible. Even though web data
resources are not supported as standard by OGSA-DAI, we have been able
to leverage the framework to build a workable solution. Compared to
GT3.2.1, the hosting container, OGSA-DAI 5 is relatively easy to install and
use. OGSA-DAI offers helphl on-line documentation and there are both
community-based and official support to ease the learning process.

In the exemplar, we have layered OGSA-DAI between the data wrappers
and the BGI. This arrangement provides a degree of location transparency but
also adds extra levels of indirection. Location transparency facilitates the ex-
posure of data resources in a global context as data resource product and con-
nection information is centralized in the OGSA-DAI server. Changes in these
parameters need only affect the server. In our case, BDWorld is the data con-
sumer rather than data provider. The lack of location transparency can be seen
as a limitation of the current prototype; we are also concerned that the extra
levels of indirection will increase the round-trip data access time as the BGI
data calls have to be channelled via the web service interface and communi-
cated through the OGSA-DAI specific layers to the data wrappers. Migrating
to the new OGSA-DAI WS-I specification will help simplify our exemplar ar-
chitecture and minimize the levels of indirection. As the current BDWorld
Grid is implemented on web services, using OGSA-DAI WS-I will allow us to
expose the OGSA-DAI services directly as web services and remove GT3.2.1
which serves no other purpose than to provide a hosting framework for the
OGSA-DAI OGSI services.

In our exemplar, we are retro-fitting OGSA-DAI to a system with well-
defined architecture and data handling strategies, which constrained our scope
of applying OGSA-DAI. For instance, the workflow data handling does not
provide for interaction between the data resources. Neither do the localities
data queries require any interaction between data retrieved from the different

Accessing Web Databases using OGSA-DAI in BDWorld 47

resources. Our queries simply ask for all localities data associated with a par-
ticular taxon search string. Consequently, we feel we have not made much use
of the data integration functionalities offered by OGSA-DAI and OGSA-DQP.

BDWorld is re-factoring its architecture to improve interoperation with third
party components. This opens up possibilities for further usage of OGSA-DAI,
and maybe OGSA-DQP, particularly with respect to minimizing unnecessarily
data movement and moving computation to the data. These include leverag-
ing third party data deliveries and the use of complex declarative queries to
improve the filtering of results at source.

5. Conclusion
We have briefly summarised the common data access and integration re-

quirements raised by the bioinformatics community and reviewed our OGSA-
DAI exemplar for aggregating locality data for the BDWorld bio-climatic and
ecological niche use case. We have highlighted other key data integration so-
lutions based on OGSA-DAI and commented on their suitability for BDWorld.
We have noted a range of features which, if incorporated into OGSA-DAI,
would be beneficial to the bioinformatics projects surveyed by BioDA.

OGSA-DAI is an evolving software and has gone through many iterations
since its first release just under three years ago. We feel that the lack of take up
of the earlier versions could be due to a variety of reasons, both technical and
non-technical. From our dialogues with various e-Science project stakehold-
ers, it became clear that many e-Science projects such as BDWorld are building
bioinformatics Grid applications from existing tools and data resources, filling
in gaps where necessary with new components. In one way, OGSA-DAI could
potentially facilitate the creation of a loosely coupled data grid. Yet in reality,
there are many existing considerations which may limit its application. These
include: the types of data resources typically used in bioinformatics; the nature
of bioinformatics analyses; the types of infrastructure Grid middleware used;
OGSA-DAI's previous confinement to the GT platform; OGSA-DAI function-
alities; a lack of programmatic access to key public data resources.

The first releases of OGSA-DAI only offered support for database resources.
Support for semi-structured resources were added later on to meet user de-
mands. Secondly, many existing analytical tools take in whole data files with-
out the need to interact with the data or filtering of the file contents. Other Grid
access mechanism may seem more appropriate for working with file resources
at the file level.

In the bioinformatics domain, public data repositories generally do not pro-
vide generic database access to their data, as is the case for most of the
BDWorld locality data providers [24-251. Consequently, we could not ap-
ply OGSA-DAI in a straightforward manner to access these autonomous data

48 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

providers. Nevertheless, our exemplar illustrates that there are still scenarios
in which OGSA-DAI may be usefully employed.

We feel that OGSA-DAI is primarily a framework for enabling a uni-
form, service-based access to disparate, heterogeneous and distributed data
resources. It offers a subset of the JDBC functionalities and it exposes data
resources without hiding their underlying models. Users would still need
to know the data and how they are represented to use the information cor-
rectly. As highlighted elsewhere in this paper, OGSA-DAI relies on domain
knowledge or other third party tools to provide the data integration capabili-
ties. Projects concerned with data interoperation and requiring fast data access
simply do not see enough advantages in OGSA-DAI.

As highlighted in Section 3, the lack of programmatic access to key public
bioinformatics data repositories is also a factor that potentially limits the appli-
cation of OGSA-DAI in bioinformatics Grids. Warehousing the databases lo-
cally is a solution, but this arrangement reduces the advantage of using OGSA-
DAI as the data is under local administration and can be easily accessed di-
rectly. To facilitate the development of bioinforrnatics data Grids using com-
munity standards such as OGSA-DAI, public repositories may consider pro-
viding an OGSA-DAI interface to support public read access in addition to
specialised web services.

Acknowledgments
The authors wish to thank all those who took part in our survey. We are

particularly grateful to colleagues in BDWorld, DAIT, OGSA-DQP, CCLRC
e-Science Centre, GeneGrid and GridMiner.

References

[l] M. Atkinson, Data Access and Integration. In Ercim News no. 59, p 34-80. 2004.

[2] A.C. Jones, R.J. White, W.A. Gray, F.A. Bisby, N. Caithness, N. Pittas, X. Xu, S. Sutton,
N.J. Fiddian, A. Culham, M. Scoble, P. Wiliams, 0. Bromley, P. Brewer, C. Yesson, and
S. Bhagwat, Building a Biodiversity Grid. In Grid Computing in Life Science (Konagaya,
A. and Satou, K., eds.), LNCS 3370, p. 140-151. Springer-Verlag, 2005. (Biodiversity
World: http://www.bdworld.org/)

[3] R.J. White, F.A. Bisby, N. Caithness, T. Sutton, P. Brewer, P. Williams, A. Culham, M.
Scoble, A.C. Jones, W.A. Gray, N.J. Fiddian, N. Pittas, X. Xu, 0. Bromley, and P. Valdes,
The Biodiversity World Environment as an Extensible Virtual Laboratory for Analysing
Biodiversity Patterns, In Proceedings of the Second UK e-Science All Hands Meeting, pp.
341 -344,2003,.

[4] A.C. Jones, R.J. White, N. Pittas, W.A. Gray, T. Sutton, X. Xu, 0. Bromley, N. Caithness,
F.A. Bisby, N.J. Fiddian, M. Scoble, A. Culham, and P. Williams. Biodiversity World: An
Architecture for an Extensible Virtual Laboratory for Analysing Biodiversity Patterns. In
Proceedings of the Second UK e-Science All Hands Meeting, pp. 759-765,2003

Accessing Web Databases using OGSA-DAI in BDWorld 49

[5] A.C. Jones, X. Xu, N. Pittas, W.A. Gray, N.J. Fiddian, R.J. White, J.S. Robinson, FA.
Bisby, and S.M. Brandt. SPICE: a Flexible Architecture for Integrating Autonomous
Databases to Comprise a Distributed Catalogue of Life. In Proceedings of the 11th In-
ternational Conference on Database and Expert Systems Applications, LNCS 1873, p.
981-992, Springer-Verlag 2000. (SPICE: http://www.systematics.reading.ac.uWspice/)

[6] Species 2000. http://www.sp2000.org .
[7] OGSA-DAI. http://www.ogsadai.org.ukl

[8] Open Grid Services Infrastructure Specifications, https://forge.gridforum.org/projects/
ogsi-wg/document/Final~OGSI~Specification~VI .O/en/l

[9] Globus Toolkit. http://www-unix.globus.org/toolkit/

[lo] WS-Resource Framework. http://w.globus.org/wsrf/

[I 11 Web Services Interoperability. http://www.ws-i.org/

[12] BioDA. http://isegserv.itd.rl.ac.uk/BioDA/pages/default.htm

[13]S.Y. Crompton, B.M. Matthews, W.A. Gray, A.C. Jones, R.J.
White. Bioinformatics and OGSA-DAI (BioDA) Final Report, 2006
http:Nisegserv.itd.rI.ac.uk/BioDA/documentsioDAfinalRep 1 -2.pdf

[I41 P. Watson. Databases and the Grid. In Grid Computing: Making the Global Infrastructure
a Reality, Wiley, p. 363-384,2003

[IS] B. Eckman, Z. Lacroix, L. Raschild. Optimised Seamless Integration of Biomolecular
Data. In IEEE International Conference on Bioinformatics and Biomedical Engineering,
pp. 23-32, 2001.

[I 61 GridMiner. http://www.gridminer.org/

[17] M. Atkinson, D. DeRoure, A. Dunlop, G. Fox, P. Henderson, T. Hey, N. Paton, S.
Newhouse, S. Parastatidis, ATrefethen, P. Watson, and J. Webber. Web Service Grids:
An Evolutionary Approach. UK e-Science Technical Report, ISSN 175 1-597 1, 2004.
(http:Nwww.nesc.ac.uWtechnicalpapers/UKeS-2004-05.pdf)

[I 81 Triana. http://www.trianacode.org/

[19] OGSA-DQP. http://w.ogsadai.org.uk/about/ogsa-dqpl

[20] I. Kojima and S.M. Pahlevi. Design and Implementation of OGSA-WebDB a
service based system for making existing web databases grid-ready. In Pro-
ceedings of the The GGFIO Workshop, Berlin, Germany, 2004. (OGSA-WebDB:
http://www.gtrc.aist.go.jp/dbgrid/ogsa-webdbl)

[2 11 Apache Axis http:Nws.apache.orglaxis/

[22] K. Qi. Data Integration Scenarios in OGSA-DAI. MSc dissertation, The University of
Edinburgh, 2004.

[23] M. Jackson, M. Antonioletti, N. Chue Hong, A. Hume, A. Krause, T. Sugden. Perfor-
mance Analysis of the OGSA-DAI Software. In Proceedings of the Third UK e-Science
All Hands Meeting, pp. 340-347,2004.

[24] Richard 0 . Sinnot, Micha Bayer, D. Houghton, Dave Berry, M. Ferrier. Development of
a Grid Infrastructure for Functional Genomics. In Proceedings of the Third UK e-Science
All Hands Meeting, 2004.

[25] S.Y. Crompton, B.M. Matthews, W.A. Gray, A.C. Jones, R.J. White, J.S. Pahwa, OGSA-
DAI and Bioinformatics Grids: Challenges, Experience and Strategies. In Proceedings
Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06),
Singapore, 2006.

FAILURE RECOVERY ALTERNATIVES IN GRID-
BASED DISTRIBUTED QUERY PROCESSING:
A CASE STUDY

Jim Smith and Paul Watson
Newcastle University
Newcastle upon 5ne , UK

Jim.Smith@ncl.ac.uk

Paul.Watson@ncl.ac.uk

Abstract Fault-tolerance has long been a feature of database systems, with transactions
supporting the structuring of applications so as to ensure continuation of updat-
ing applications in spite of machine failures. For read-only queries the perceived
wisdom has been that support for fault-tolerance is too expensive to be worth-
while. Distributed query processing (DQP) is coming to be seen as a promis-
ing way of implementing applications that combine structured data and analysis
operations in dynamic distributed settings such as computational grids. Accord-
ingly, a number of protocols have been described that support tolerance to failure
of intermediate machines, so as to permit continuation from surviving interme-
diate state. However, a distributed query can have a non-trivial mapping onto
hardware resources. Because of this it is often possible to choose between a
number of possible recovery strategies in the event of a failure. The work de-
scribed here makes an initial investigation in this area in the context of an ex-
ample query expressed over distributed resources in a Grid and shows that it can
be worthwhile to make this choice between recovery alternatives dynamically,
at the point a failure is detected rather than statically beforehand.

Keywords: distributed query processing, fault-tolerance, parallel query processing,
rollback-recovery.

52 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

Much work [I 31 has been done to support access to multiple distributed, au-
tonomous databases, particularly addressing issues relating to heterogeneity,
consistency and availability. However, systems have tended to gather data to
a central site for inter-site joins. As described in [19], the emergence of com-
putational grids [S] provides support and motivation for the evolution of the
more open query processing espoused in [4] where participants contribute not
just data but also function and cycle providers. In such an environment, many
widely distributed and autonomous resources may be utilized in the execution
of a particular query. Furthermore, it seems likely that the applications will
often be demanding, so that resource failures may be not only likely but also
costly. It is then better to tolerate the fault rather than throwing away the work
done already unless the resources required for completion are not available.

Previous work [21] describes a basic implementation of support for fault-
tolerance in a publicly-available distributed query processing system for the
Grid, OGSA-DQP [I]. In that work, the enhanced system is evaluated through
measurements of overhead and recovery cost to show that significant gains can
be made through recovering and continuing after a failure. However, that ear-
lier work considered only a single recovery scenario, where a failed machine
is replaced by an equivalent. In continuation, the work reported here demon-
strates for an example scenario suited to the Grid-based nature of the system
that there is in general a range of alternative recovery strategies and that it can
be desirable to make the choice between these alternatives dynamically on the
occurrence of an actual failure.

The rest of this paper is structured as follows. Section 2 discusses related
work. Section 3 describes a mapping of an example query onto distributed
computational resources and identifies a number of alternative recovery strate-
gies which can be employed following machine failure during query execu-
tion. Section 4 reviews the support for fault-tolerance provided in an enhanced
version of OGSA-DQP, emphasizing features not described in earlier work.
Section 5 presents initial experimental demonstration of the use of alternate
recovery strategies in practice. Section 6 concludes.

2. Related Work
Transactions [9] are widely used to structure applications which need to en-

sure consistent access to persistent data, especially when updates to the data
are required. Typically, operations which update persistent state are recorded
in a site log so that they can be undone andhedone during recovery from a fail-
ure to get back to a consistent state. A commit protocol, typically two phase
commit is employed to ensure updates to distributed databases are either all
committed or all aborted. Checkpointing database state in such settings re-

Failure Recovery Alternatives in Grid-Based DQP 5 3

duces the cost of recovery since log entries prior to the checkpoint do not need
to be redone. Such recovery techniques aim to ensure the persistent databases
can be brought to a consistent state. The application issuing updates can be
coded to retry any aborted transaction. Otherwise, or if its own internal state
is lost, the application must restart. This is undesirable if the application is
expensive.

Workflows [lo] for instance can be structured using internal transactions
and maintaining intermediate state in a database to ensure that work already
committed need not be redone during recovery. This state can then be repli-
cated to achieve high availability [12]. An individual stateful application which
might be called by a workflow can be recovered by logging interactions with
the application to support re-creation of the internal application's state after a
failure [3].

Like workflow, distributed queries are evaluated through a directed graph
structure, but while workflow execution is likely to be event driven, queries
typically follow a pipelined data flow pattern. This pipelined nature, the typi-
cally wide area distribution and the high level expression of queries, has moti-
vated the exploitation of recovery protocols built into the query algebra rather
than at a lower, system, level. Example approaches include: [la, 111 imple-
mented in stream processing [2]; [14] targetted at data warehouse loading;
and [21] implemented in the Grid-based distributed query processing system
OGSA-DQP. While it is important first to implement a protocol that can sup-
port some degree of fault-tolerance in such pipelined computations, it is also
important to examine the use of that protocol in practice. The contribution of
this paper is to consider practical recovery strategies in an example scenario.
It transpires that even in this simple case, there are typically multiple possi-
ble strategies and that it can be beneficial to choose between the alternatives
dynamically at run-time.

Distributed query processing is being increasingly seen as an important tool
for expressing complex distributed Grid-based computations in a conveniently
high level way. For instance, SkyQuery [15] supports DQP over Grid resources
with Web Services (WSs) being represented as typed user defined functions.
GridDB-lite [16] supports access of large scale scientific data from large paral-
lel repositories via SQL queries. In the context of Grid oriented query process-
ing systems, Polar* [19] and OGSA-DQP [I] are distinguished in supporting
placement of parts of the query plan on machines which don't hold data, rather
like the compute servers of ObjectGlobe [4], and then using established paral-
lel query processing techniques to seek a benefit through data parallelism. In
Figure 1 for instance, a simple query which accesses some expensive opera-
tion "F" is evaluated through exploitation of three copies of the WS hosting
that operation, in order to reduce the response time. Work in Polar* demon-
strated that speedup of an example query in the field of bioinformatics access-

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure I . An example query initiated at a user's workstation, accessing data from a remote
machine and using three copies of a web service hosting an expensive operation "F" to exploit
data parallelism.

ing an expensive analysis function could be beneficial even in a heterogeneous
environment [20]. The work described here focuses on the requirements for
fault-tolerance arising in such query evaluations. Equally however, a query
requiring a large join might profit through parallelization over dynamically ac-
quired resources by being able to use a single phase algorithm, e.g. [22].

3. Recovery Options
Figure 2 shows how an example query might be mapped onto distributed

resources by the DQP compiler. The query, shown in Figure 2(a) applies an
expensive function call which is hosted by a publicly available WS to data ac-
cessed from a remote source. The compiler has generated from the query text
a parallel plan shown in Figure 2(b) which implements the query using three
partitions, PO, PI, P2. It happens that at the time the query is executed, there
are two copies of the WS instantiated on machines which are available to the
DQP instance. The compiler has chosen to employ both these instances in its
execution plan. Thus, query execution shown in Figure 2(c), is distributed be-
tween the user's machine MO, the machine hosting the data source MI, and the
two machines M2, M3 hosting the WS which exports the analysis call. During
query execution tuples are retrieved from the data source on MI and divided
between M2 and M3. The result tuples on M2,M3 containing the outputs of
calls to analysis are forwarded to MO where the whole result is returned to the
user.

The component of the plan allocated to a specific machine is an instance
of a partition defined in the parallel plan. The single partition containing the
operation call has been replicated on two different machines. The tuples from
upstream are divided between the replica partitions to achieve a speedup. In
general, most partitions in a parallel plan can be replicated in this way; the
root partition is an exception. In the following discussion, a horizontal slice of

Failure recover)^ Alternatives in Grid-Based DQP

select analysis(va1ue)
from data;

j h tablescan
PI:

(a) Query text. (b) Parallel plan.

-
(c) Mapped execution plan.

Figure 2. Mapping an example qucry.

a query plan formed by such replication is referred to as a replica set. Every
partition of the parallel plan can be represented as a replica set, even if the
cardinality of that replica set is restricted to 1. Thus, the example plan has
three replica sets, of which two have cardinality 1 and one has cardinality 2.

During the course of the query execution, any of the machines participating
could fail. In a failure, a machine might in practice disappear for good as far
as the query execution is concerned; i.e. if the query completes before the
machine becomes available. Alternatively, the machine might return to service
swiftly, e.g. after a reboot. For the purpose of this work, responses addressing
just a single machine failure at a time are addressed. A set of basic operations
that can be used to respond to such single machine failures is described below.

restart(query, from) The simplest recovery strategy is to restart the query;
this option can clearly be taken in response to failure of any machine.
The restart could be from one of various stages. Thus, a second pa-
rameter is included to represent (in some way) the choice of where to
restart from. For instance, starting from the compiled execution plan,
avoids repeating the compilation stage and might be appropriate if for
instance a required data source has failed transiently, i.e. has failed but
quickly been restored. However, starting from scratch with the original
query text offers greatest flexibility and might allow a query to be rerun
correctly if a required resource has failed persistently. If the query plan
has a point at which intermediate results are fully materialized, it is also
possible to restart from that point, thereby saving the cost of repeating
all work leading up to that point.

reduce(rep1ica-set) Reduce is applied to a replica set to reduce its degree of
parallelization by one. Where the failed machine is one of a set over

5 6 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

which a partition of the parallel plan has been parallelized, reduce can
effect recovery by re-parallelizing the partition over the same set of ma-
chines minus the one which had failed.

replace(partiti0n) Replace, which is applied to a single instance of a parti-
tion, is least intrusive to other parts of the query plan. If a single ma-
chine fails the lost partition instance is recreated on a spare machine and
the only impact on surviving machines is the need for reconnection of
communications with neighbours.

An executing query encapsulates distributed intermediate state, e.g. buffers,
hash tables etc. If such state is subject to losses or duplications due to ac-
tions of failure recovery, the answer returned will be incorrect. If a machine
fails, whatever intermediate state was present on that machine just prior to the
failure cannot be recovered from there. In a particular query, there may be a
natural global materialization point upstream of where the failure occurs and
then restart from that point is possible. By contrast, reduce and replace are
both local operations which depend for their implementation on the services of
an underlying recovery protocol. A recovery protocol maintains the capability
for such transient state which is lost in a failure to be recovered after the fail-
ure. It achieves this through some form of replication. A common approach
is to preserve remotely a snapshot of process state, but an alternative suited to
query processing is to preserve copies of tuples in a machine while those tuples
are sent for processing downstream [21].

In addition to the nature of the query plan and the point at which a failure
occurs, recovery can also be constrained by the nature of the machines that are
available. For instance, if the partition running on a failed machine contained
a memory based join, a single replacement machine must have capacity to ac-
commodate that join. In extension to the operations described above, it would
be feasible to replace the single machine by two or more machines in parallel.
If the failed machine was part of a replica-set running a join in parallel, then
reduce is only possible if the surviving machines can accommodate the reparti-
tioned join. If the failed machine was running an operation call in a WS hosted
there, a replacement must host a similar WS.

4. Implementation

4.1 OGSA-DQP
OGSA-DQP [I] is a publicly available infrastructure which supports user

submission of distributed queries over data and analysis resources, the for-
mer exposed as Grid Data Services (GDSs) via the OGSA-DAI infrastruc-
ture [17] and the latter as WSs. The infrastructure implements two Grid Ser-
vices (GSs) [6], as follows.

Failure Recovery Alternatives in Grid-Based DQP 57

A GDQS (Grid Distributed Query Service) maintains the metadata cat-
alogue describing the available computational resources and databases.
A GDQS accepts user queries expressed in OQL over its global schema.
It initiates compilation and optimization of queries to yield execution
plans.

A GQES (Grid Query Evaluation Service) is an evaluation engine that
is capable of running a subplan of a distributed query plan generated
by a GDQS. An instance of this service is created on each machine the
optimizer decides should participate in the distributed query execution.
Distributed query execution is therefore performed by a set of GQESs
that communicate by exchanging tuples. The use of multiple GQESs
allows exploitation of parallelism (e.g. parallelizing joins over a set of
GQESs) and also fault-tolerance, as described in this work. The service
comprises an execution engine which realizes the physical algebra, in
the iterator style [a] and includes support for two key operations.

- perform accepts a query subplan, specified as an XML document,
and instantiates that plan within the query engine.

- putData accepts a buffer full of tuples from another GQES which
are intended for further processing in this GQES. This interface is
employed within the exchange operator, after [7] , to support the
movement of tuples between GQESs.

4.2 Recoverable OGSA-DQP
In order to evaluate support for fault-tolerance in distributed query process-

ing, an enhanced version of OGSA-DQP, is being developed. Many details of
the enhancement are described in the earlier work [2 I]. This section gives only
a brief summary and highlights differences. Figure 3 illustrates the structure
of OGSA-DQP-REC.

Client

Z
query subplans plan + meradata

lkecoveiy Prcitocol

Figure 3. Components of OGSA-DQP-REC.

58 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

The client provides the means by which the user can specify a Quality Of
Service (QOS) which can be translated into a requirement for fault-tolerance
provision. Such a specification might for instance require tolerance to one
machine failure during a query execution.

The coordinator takes a user query, generates a plan, and instantiates the
required query evaluation environment. Based on the user's specification of
the quality of service, the coordinator has to acquire the resources necessary
to support the required provision of fault-tolerance. The optimizer has then
to take account of the fault-tolerance requirements when generating a query
plan, for instance when choosing the number of data source replicas and/or the
scheduling of operators.

An enhanced algebra implements a recovery protocol which backs up tuples
upstream till they are acknowledged as 'used' from downstream.

The Fault Detector (FD) monitors the running system so that it can notify
the Fault Handler (FH) of failures. The FD aims; to impose low overhead;
to give each monitored machine the best chance it can to indicate its correct
running within a user-defined constraint; and yet to report any monitored ma-
chine which fails to indicate its correct running as fast as possible. To this end,
the FD regards a sufficiently slow response from a cheap "heartbeat" call to
any machine as grounds for deeming that machine as failed. The FD contains
an array of counters, with one corresponding to each monitored machine, and
each initialized to zero. At a regular interval, a thread (probe) per monitored
machine makes a synchronous call on a null operation exported by lower level
software on that machine, and decrements the corresponding counter by one on
completion of each such call. At a defined interval, a single threadprobe-set in-
crements and tests the value of each of the counters. If any machine has failed,
or is running slowly enough, then probe-set finds the value of the correspond-
ing counter to exceed the maximum allowed value, whereupon the machine is
reported as failed. If this maximum value is f , and bothprobe andprobe-set
employ the same interval I, a failure should be detected in approximately f x I
seconds.

The FH acts upon notifications from the FD, deciding upon and effecting
appropriate changes to the running system to exclude the reported machine,
for instance substituting a suitable spare machine for one which has failed,
or perhaps aborting the query and causing a suitable error indication to be
returned to the user if there is no available resource. To perform this task,
the FH uses a description of the plan allocated to the evaluators and metadata
describing both the fault-tolerance provision and resources which are or may
become available in order to support that fault-tolerance provision. The FH
is divided into two parts. A Global Fault Handler (GFH) is responsible for
deciding on the overall strategy to pursue for a distributed computation in the

Failure Recovery Alternatives in Grid-Based DQP 5 9

event of a failure notification and instructing relevant Local Fault Handlers
(LFH). LFHs are responsible for performing reconfiguration operations locally.

In this work, two of the operations, reduce and replace, described in Sec-
tion 3 are implemented in the FH. The operations are distributed between the
GFH and the LFHs; the central GFH allowing coordination of what are in-
evitably distributed operations. The implementations are illustrated in Fig-
ure 4. The high level operation to redistribute retrospectively, employed in

disable neighbours I disable neighbours
redistribute retrospectively 2 install neweval
reconnect survivors 3 disconnect oldeval
enable neigbours 4 connect neweval

5 enable neighbours

(a) reduce. (b) replace.

Figure 4. Implementation of recovery operations.

reduce, is responsible for reconciling neighbours up and downstream before
changing the distribution of tuples specified in the upstream neighbours and
also for ensuring that transient state distributed across the replica set is cor-
rectly distributed across the reduced replica set. In current OGSA-DQP-REC,
this can be achieved by killing, recreating and reinstalling partitions to the
surviving replicas. As part of normal restart processing, tuples backed up in
the upstream neighbours are then replayed, but using the revised distribution
policy. From an implementation point of view, this approach is clean and sim-
ple. It would be possible to avoid the overhead of a GS instance creation by
implementing a suitable restart operation within the evaluator.

5. Experimental Results
The experiments are performed using OGSA-DQP-REC over a local area

network comprising a cluster of 860MHz machines having 5 12MB main mem-
ory each, interconnected via a lOOMbps fast ethernet switch and a separate

60 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

client 3GHz machine on a different subnet having IGB main memory. An
example dataset contains a single table with 10000 tuples, each containing a
string attribute which serves as parameter to the analysis call. The latter is
implemented in a web service which is hosted on two of the machines in the
cluster. The query can be seen as a simplification of the bio-informatics ex-
ample discussed in [19]. In these experiments, queries are submitted to the
OGSA-DQP-REC system via a shell script. The OGSA-DQP-REC system
compiles and runs a query using machines in the cluster and writes query re-
sults to a file on the client machine. The compiler maps the query onto the data
source machine and either one or two of the machines hosting the web service,
depending on whether reduce or replace is being tested. The execution time,
measured from submission to completion of a query is saved to a database by
the controlling shell script, which also injects faults where required simply by
making an ssh call to the chosen machine in the cluster and there calling killall
-9 java which has the effect of aborting the tomcat web server there.

Figure 5 shows the measured total elapsed time for query completion in
both failure-free executions and executions where a fault is injected at some
interval (Delay time) after the start of query execution and the fault-tolerant
system recovers using either replace or reduce. In (FT-replace), the operation

1 - NFT -

0 200 400 600 800 1000 1200 1400
Delay time (seconds)

Figure 5. Measured results.

call is initially scheduled to just one of the machines hosting the web service,
thereby leaving one spare and only the replace option is enabled in FH. In
(FT-reduce) the operation call is initially scheduled to both these machines
and just the reduce option is enabled in FH. The query performance is mea-
sured with the fault injection disabled, but using either one (1-NFT) or both
(2-NFT) machines hosting copies of the web service and, in the former case,
also with fault-tolerance support (i.e. recovery protocol and failure detector)

Failure Recovery Alternatives in Grid-Based DQP 6 1

enabled (1-NFT). These failure free executions are point measurements, at
Delay time=oo, so for convenience horizontal lines are drawn at those values.

The failure free execution time is about 1200 and 600 seconds with par-
allelism of 1 and 2 respectively. These values are evident directly, but can
also be seen by observing that when a fault is injected after query comple-
tion, the execution is failure free. The results show that the overhead of the
fault-tolerance support is low (i.e. 1-NFT vs 1-FT) and that for this expen-
sive function, the benefit obtainable through parallelization is very good. The
results also show the usefulness of the reduce operation. In this example, if
failure occurs very near the start of the query execution, there is little to choose
between the two approaches, but when the failure occurs later during query ex-
ecution, the overall response is improved through both machines having been
actively participating in the query execution up to the time of the failure.

The experiments then suggest the best approach is always to use all avail-
able machines and then apply reduce to recover from each failure that occurs,
up to the point that the last of the replicas has failed and replace (using a dy-
namically acquired machine) or restart is enforced. However, it is not always
beneficial to use all available machines, so there may be some spare. In that
case replace is preferable as execution continues with the original number of
machines rather than dropping by one. In general, reduce may not always be
applicable when there is more than one replica, for instance where the reduced
replica set has insufficient memory to support a join which was parallelized
over the set of machines. In response to failure of a machine participating in a
complex parallel plan, it is possible to combine reduce of one replica set with
replace of the original failed machine, for instance if the replica set contain-
ing the original failed machine doesn't support any reduction in parallelism.
Even though a machine crash is in a sense a straight forward event, distributed
queries can map onto distributed machines in complex ways so that responding
to a machine crash is likely to entail some measure of choice between alterna-
tive options.

6. Conclusions
Distributed query processing is coming to be seen as a way of combining

computational and database resources through a high level level expression that
is convenient to the user. However, such a trend suggests that while individual
queries will become more highly distributed and more demanding, individual
machine failures will be more likely. In this setting it becomes preferable to
recover from such an individual failure without having to start the interrupted
query from scratch. This initial investigation of an example query suggests that
there can be multiple recovery options available to a fault-tolerant DQP. While
the set of basic operations identified here is not definitive, it appears unlikely

62 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

that a single recovery operation would prove universally optimal. Instead it
seems that one or more of a generalized set of basic operations might be ap-
plied dynamically to manipulate a running query plan so as to recover from a
particular fault.

Acknowledgments
The work reported here has been supported by a grant from the Engineer-

ing and Physical Sciences Research Council; number RES/0550/7020 and has
profited from discussions with Alvaro A. A. Fernandes, Anastasios Gounaris,
Norman W. Paton and Rizos Sakellariou of the Information Management
Group at Manchester University who are colleagues in the same project.

References
[l] N. Alpdemir, A. Mukherjee, A. Gounaris, N. W. Paton, P. Watson, and Alvaro A. A.

Fernandes. OGSA-DQP: A grid service for distributed querying on the grid. In EDBT,
pages 858-86 1,2004.

[2] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Record,
30(3): 109-120, September 2001.

[3] R. S. Barga, D. B. Lomet, S. Paparizos, H. Yu, and S. Chandrasekaran. Persistent appli-
cations via automatic recovery. In IDEAS, pages 258-267,2003.

[4] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Prols, S. Seltzsam, and
K. Stocker. ObjectGlobe: Ubiquitous query processing. The VLDB Journal, 10(1):48-7 1,
August 200 1.

[5] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 2003.

[6] I. T. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed system
integration. Computer, 35(6):37-46, June 2002.

[7] G. Graefe. Encapsulation of parallelism in the Volcano query processing system. In
SIGMOD, pages 102-1 1 1, Atlantic City, NJ, USA, 1990. ACM Press.

[8] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,
25(2):73-170, June 1993.

[9] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann, 1993.

[lo] D. Georgakopoulos M. Hornick and A. Sheth. An overview of workflow management:
From process modeling to workflow automation infrastructure. Distributed and Parallel
Databases, 3(2):119-153, April 1995.

[I I] J. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik. High-
availability algorithms for distributed stream processing. Technical Report CS-04-05,
Brown University, May 2004.

[12] M. Kamath, G. Alonso, R. Gunthor, and C. Mohan. Providing high availability in very
large workflow management systems. In EDBT, pages 427442, March 1996.

[I31 D. Kossman. The state of the art in distributed query processing. Computing Surveys,
32(4):422-469, December 2000.

Failure Recovery Alternatives in Grid-Based DQP 63

[I41 W. Labio, J. Wiener, and H. Garcia-Molina. Efficient resumption of interrupted ware-
house loads. In SIGMOD, pages 46-57. ACM Press, 2000.

[I51 T. Malik, A. Szalay, T. Budavari, and A. Thakar. Skyquery: A web service approach to
federate databases. In CIDR, 2003.

[16] S. Narayanan, T. M. Kurq, U. V. Catalyiirek, and J. H. Saltz. Database support for data-
driven scientific applications in the grid. Parallel Processing Letters, 13(2):245-271,
2003.

[17] The OGSA-DAI project. http://www.ogsadai.org.uk, 2005.

[18] M. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux: An adaptive
partitioning operator for continuous query systems. In ICDE, pages 25-36. IEEE, 2003.

[19] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A.A. Fernandes, and R. Sakalleriou.
Distributed query processing on the grid. In GRID, pages 279-290, November 2002.

[20] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A.A. Fernandes, and R. Sakalleriou.
Distributed query processing on the grid. International Journal of High Performance
Computing Applications, 17(4), November 2003.

[21] J. Smith and P. Watson. Fault-tolerance in distributed query processing. In IDEAS. IEEE
Computer Society, 2005.

[22] X. Zhang, T. M. Kurq, T. Pan, U. V. Catalyiirek, S. Narayanan, P. Wyckoff, and J. H.
Saltz. Strategies for using additional resources in parallel hash-based join algorithms. In
HPDC, pages 4-13. IEEE Computer Society, 2004.

I1

GRID DATA STORAGE

CONDUCTOR: SUPPORT FOR AUTONOMOUS
CONFIGURATION OF STORAGE SYSTEMS

Zsolt Nkmeth*
MTA SZTAKI Computer and Automation Research Institute
P 0. Box 63, Budapest, H-1518, Hungary

zsnerneth@sztaki.hu

Michail D. Flouris*
Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4, Canada

flouris@cs.toronto.edu

Renaud Lachaize and Angelos ~ i l a s t
Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas
PO.Box 1385, Heraklion, GR 71110, Greece
{ rlachaiz, bilas) @ics.forth.gr

Abstract Scalable storage systems are expected to scale to large numbers of physical stor-
age devices and to service diverse applications without incuring high manage-
ment costs. New storage virtualization architectures and techniques that are cur-
rently being proposed, aim at addressing these needs by providing the ability
to configure storage systems to meet resource constraints and application re-
quirements. However, this flexibility leads to a large number of options when
configuring storage systems either statically or dynamically.

In this work we examine how this process can be automated. We present
Conductor, a rule-based production system that is able to evaluate alternatives
and minimize system cost, based on certain criteria. Conductor starts from a set
of system resources and a set of application requirements and proposes specific
system configurations that meet application requirements while minimizing re-
source costs. It captures human expertise in the form of rules to generate and
evaluate configuration alternatives. In this work we focus on static configura-
tion issues and examine various approaches for reducing complexity within a
large configuration space. Our techniques manage to satisfy practical time and
resource constraints.

Keywords: distributed storage architecture, virtualization, rule based management.

*Work performed while at FORTH-ICS, P.O. Box 1385, Heraklion, GR 71 110, Greece.
t ~ l s o , with the Dept. of Computer Science, Univ. of Crete, P.O. Box 2208, Heraklion, GR 71409, Greece.

68 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

As the amount of storage required increases, scalable storage systems pro-
vide a means of consolidating all storage in a single system and increasing
storage efficiency (Figure 1). For this reason, storage system architectures are
undergoing a transition from directly- to network-attached. This new archi-
tecture offers potential for flexible configuration of storage systems to better
match application needs and thus, reduce system cost and improve efficiency.
This is an important concern because distinct application domains have very
diverse storage requirements; Systems designed for the needs of scientific com-
putations, data mining, e-mail serving, e-commerce, search engines, operating
system (0 s) image serving or data archival impose different tradeoffs in terms
of dimensions such as speed, reliability, capacity, high-availability, security,
data sharing, and consistency.

Thus, storage consolidation leads to increased requirements for "flexibility"
that will be able to serve multiple applications and their diverse needs. This
"flexibility" refers to both storage management and application access issues
and is usually provided through "virtualization" techniques: Administrators
and applications see various types of virtual volumes that are mapped to physi-
cal devices but offer higher-level semantics through virtualization mechanisms.

Modern storage virtualization techniques aim at providing flexibility in con-
figuring and accessing physical system resources. Storage virtualization may
occur either at the filesystem or at the block level. Violin [5] is a kernel-level
framework for building and combining virtualization functions at the block
level. Violin targets commodity storage nodes and replaces the current block-
level 110 stack with an improved 110 hierarchy that allows for (i) easy extension
of the storage hierarchy with new mechanisms and (ii) flexible combining of
these mechanisms to create modular hierarchies with rich semantics.

Figure I(b) shows a virtual hierarchy that creates a virtual disk by aggre-
gating three virtual devices: an aggregation of two encrypted disk, a pair of
striped disks that is encrypted and an encrypted disk. Scenarios of more ad-
vanced virtualization semantics are discussed in [6].

Virtualization mechanisms, such as Violin, provide the means required for
creating flexible configurations and exporting an abstract view of the actual
storage resources to satisfy application requirements. However, such an ap-
proach results in a large number of alternatives that can match the application
requirements. For instance, a certain capacity can be provided either with a
single large disk or by aggregating many smaller disks; A required level of
bandwidth may be reached either by a high-performance disk or by striping
several lower speed disks; Encryption can be introduced at several levels of
the hierarchy: at the topmost virtual device it could represent a centralized
service, whereas at the level of physical disks it can be realized as many par-

Conductor: Support for Autonomous Con$guration of Storage Systems 69

CIhnt workstattons, nmolb.reass cllantn. - 0 m 0
U N 1 WAN

A Il..lon &"..

A I Ik.llm

Figure I . (a) Generic networked storage organization (left) and (b) example virtual hierarchy.
('+' represents an aggregation, '=' a striping, 'e' an encryption virtual device.) (right)

allel encryption services. Evaluating these alternatives usually requires human
intervention that results in increased management costs. Beyond a certain com-
plexity however, humans cannot survey and manage virtualization hierarchies.

In this work we present Conductor that is able to automatically evaluate con-
figuration alternatives and suggest optimal solutions based on certain criteria.
Conductor captures human expertise in the form of rules. Based on the rules,
it builds various alternative configurations and makes suggestions about opti-
mal ones. Configuration is essentially an exploration of a multi-dimensional
search space and it is inherently of exponential complexity. The focus of this
work is how the complexity of the search can be reduced so that it has accept-
able running times for practical cases while the quality of the solution is not
decreased.

We find that exhaustive search, i.e. trying all possible configurations is not
feasible even for toy examples. Random reduction of the search space is a
potential alternative but may exclude some of the optimal solutions. Heuristic
search applies some additional information about the search space. We in-
vestigate two methods: (a) Zoned search, which enables or prohibits certain
actions according to specific zones within the configuration space. (b) Clus-
tered search, which creates clusters of similar devices and uses these clusters
as the basis of the configuration space search. Both of these methods are able
to deliver optimal solutions, have practically acceptable complexity and, in
addition, can be combined.

The rest of this paper is organized as follows. Next section introduces re-
lated work. Section 2 presents an overview of Conductor. Section 4 discusses
quality and complexity issues for various approaches to evaluating alternative
system configurations. Section 5 presents our results and analysis of the over-

70 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

heads associated with each approach we examine. Finally, we draw our con-
clusions in Section 7.

2. Related work
Storage management involves many problems that are hard to formalize, in-

volve multi-dimensional optimizations, exponential search, or ambiguous de-
cisions. Even if there are explicit algorithms for certain problems, they quite
often belong to the NP-hard class. Recent work tries to exploit "intelligent",
heuristic-based, approaches for tackling some of these problems.

Polus [I I] aims at mapping high level QoS goals to low level storage actions
by introducing learning and reasoning capabilities. The system starts with a
basic knowledge of a system administrator expressed as "rules of thumb" and
it can establish quantitative relationships between actions taken and their ob-
served effects to performance by monitoring and learning. To eliminate per-
formance problems, the system finds an appropriate set of actions by backward
reasoning in the generated knowledge base.

Ergastulum [2] is aimed at supporting the configuration of storage systems.
It essentially helps with reducing the search complexity of possible design de-
cisions by utilizing a best-fit bin packaging heuristics with randomization and
backtracking. It takes into consideration workload characteristics, device spec-
ifications, performance models and constraints, and provides a near-optimal
solution in practically acceptable time.

The work introduced in [3] assists in selecting the right data-redundancy
scheme for disk arrays. It is a derivative of Ergastulum and explores and eval-
uates four methods for a specific problem: rule-based tagger, model-based tag-
ger, and partially and fully-adaptive solvers.

A novel approach presented in [lo] tries to predict the effect of certain ac-
tions and helps with making decisions at data distibution (encoding and place-
ment). It has some similarities with the learning abilities of Polus. It estab-
lishes a set of What ... $.. statements where the hypothetical effect (what part)
of a certain circumstance (if part) is stored. These relations are obtained by
statistical, analytical or simulation methods. The accuracy of predictions were
shown to be practically acceptable.

A main effort in both our as well as previous research is to capture aspects of
human expertise. However, previous research has focused on different aspects
and has applied different techniques. In our work we examine configuration of
the virtualization hierarchy and consider disks themselves as black boxes, i.e.
exclude low level physical aspects in the investigation. Polus mainly operates
at the physical disk level and does not consider structural issues. Ergastulum
and its derivative is similar to our work in a sense that it is also aimed at re-
ducing the complexity of configuration. However, it supports initial system de-

Conductor: Support for Autonomous ConJguration of Storage Systems 7 1

signs only and strongly relies on assumptions of the workload and performance
models. Our intention is to extend Conductor so that it can manage dynamic
reconfigurations therefore, initial configuration is carried out with limited as-
sumptions about the workload and estimated performance figures. Also, the
search methods used in each case are different: Ergastulum uses backtracking,
whereas we apply forward chaining. At the current phase of work we do not
apply any learning or predictive abilities nevertheless, these may be considered
in the future.

3. System Overview
The aim of Conductor is to increase the degree of autonomy in storage

systems by creating and maintaining virtual storage hierarchies (customized
storage services) based on user and application requirements, without the in-
tervention of system administrators. Thus, Conductor partly substitutes human
system administrators and overtakes some of their tasks during the life-cycle of
a storage system: (i) Initially configure new virtual hierarchies based on a pre-
scribed specification. (ii) Monitor hierarchies to ensure they satisfy at runtime
the prescribed specification. (iii) Detect where problems occur in hierarchies
that deviate from specifications. (iv) Modify or rebuild, partly or entirely, such
hierarchies.

In large-scale storage systems today, such tasks are performed by experi-
enced personnel and thus, rely heavily on human expertise. As storage systems
grow in size and their architectures leverage commodity components, it is pro-
jected [I] that the cost of maintaining them may dominate and eventually limit
their scalability.

In this section we present the overall concept of Conductor. Although Con-
ductor aims at addressing all issues above, this paper focuses on the first step,
the creation virtual storage hierarchies based on prescribed specifications. This
is the static part of the above tasks. The rest of the tasks constitute dynamic
runtime management steps and are left for future work.

3.1 Conductor architecture
Conductor is built in the context of Violin [5] , a storage virtualization frame-

work. Our approach is to augment Violin with a rule-based, forward chaining
production system for the following reasons: (i) Rule-based systems offer a
straightforward way to express "common sense" and "rules of thumb" that are
based on human expertise. These rules are declarative and specify the knowl-
edge not the procedure to solve a problem. (ii) Data are represented as facts,
i.e. abstract statements. This uniformity makes it possible to represent vir-
tually all sort of information. (iii) Production systems apply highly efficient
pattern matching mechanisms to select appropriate rules. Therefore, they are

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Violin Conductor
observation

Facts 0
m o d i f y ;i't

configuration

Figure 2. Conductor architecture.

able to capture information hidden in unrelated, unstructured, heterogeneous
data by searching for certain patterns.

Figure 2 depicts the conceptual architecture of Conductor. Conductor com-
municates with the storage system (Violin) at two well defined points: it re-
ceives monitoring data from the storage system and sends configuration com-
mands to it. Monitoring data are transferred between Violin and Conductor
via a simple interface, such as the /proc filesystem in Linux. Commands
that dictate configuration changes to Violin can also be sent through a simi-
lar interface, such as ioct 1 calls in Linux. All information is represented in
Conductor as facts and rules:

Facts represent factual information about the system, that may be (i) static,
which is basic information about system components, e.g. a directory of disks,
network links, host nodes and their characteristics; (ii) dynamic, which is mea-
sured during system operation, e.g. throughput obtained from each virtual
device, number of requests traversing a path; (iii) inferred, which is derived by
Conductor during its working cycle.

Rules represent empirical knowledge about the system. They express ac-
tions that must be performed in a certain situation [4]. Such situations are de-
scribed by the conditions of the rule that must be satisfied to enable the actions.
Conditions involve the existence or non-existence of facts or certain patterns
that facts must satisfy. From all applicable rules, i.e. where conditions are true,
one is chosen and its actions are executed. Rules in Conductor essentially try
to capture "rules of thumb" a human operator would perform in each case.

Conductor is implemented in CLIPS [4,8], a production system framework,
that realizes the production cycle [7] as depicted in Figure 2 : (i) Update factual
information in the knowledge base. Facts activate rules as they are matched
with the conditions of the rule. (ii) From the potentially many activated rules
one is selected according to the conflict resolution strategy of the production
system. (iii) As the selected rule fires, it may generate new (inferred) facts and
update the knowledge base.

This simple cycle continues as long as there are activated rules. Note, that in
each production cycle rules may be activated or deactivated and the execution
order is governed by the conflict resolution strategy.

Conductor: Support.for Autonomous Configuration of Storage Systems 73

Conductor operates in two possible modes: (i) Initial configuration mode.
This mode is used to configure virtual devices based on user requests and static
facts. (ii) Diagnosis and dynamic reconfiguration mode, where it triggers di-
agnostic procedures and corrective actions. This work focuses on the initial
configuration mode, which we describe next in detail.

4. Initial Configuration Mode
Initial configuration is a "bootstrapping" process that creates a new virtual

hierarchy (target device) of devices from scratch according to a set of user and
application requirements. Some of these requirements are related to the func-
tionality of the target storage device and have static characteristics, whereas
other requirements capture performance aspects and are dynamic. While static
requirements can be guaranteed for the lifetime of the target device, the exact
performance of a target device is hard to predict and guarantee. Storage per-
formance is related to workload characteristics, such as access patterns that are
typically unknown, difficult to predict, and dynamic in nature.

Rules used in the initial configuration mode satisfy all static requirements,
whereas they only "try" to satisfy dynamic (performance) requirements based
on estimated values for system components. One possible approach to improve
this is to dynamically update estimated values with actual measured data as
soon as they become available and trigger a full system reconfiguration, based
on these measured values.

Conductor needs to explore a large configuration space with multiple di-
mensions. Each dimension corresponds to a property of the disks, e.g. capac-
ity, bandwidth, level of redundancy. Some of these properties are continuous,
whereas others are discrete. Any device is represented in this space by a vec-
tor: Each request for a target device is translated to a vector with components
derived either from the user request or from desired system characteristics.
Physical disks are represented as vectors with estimated values for their perfor-
mance characteristics. Virtual devices that are created from combining other
(virtual or physical) devices are represented as vectors with components de-
rived by production rules. These rules express relationships and constraints
between dimensions of device properties and guide configuration steps. Thus,
we can define the problem of configuration as a search procedure in this multi-
dimensional space that tries to produce a given target vector, the user request,
using only appropriate combinations and modifications (rules) of initial vec-
tors (devices). A solution to the problem consists of the set of initial vectors
and the set of rules applied to transform them into the target vector.

Figure 3 shows an example with a configuration space of three dimensions.
Initially, there are two disks d l and d2 of a certain capacity and bandwidth and
none of them are encrypted. If the rule of striping is activated by d l and d z

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 3. Configuration as exploration of the search space and the generated disks. (Empty
circles are physical disks, = represents a striping, e represents an encryption virtual disk.)

and fires, it yields d3 that has the added capacity of dl and d2 and a bandwidth
increased by factor a ; for instance, assuming a linear access, a is around 2.
When the rule of encryption is activated by ds and fires, it yields d6 with the
same capacity and bandwidth but with the added service of encryption. Rules
are activated by disks and combinations of disks in an unspecified order if
certain conditions are met. Thus, the rule of encryption can be activated by dl
and d2 , yielding d4 and d5 that activate the striping rule yielding d7 with the
same characteristics as d6. If any of these disks fall into a defined range of the
required parameters then the search for a given configuration is successful.

Note however, that this example is simplified. There can be significantly
more rules active simultaneously, e.g. aggregation, 3-, 4-, 5-way striping, mir-
roring, partitioning which combined would generate a huge disk population in
the search space. Furthermore, only a few dimensions are taken into consid-
eration in this example. For instance, encryption does not change capacity or
bandwidth but it may increase response time. If mapping is also taken into
consideration as a further dimension, d6 and d7 do not necessarily coincide.
d7 consists of two encrypted virtual disks that may work in parallel - depend-
ing on mapping options - giving better performance than the single encryption
layer of d6.

The search method may generate large numbers of possible disk configura-
tions within an acceptable distance to the requested specification vector but one
of them must be chosen, eventually. The specification can have more compo-
nents than the required parameters. These additional components are related to
the management of the device and may involve dollar cost, resource utilization,
structural complexity, power consumption or other aspects; some are defined
by the user, some others by the service provider. The specification vector may
also give weights and annotations how these metrics can be evaluated. Based
on these metrics a function is calculated that is a linear combination of certain
scores how much the given component fits the specified one. For instance, the
resulted capacity should be as close to the specified one as possible whereas
the power consumption should be as little as possible furthermore, there are

Conductor: Support for Autonomous Configuration of Storage Systems 75

components, like encryption that requires an exact match. With appropriate
weights the importance of these aspects can be tuned from don't care to ut-
termost. The calculated function is used to select the best vector among the
resulted ones. Intuitively, we may say that we choose the closest vector to the
specified one but the calculated function is not a distance metrics in a strict
sense, hence we call it "cost". Smaller cost means better solution. In current
experiments we use a simple dollar cost metrics; certain cost functions will be
defined based on practical experience.

It is important to note that the search is non-monotonous: Virtual devices
closer to the required specification vector are not necessarily better or more
usehl in generating the final solution. For instance, a given bandwidth can po-
tentially be provided by two disks of 60% of the requested bandwidth whereas
the same could not be fulfilled efficiently by two disks that have 90% of the
requested bandwidth.

Also, the search is non-exact. Its aim is to find a target device with charac-
teristics as close to the user requirements as possible. However, in most cases,
the resulting device will not be an exact match, especially in cases where dy-
namic characteristics are considered.

4.1 Rules
Configuration is driven by rules that specify three aspects for creating a new

virtual device from existing ones: (a) What properties the existing devices need
to have, (b) Specifically how they should be combined, and (c) What are the
projected property values for the new device.

There are different rules for various combinations and modifications of
disks, e.g. aggregation, (n-way) striping, mirroring, partitioning, encryption.
They incorporate conditions (disks eligible as targets of the operation), con-
straints (under what circumstances the operation is possible) and effects (new
or modified parameters) of the given operation. For instance, the rule of strip-
ing picks two disks and check if (i) their capacities are the same, (ii) their
bandwidths are similar, (iii) their latencies are below a certain limit and (iv)
either both of them or none of them are encrypted. If these conditions hold,
then striping is possible and results in a new disk that has doubled capacity, in-
creased bandwidth, the same latency and encryption as the constituting disks.

As rules fire, they create new devices in the search space. These may fire
other rules that, in turn, create new devices. This could continue infinitely
therefore, rules incorporate conditions that limit the search, e.g. the height of
the hierarchy or the distance from the requirements. When there are no more
activated rules, the solutions are checked. If there are disks within an accept-
able distance from the requested specification vector, one of them is chosen
based on the cost function. Otherwise, some limiting conditions are changed

7 6 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 4. (a) Valid and invalid zones in the search space (left). (b) Operations are enabled
one at a time so that zone A can be reached in the fewest steps (right).

that activate rules, e.g. one level higher hierarchy is allowed, and the search
continues. It stops finally if either a solution is found or there are no solutions
in a given number of iterations. To control the complexity of the search process
we use certain heuristics. Next these are examined in details.

Exhaustive search. With exhaustive search all possible vectors are gener-
ated according to the rules. Some of these vectors will lead to the requested
specification vector, whereas others will not. This approach will eventually
generate the target device that is the closest to the requested specification at
the least possible cost. However, this method has exponential complexity and
is not realistic in practice.

A simple approach to reduce the complexity of the exhaustive search is to
randomly omit generated vectors at the search. In our evaluation, we examine
dropping one every 16, 8 ,4 , and 2 generated devices randomly. Although this
simple approach significantly reduces the search space, it cannot guarantee that
the generated disk will be acceptably close to the requirements and, even in this
case, that it is the smallest possible cost.

Zoned search. Zoned search is heuristic, i.e. uses some additional infonna-
tion in order to omit irrelevant solutions and thus, decrease the search space.
As rules define the projected properties, some disks can be combined so that
they lead to the required solutions, whereas some others can not; they form
certain zones in the search space. Zoned search divides the search space into
zones and ignores those that cannot yield the required characteristics. As an
example, consider a 2-dimensional search space in Figure 4(a). Assume the
following: solutions are accepted with a 10% margin around the required vec-
tor (zone A in Figure 4(a)) and the rule of striping assumes an increase of

Conductor: Support for Autonomous Conzguration of Storage Systems 77

bandwidth of 2. In this case no disks of bandwidth in the 55% - 90% region
of the required can lead to a solution. They need additional bandwidth to be
provided by striping. However, striping would arrange the new disk over the
110% range of the desired bandwidth. Similarly, disks with capacity above the
55% limit would not lead to the required solution. By striping these disks, the
resulted capacity would be over the required. The idea can be followed in a
recursive way, e.g. for zone B; in such a way the entire search space can be
divided and classified into allowed and prohibited zones. This method can be
generalized easily for other actions where the increase of bandwidth is other
than 2.

It is important to note that zones are allowed or prohibited with respect to
some action. For example, allowed zones for a 3-way striping mostly coincide
with the prohibited zones of a 2-way striping. In the above example zones that
may lead to capacity or bandwidth over 110% of the required are considered
prohibited zones. However, if partitioning is an allowed action, these zones
are allowed, since they can reach the target zone by creating a disk with much
larger capacity and bandwidth and then use partitions of it.

Zoned search with random dropping. Zoned search may reduce search
space significantly. However, within the allowed zones it still performs an
exhaustive search. In the worst case scenario, when all disks can potentially
lead to a solution, zoned search coincides with exhaustive search. Therefore,
zoned search can also be combined with random dropping.

Fewest steps. The method of fewest step is also based on the zones. In this
case however, combination actions are enabled one at a time. First, configu-
ration checks if there are disks in the target zone (zone A in Figure 4(b).) If
there are no disks then it checks those zones where zone A can be reached in a
single step. Therefore, it enables aggregation for zone D and then 2-way strip-
ing for zone B. If there are still no solutions, it enables further rules that can
lead to zones B and D in a single step: aggregation can put disks from zone E
to zone B whereas 2-way striping can put disks from zone E to zone D. Obvi-
ously, more way striping can also be considered with different zones. As long
as there are no solutions, it checks recursively, how these zones can be reached
with the fewest steps. It cuts down large parts of the search space, however,
with a high likelyhood of not finding the solution with the lowest cost.

Device clustering. The above search methods may assume a random disk
population, i.e. they can be scattered evenly in the parameter space. In prac-
tice however, there are many disks of the same type and specifications. A
clustering method puts these disks into groups and takes into consideration
only one representative element of them. Groups are established dynamically

7 8 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

as the configuration process goes on. The method significantly reduces search
complexity. For instance, if there are n identical disks, the complexity of ag-
gregation is O(n2) (n * (n - 1)/2 potential pairs), whereas that of in case of
clustering is O(n) (n/2 pairs.) In general, complexity is proportional to the
number of disk groups and not to the number of disks. While there may be
hundreds or thousands of disks in a storage system, the number of groups is
significantly lower. Note, that this method is orthogonal to the previous ones,
i.e. it can be exhaustive but could be combined with zoning or random drop-
ping. Its worst case scenario, when all groups have a single element, has the
same complexity as its non-clustered version.

5. Evaluation
We have implemented the framework of Conductor using CLIPS [4,8]. Our

implementation currently provides rules for aggregation, 2-, 3-, 4-, 5-way strip-
ing, encryption and mirroring with all the search heuristics mentioned in the
previous section. In this section, we evaluate the search heuristics with respect
to run-time complexity. We first present results without disk clustering and
then we consider the effect of clustering similar disks in groups. We run our
experiments on PCs with Intel P4-grade CPUs at 3.0 GHz and 5 12 MBytes of
memory.

Individual Disks. Figure 5 summarizes the search times without clustering.
The system consists of a variable number of disks (x axis). Since in this ex-
periment disks are taken individually, we assumed a random disk population
where each disk has a capacity of 100, 200, 300, 400, and 500 GBytes and
nominal bandwidth of 33, 50, 70 and 100 MBytesIs. Also, each has an initial
cost, a one-dimensional integer metrics that is used to select the 'cheapest' so-
lution among the functionally equivalent ones. For the sake of simplicity we
may consider it as the dollar cost of the resource. A user asks for a virtual disk
with 600-GByte capacity, 100-MBytesIs throughput, and a cost not exceeding
200. For the purpose of this experiment, Conductor is allowed to use only two
actions: aggregation and striping. All other actions are disabled.

We see that although exhaustive search finds the best solution possible
(minimum cost), it is in practice unable to deal with more than 24 physical
disks. In this case it generates more than 200000 facts and fires nearly 120000
rules, which results in unacceptably long running times (and even sometimes
crashes).

If we omit some of the intermediate virtual disks randomly and keep only
one out of two, four, and eight (labeled as random 2, random 4, random 8 in
Figure 5(a)), the search becomes viable both in compute time and memory
capacity. This method, however, eliminates as expected some of the best solu-
tions. Figure 5(b) compares the cost of the best solutions found. We see that

Conductor: Support for Autonomous ConJiguration of Storage Systems 7 9

Figure 5. (a) Run times of different configuration search methods (left). (b) Comparison of
the costs of the best solution found by different methods (right).

compared to exhaustive search, these methods result in disks with higher cost.
However, the difference decreases as the number of disks grows.

Zoned search reduces the search space efficiently while it does not eliminate
good solutions: It results in virtual disks with cost similar to exhaustive search
and can handle significantly more disks. Furthermore, zoned search can be ac-
celerated by applying random dropping and renders running times acceptable
even for more than 40 physical disks.

Finally, it seems that fewest-steps is an interesting but not practically use-
fkl approach. Its running time is inconsistent: if it finds a solution in a small
number of steps (1 or 2), as is the case with 10 physical disks, then it is sig-
nificantly faster than other methods. Otherwise, its running time is close to
zoned search, however, with potentially higher cost in the resulting virtual disk
configurations.

Clustered Disks. In practice, hardware resources, such as disks, are often
acquired and upgraded in bulk and exhibit similar characteristics. Thus, we
can assume that, in most cases, a large system will consist of disks that can be
clustered based on their characteristics to a smaller number of groups. As op-
posed to the previous experiment, where potentially all disks may be different,
in this experiment we introduce 3, 5, and 7 different groups of disks. Since
we anticipate that clustering will result in improved running times, we use a
more complex example: A user requests a virtual disk with capacity of 1200
GBytes and throughput 140 MBytesIs. Moreover, we configure two versions
of this disk, with and without encryption. To increase the size of the configura-
tion space, we enable in Conductor rules associated to aggregation and 2- and
3-way striping. Finally, we only present results for exhaustive search to see the
net effect of clustering.

Figure 6 shows that running times are approximately three orders of mag-
nitude smaller compared to using individual disks. Even for 128 disks of 7

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Time (s)

10.0

1 .o

. . . .,.I'

1000.0
Time (s)

100.0

10.0 ,,, '
,..' . .' -3

1.0 ,,... " -.- 5 . . ' -- 7
0.1

Disks
0.0 0.0

16 32 64 128 16 32
$4 #Disks 128

Figure 6. Run times of clustered disk search for 3,5, and 7 groups of disks, without and with
encryption.

different types the search is less than 2 minutes. When including encryption
in the target virtual disk configuration, the number of groups that needs to be
considered doubles. However, running time remains low.

6. Conclusions and future work
Future, large-scale storage systems are envisioned to offer a lot of flexibil-

ity in configuring virtual resources to meet user and application requirements.
Configuration of large-scale storage systems that support such flexibility re-
quires considering a large number of alternatives. For instance, a user request
for a virtual volume of specific size, throughput, redundancy level, with en-
cryption and compression capabilities over a system that consists of hundreds
of physical disks will require considering millions of alternatives. Although
this task is traditionally performed manually by experienced storage adminis-
trators that can quickly reduce this space, it is foreseen that human cost will
not scale with system size.

In this work, we propose Conductor, a rule based system for evaluating con-
figuration alternatives that meet user requirements and minimize system cost.
Although Conductor is designed to deal with both static (initial configuration
based on estimated performance values) and dynamic (run-time reconfigura-
tion based on measured performance values) properties of storage systems, in
this work we only explore initial system configuration. The main issue in this
direction is to reduce search complexity.

Our design relies on heuristic rules that capture human expertise and various
search methods that aim at reducing search complexity without compromising
the quality (cost) of the resulting configurations. We implement Conductor as
an extension to Violin [5] using CLIPS [4]. We find that although considering
individual disks may be in practice prohibitive for real, large-scale systems,
clustering disks in groups substantially improves overheads and results in a
practical approach to exploring the configuration space.

Conductor: Support for Autonomous Configuration of Storage Systems 8 1

The next step in our work is to explore dynamic system behavior, i.e. what
is the quality of the proposed configurations at runtime, how far is it from user
requirements in terms of dynamic features such as throughput and response
time, and how we can incorporate more knowledge in system rules to allow
for run-time reconfiguration actions that will result in improved configurations.
Finally, besides dynamic configuration issues, future work should also consider
mapping of virtual volumes to distributed physical resources and should take
into account disk, CPU, memory, and network characteristics.

Acknowledgments
During this work Zsolt Nmeth was supported by the ERCIM Fellowship

programme. Also, we thankfully acknowledge the support of the European
FP6-IST program through the UNIsIX project and the FP6 Network of Excel-
lence CoreGRID, and the support of the General Secretariat for Research and
Technology, Greece through the MASC project.

References
[I] Gartner Group. Total Cost of Storage Ownership - A User-oriented Approach. September

2000.

[2] E. Anderson et al. Ergastulum: Quickly Finding Near-Optimal Storage System Designs.
HP Labs SSP technical report HPL-SSP-2001-05 (2002)

[3] E. Anderson et al. Selecting RAID Levels for Disk Arrays. Proc. of the USENIX FAST
Conference, January 28-30,2002, Monterey, CA, USA.

[41 c Language Integrated Production System (CLIPS)
http://www.ghg.net/clips/CLIPS.html and also CLIPS Reference Manual. Vol. 1,
Version 6.24, 15 June 2006

[5] M.D. Flouris, A. Bilas. Violin: A Framework for extensible Block-level Storage. Proc. of
the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Tech-
nologies (MSST 2005) April 2005, Monterey, CA, USA. IEEE Computer Society.

[6] M. Flouris, R. Lachaize, and A. Bilas. Violin: a Framework for Extensible Block-Level
Storage. Book on Knowledge and Data Management in Grids, CoreGRID series, Springer
Verlag, 3,2006.

[7] D.Klahr, P. Langley, R. Neches (eds.): Production System Models of Learning and De-
velopment. MIT Press, 1987.

[8] W. Mettrey. A Comparative Evaluation of Expert System Tools. Computer 24, 2 (Feb.
1991), pp. 19-31.

[9] E. Riedel. Storage Systems. Not Just a Bunch of Disks Anymore. Queue, June 2003,
ACM, pp. 32-41.

[lo] E. Thereska et al. Informed data distribution selection in a self-predicting storage sys-
tem. Proc. of the International Conference on Autonomic Computing, ICAC-06, Dublin,
Ireland, June 2006.

[I 11 S. Uttamchandani et al. Polus: Growing Storage QoS Management Beyond a "Four-year
Old Kid". Proc. of the USENIX FAST '04 Conference, March 2004, San Francisco, CA,
USA.

VIOLIN: A FRAMEWORK FOR
EXTENSIBLE BLOCK-LEVEL STORAGE

Michail D. Flouris*
Department of Computer Science,
University of Toronto,
Toronto, Ontario MSS 3G4, Canada
flouris@cs.toronto.edu

Renaud Lachaize and Angelos ~ i l a s t
Institute of Computer Science (ICS),
Foundation for Research and Technology - Hellas
l?O.Box 1385, Heraklion, GR 71 11 0, Greece
{ rlachaiz, bilas) @ics.forth.gr

Abstract
The quality of virtualization mechanisms provided by a storage system af-

fects storage management complexity and storage efficiency, both of which are
important problems of modem storage systems. We argue that current storage
systems provide limited flexibility and extensibility in virtualizing, managing
and accessing storage.

In this work we address this problem by proposing Violin, a virtualization
framework that allows easy extensions of block-level storage stacks. Violin al-
lows (i) developers to provide new virtualization functions and (ii) storage ad-
ministrators to combine these functions in storage hierarchies with rich seman-
tics. Violin makes it easy to develop new virtualization functions by providing
support for (i) hierarchy awareness and arbitrary mapping of blocks between
virtual devices, (ii) an easily extensible 110 command set, (iii) explicit control
over both the request and completion path of I10 requests, and (iv) persistent
metadata management.

In this paper we present Violin's architecture and we show how simple Violin
modules can be combined in more complex hierarchies. Finally, we demonstrate
hierarchies with advanced virtualization functionality that is difficult to imple-
ment with monolithic drivers.

Keywords: storage virtualization, multi-layered storage, block-level 110.

*Work partly performed while at the ICS-FORTH, P.O. Box 1385, Heraklion, GR 71 110, Greece.
t ~ l s o , with the Dept. of Computer Science, University of Crete, P.O. Box 2208, Heraklion, GR 71409,
Greece.

84 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

Storage is becoming an increasingly important issue as more and more data
need to be stored either for archival or online processing purposes. As the
amount of storage required increases, scalable storage systems provide a means
of consolidating all storage in a single system and increasing storage efficiency.
However, storage consolidation leads to increased requirements for "flexibil-
ity" that will be able to serve multiple applications and their diverse needs. This
flexibility refers to both storage management and application access issues and
is usually provided through virtualization techniques: Administrators and ap-
plications see various types of virtual volumes that are mapped to physical
devices but offer higher-level semantics through virtualization mechanisms.

We argue that the importance of virtualization at the block-level is increas-
ing for two reasons. First, certain virtualization functions, such as compression
or encryption, may be simpler and more efficient to provide on unstructured
fixed data blocks rather than variable-size files. Second, block-level storage
systems are evolving from simple disks and fixed controllers to powerful stor-
age nodes [I , 81 that offer block-level storage to multiple applications over a
storage area network [9]. In such systems, block-level storage extensions can
exploit the processing capacity of the storage nodes, where filesystems (run-
ning on the application servers) cannot. For these reasons and over time, with
the evolution of storage technology a number of virtualization features, e.g.
volume management functions, RAID, snapshots, moved from higher system
layers to the block level.

Today's block-level storage systems provide some flexibility in managing
and accessing storage through I10 drivers (modules) in the I10 stack or through
the filesystem. However, this flexibility is limited by the fact that current 110
stacks require the use of monolithic I10 drivers that are both complex to de-
velop and hard to combine. As a result, current block-level systems offer pre-
defined virtualization semantics, such as virtual volumes mapped to an aggre-
gation of disks or RAID levels. In this category belong both research proto-
types [2, 4, 71 as well as commercial products, such as EMC enginuity and
Veritas VM. In all these cases the storage administrator can switch on or off
various features at the volume level, but cannot extend them.

In this work we address the flexibility and extensibility problem by provid-
ing a kernel-level framework for (i) building and (ii) combining virtualization
functions. We propose Molin (Virtual I10 Layer INtegration), a virtual I10
framework for commodity storage nodes that replaces the current block-level
I10 stack with an improved I10 hierarchy that allows for (i) easy extension
of the storage hierarchy with new mechanisms and (ii) flexible combining of
these mechanisms to create modular hierarchies with rich semantics.

Violin: A Frameworkfor Extensible Block-level Storage 8 5

The main contributions of Violin are: (i) it significantly reduces the effort to
introduce new functionality in the block 110 stack of a commodity storage node
and (ii) provides the ability to combine simple virtualization functions into hi-
erarchies with semantics that can satisfy diverse application needs. Violin pro-
vides virtual devices with full access to both the request and completion paths
of 110s allowing for easy implementation of synchronous and asynchronous
110. Supporting asynchronous 110 is important for performance reasons, but
also raises significant challenges when implemented in real systems. Also, Vi-
olin deals with metadata persistence for the full storage hierarchy, offloading
the related complexity from individual virtual devices. To achieve flexibility,
Violin allows storage administrators to create arbitrary, acyclic graphs of vir-
tual devices, each adding to the hnctionality of the successor devices in the
graph. In each hierarchy, blocks of each virtual device can be mapped in arbi-
trary ways to the successor devices, enabling advanced storage functions, such
as dynamic relocation of blocks.

Violin was first introduced in [6], where its implementation and evaluation
are presented. This paper presents more of a system overview and examples
of how advanced storage functionality can be implemented as a set of Violin
modules. For more details on implementation and evaluation please refer to
[61.

The rest of the paper is organized as follows. Section 2 presents the de-
sign and implementation of Rolin. Section 3 presents advanced virtualization
modules, while Section 6 discusses related work. Finally, Section 7 draws our
conclusions.

2. System Architecture

Violin is a virtual I10 framework that provides (i) support for easy and in-
cremental extensions to I10 hierarchies and (ii) a highly configurable virtual-
ization stack that combines basic storage layers in rich virtual I10 hierarchies.
Violin's location in the kernel context is shown in Figure 1, illustrating the I10
path from the user applications to the disks. The architecture of Violin is driven
by four main concerns: (i) High-level virtualization semantics and mappings,
(ii) Generic and extensible in-band command API, (iii) Simple in-band con-
trol over the 110 command path and (iv) Metadata state persistence. Next we
discuss each of these aspects in more detail.

2.1 Virtualization Semantics
A virtual storage hierarchy is generally represented by a directed acyclic

graph (DAG). In this graph, the vertices or nodes represent virtual devices. The
directed edges between nodes signify device dependencies and control flow
through 110 requests. Control in Violin flows from higher to lower layers. This

KNOWLEDGE AND DATA MANAGEMENTIN GRIDS

user space Filesystem Block 11° Raw 110 Apps
APPS APPS - - - - - - - - - - -

Kernel Space Filesystem lock Raw I10 Buffer Cache -

K m l cornponenu 7

Violin cmlext K?9

Vvrcxlcnrions -
Penistee

.. . Madulct Meedau

,-: , - - - -
UO API

irk Dcr' e Dri\ s
*)

Disks !d 101
... -. .- . .-~--.- - -

Input Cspacilies: I Outpul Capacities: I

Figure I . Violin in the operating system Figure 2. Violin's virtual device graph.
context.

arises from the traditional view of the block-level device as a dumb passive
device. Each virtual device in the DAG is operated by a virtualization module
that implements the desired functionality. Virtual devices that provide the same
functionality are handled by different instances of the same module. From now
on, we will use the terms module and device interchangeably.

Figure 2 shows an example of such a device graph. Graph nodes are rep-
resented with horizontal bars illustrating the mappings of their address spaces
and they are connected with directed vertices. There are three kinds of nodes
and accordingly three kinds of 110 modules in the architecture:

Source nodes that do not have incoming edges and are top-level devices
that initiate I/O requests in the storage hierarchy. The requests are initi-
ated by external kernel components such as file systems or other block-
level storage applications. Each of the source devices has an external
name, e.g. an entry in /dev for Unix systems.

Sink nodes that do not have outgoing edges and correspond to bottom-
level virtual devices. Sink nodes sit on top of other kernel block-level
drivers (external to Violin), such as hardware disk drivers and, in prac-
tice, are the final recipients of Violin's 110 requests.

Internal nodes that have both incoming and outgoing edges and provide
virtualization functions. These nodes are not visible to external drivers,
kernel components, or user applications.

Violin uses the above generic DAG representation to model its hierarchies.
A virtual hierarchy is defined as a set of connected nodes in the device graph
that do not have links to nodes outside the hierarchy. A hierarchy within a
device graph is a self-contained sub-graph that can be configured and man-
aged independently of other hierarchies in the same system. Violin hierarchies

Violin: A Framework,for Extensible Block-level Storage 87

are device container objects that are explicitly created before virtual devices
(nodes) are added to them.

To manage devices and hierarchies, users may specify the following opera-
tions on the device graph: (i) Create a new internal, source, or sink node and
link it to the appropriate nodes, depending on its type. (ii) Delete a node from
the graph, or (iii) Change an edge in the graph (i.e. remap a device).

Violin checks the integrity of a hierarchy at creation time and each time it
is reconstructed. Checking for integrity includes various simple rules, such as
the presence of cycles in the hierarchy graph and lack of input or output edges
in internal nodes. Creating hierarchies and checking dependencies reduces the
complexity of each Violin module.

A hierarchy in Violin is constructed amdlor dynamically modified with sim-
ple user-level tools implementing the above graph operations and linking the
source and sink nodes to external OS block devices.

2.1.1 Dynamic Block Mapping and Allocation. Nodes in a hierarchy
graph do not simply show output dependencies from one device to another but
rather map between block address spaces of these devices. As can be seen in
Figure 2, a storage device in the system represents a specific storage capacity
and a block address space, while the 110 path in the graph represents a series
of translations between block address spaces. Violin provides transparent and
persistent translation between device address spaces in virtual hierarchies.

Devices in a virtual hierarchy may have widely different requirements for
mapping semantics. Some devices, such as RAID-0, use simple mapping se-
mantics, where blocks are mapped statically between the input and output de-
vices. There are, however, modules that require more complex mappings. For
instance, providing snapshots at the block level, requires arbitrary translations
and dynamic block remappings [5]. Similarly, volume managers [lo] require
arbitrary block mappings to support volume resizing and data migration be-
tween devices. Another use of arbitrary mappings is to change the device allo-
cation policy, for instance, to a log-structured policy. The Logical Disk [3] uses
dynamic block remapping for this purpose.

Violin supports dynamic block mapping through a logical-to-physical block
address translation table (LXT) mapping between the input and output address
spaces of a device [6]. Dynamic block mapping capabilities give to a virtual
device the freedom to use its own disk space management mechanisms and
policies, without changing the semantics of its input devices, higher in the I/O
stack.

2.2 Generic In-band Command API

The second significant aspect of Violin is easy support for definition and
handling of generic I/O commands on Violin's devices. Every request in the

88 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

system (internal or external) is serviced through a series of I10 commands
which are handled by Violin devices. Control and data I10 requests are handled
in the same manner, using the same in-band command mechanism for data and
control propagation in virtual hierarchies.

The two main design goals for Violin's I10 command definition were (i)
to make commands as generic as possible and (ii) to allow arbitrary stacking
of command-handling devices to create hierarchies. We believe that these are
necessary properties for a flexible and extensible storage framework supporting
a wide range of storage functionality. A command definition in Violin consists
of three main parts: (i) a command opcode unique across all devices and used
to specify the command type, (ii) a pointer to the command data in memory
and (iii) a pointer to a block-map data structure. The purpose and usage of a
block-map will be discussed later in this section.

2.2.1 Basic commands vs. extended commands. Violin I10 com-
mands can be categorized, depending on their scope, to basic and extended.
Basic commands, such as read and write, need to be defined, "understood", and
serviced across the entire hierarchy by all devices in the I10 path, as well as by
the core framework code for internal purposes. They do not need, however, to
be implemented in the core framework itself, but are implemented by all Vio-
lin modules. The most obvious examples of basic commands are the common
read and write commands, which perform block I10 through all devices in the
system and need to be understood by every device in a hierarchy. They are
also used by devices and by the framework code itself, for example to read and
write metadata to disk. Note, however that every device has its own private
handler of the basic I10 command, which in turn relies on the corresponding
command handlers of lower devices in the hierarchy graph. Thus, even though
each device is able to "see" and thus, reference only the block addresses of
its directly-underlying device(s), as requests propagate in the hierarchy the ad-
dresses of the blocks they reference are translated, one device at a time. In
this manner, every request corresponding to a basic command passes through a
path in the graph following the chain of command handlers from every device
in the graph to the next. In case of multiple output edges, edge selection is
handled by the corresponding command handlers in the multi-output devices.
Finally, for reasons of module simplicity, Violin allows the definition of default
basic command handlers, which can be used by simple layers which need the
default edge-selection and block-mapping behavior.

The second type of I10 commands, extended commands, are defined and
handled only by individual devices and their modules. An extended command
needs only to be understood by a subset of the devices in a hierarchy. A re-
quest concerning a private command will be issued only to specific devices in
a hierarchy that are able to "understand" it. Thus, contrary to basic commands

Molin: A Framework for Extensible Block-level Storage 8 9

Block Range

Capacity
deri.mappinghandler()

Dev X

ReNm Path ReNm Path
Fwd Path, A Fwd Path . A

pi&? pkkaj
~ w d t o ~ < + + . F

-
F ~ ~ ~ O E C + F

. . : I'
F W ~ ~ O B - D F W ~ I O B * D - :.. Tag Request < LC

C o m ~ l c t e

Figure 3. Block-range mapping process Figure 4. Example of request flows
through a hierarchy. (dashed lines) through devices. Forward

paths are directed downwards, while return
paths upwards.

whose existence is inherently known by all devices, a device's extended com-
mands need to register themselves to a Violin hierarchy at device initialization.
Extended commands are much easier for the module developer to implement
compared to basic ones, however they raise two important issues for the Violin
hierarchy model: (i) routing decisions and (ii) block-mapping of arguments.

2.2.2 Handling extended commands. Eolin allows arbitrary place-
ment of devices when creating a hierarchy, let us consider a private command
registered by a layer placed low in a hierarchy. External application requests
issuing this extended command will have to traverse the graph passing through
higher devices to reach the specific device. However, in contrast to basic com-
mands, these higher devices do not know how to handle the extended com-
mand and are not able to make routing decisions for the next device in the
graph (edge-selection). Furthermore, Violin is not able to translate the block
addresses of a request directly to a low-level device, since each layer is able to
reference only the block addresses of its directly-underlying layer(s). Thus, in
the case when block addresses are necessary as command arguments in order
to satisfy an extended command belonging to a lower-level device, the frame-
work needs to map block addresses to the address-space of the corresponding
device which may be placed anywhere in a hierarchy.

Violin's approach to both these issues is to provide block-mapping facili-
ties to all devices in a hierarchy, independent of their location in the stack.
More specifically, Violin allows layers to specify private commands as being
either "block-mapped" or "regular" private commands. These two types of pri-
vate commands have different routing and block-mapping behavior. Regular
commands have two properties: (i) no dependence on block addresses and (ii)
simple routing semantics, that is they simply need a graph traversal through

90 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

edges to the target devices. To our experience, these properties can be found
in the majority of extended commands defined in storage layers. Violin han-
dles regular commands by traversing the device graph and using the command
definition table to find the target device(s). If a path traversal reaches a "sink"
node in the graph, and no target device has been found, Violin responds with
an error to the command.

"Block-mapped" extended commands have more complex semantics. They
need specific route selection through higher-level devices andlor block address
translation since block addresses are part of the command's arguments. Such
commands are subject to translation of arguments that represent block-ranges
and device selection. This is achieved by augmenting each layer, i.e., extend-
ing the layer API, with a block-mapping API call, block-map () . This call
is written by module developers for every module that is loaded in an Violin
hierarchy and translates an input block-range to any output block-range(s) on
one or more output devices as shown in Figure 3. Thus, Violin's block-mapping
API deals both with routing through the device graph and block address remap-
ping.

2.3 Violin 110 Request Path

Another significant aspect of Violin is how the 110 request path works, that
is how I10 commands are issued and how they flow through the framework.
Molin is not only reentrant but also supports synchronous and asynchronous
requests. I10 requests never block in the framework, unless a driver module
has explicitly requested it. Moreover, since Violin is reentrant, it runs in the
issuer's context for each request issued from the kernel. Thus, many requests
can proceed concurrently in the framework, each in a different context.

A generic virtual storage framework must support two types of I10 requests:

External requests are initiated by the kernel. They enter the framework
through the source devices (nodes), traverse a hierarchy through internal
nodes usually until they reach a sink node and then return back up the
same path to the top of the hierarchy.

Internal requests are generated from internal devices as a response to
an external request. Consider for example a RAID-5 module that needs
to write parity blocks. The RAID-5 device generates an internal write
request to the parity device. Internal requests are indistinguishable from
external ones for all but the generating module and are handled in the
same manner.

Command requests in Violin move from source to sink nodes through some
path in a virtual hierarchy, as shown in Figure 4. Sink devices are connected
to external block devices in the kernel, so after a request reaches a sink device

Violin: A Framework for Extensible Block-level Storage 9 1

it is forwarded to an external device. As mentioned previously, when multiple
output nodes exist, routing decisions are taken at every node, according to
its mapping semantics. Virtual devices can control requests beyond simple
forwarding. When a device receives an 110 request it can make four control
decisions and set corresponding control tags on a request:

Error Tag indicates a request error. Erroneous requests are returned
through the stack to the issuer with an error code.

Forward Tag indicates that the request should be forwarded to an output
device. In this case, the target device and block address must also be
indicated. Forwarding occurs to the direction of one of the output graph
vertices.

Return Control Path Tag indicates that a device needs return path control
over the request. Some devices need to know when an asynchronous I10
request has completed and need control over its return path through the
hierarchy (Figure 4). For instance, an encryption module requires access
to the return path of a read request, because data needs to be decrypted
after it is read from the sink device.

Complete Tag indicates that a request is completed by a device. Consider
the example of a caching module in the hierarchy. If a requested data
block is found in the cache, the device loads the data in the request buffer
and sets the "complete" tag. The completed request is not forwarded
deeper in the hierarchy, but returns from this point upwards to the issuer
as shown at the right of Figure 4 for device C.

A final issue with requests flowing through the framework, is dependen-
cies between requests. For instance, there are cases where a module requires
an external request to wait for one or more internal requests to complete. To
deal with this, when an internal request X is issued (asynchronously) the issuer
module may register one or more dependences of X to other requests (Y, Z, ...)
and provide asynchronous callback functions. Requests X, Y, Z are processed
concurrently and when each completes the callback handler is called. The call-
back handler of the module then processes the dependent requests according
to the desired ordering (i.e. it may wait for all or a few requests to finish be-
fore releasing them). This mechanism supports arbitrary dependencies among
multiple requests.

2.4 State Persistence
State persistence is an essential property of storage stacks. Storage layers

that offer advanced functionality require dynamic block mappings with meta-
data of significant size. Thus, a generic extensible framework for layered stor-

92 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

age such as Molin must support advanced metadata management facilities. The
three main issues associated with metadata are: facilitating the use of persistent
metadata, reducing memory footprint, and providing consistency guarantees.

2.4.1 Persistent Metadata. In Molin, modules can allocate and manage
persistent metadata objects of varying sizes using a unique object ID and the
requested object size, as it would allocate memory.

Molin's metadata manager automatically synchronizes dirty metadata from
memory to stable storage in a lazy manner. The metadata manager uses a sep-
arate kernel thread to write to the appropriate device, all in-memory metadata.
The user can also flush metadata objects explicitly using a flush call. This is
for example necessary for the versioning layer, which needs to ensure metadata
stability before creating new snapshots.

Internally, each metadata object is represented with an object descriptor,
which is modified only by allocation/deallocation calls. During these calls
metadata object descriptors are stored in a small index in the beginning of the
metadata device. A pointer to the metadata header index is stored with each
virtual device in the virtual hierarchy. Thus, when the virtual hierarchy is being
loaded and recreated, Molin reads the device metadata and loads it to memory.

2.4.2 Mekadata Ca~oigtenny. In the event of Eystem failurgr, where a
portion of the in-memory metadata may be lost or partially written, application
andlor Molin state may be corrupted. We can define the following levels of
metadata consistency:

Lazy-update consistency, that is, metadata are synchronized on disk over-
m t m g the older verslon every few seconds. This means that if a failure occurs
between or during updates of metadata then metadata may be left inconsistent
on-disk and Molin may not be able to recover. In this case, there is a need for a
Molin-level recovery procedure (similar to f s ck at the filesystem level), which
however, we do not currently provide. If stronger guarantees are required then
one of the next forms of consistency may be used instead.

Shadow-update consistency, where we use two metadata copies on disk
and maintain at least one of the two consistent at all times. If during an update
the set that is currently being written becomes inconsistent due to a failure,
Molin uses the second copy to recover. In this case, it is guaranteed that Molin
will recover the device hierarchy and all its persistent objects and will be able
to service I10 requests. However, application data may be inconsistent with
respect to system metadata.

Atomic versioned-metadata consistency, guarantees that after a failure,
the system will be able to see a previous, consistent version of application data
and system metadata. Thus, this is equivalent to a rollback to a previous point
in time. In Molin this can be achieved by using a versioning layer [5] at the

Violin: A Framework for Extensible Block-level Storage 93

leaves of a hierarchy. Although such a layer is available in Violin, its current
implementation would need slight modifications so that its own metadata are
handled differently in this particular case.

Violin currently supports the first and second forms of metadata consistency.
We expect that all three forms of consistency will be available in the kture
releases of the framework code.

2.5 Module API

Extending an 110 hierarchy with new functionality is an arduous task in
modern kernels. The interface provided by kernels for block 110 is fairly low-
level. A block device driver has the role of servicing block 110 read and
w r i t e requests. Block requests adhere to the simple block 110 API, where
every request is denoted as a tuple of (block device, read/write , block
number, block size, data) . In Linux, this API involves many tedious and
error prone tasks, such as I10 request queue management, locking and syn-
chronization of the 110 request queues, buffer management, translating block
addresses and interfacing with the buffer cache and the VM subsystem.

Violin provides to its modules high-level API calls, that intuitively support
its hierarchy model and hide the complexity of kernel programming. The au-
thor of a module must set up a module object, which consists of a small set of
variables with the attributes of the implemented module and a set of methods
or API functions. More details on the module API can be found in [6].

2.6 System Implementation

We have implemented Violin as a loadable block device driver in the Linux
2.4 and 2.6 kernel versions, accompanied by a set of simple user-level man-
agement tools. Our prototype implements fully the 110 path model described
in Section 2.5. Violin extension modules are implemented as separate kernel
modules that are loaded on demand. However, they are not full Linux device
drivers themselves but require the framework's core. Upon loading, each mod-
ule registers with the core framework module, binding its methods to internal
module objects. The overhead of Violin is relatively small: benchmarks results
are always within 10% of those achieved by monolithic drivers [6].

3. Advanced Virtualization Scenarios
In this section we describe some advanced virtualization scenarios where

using Violin would greatly reduce the time and effort to develop the required
storage functionalities. Note that, currently, we do not have fully implemented
all these usage examples, but we present their design as Eolin modules. In
particular we present three virtualization scenarios: (i) dual-path fail-over and

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Path A t a r' Path B (Conlent-Based Addressing Layer
A

i
(Physical Allocation Layer)

(a) Dual-path layer (b) Virtual volume versioning

Figure 5. A dual-path layer for fail-over and load-balancing and a volume versioning and
consolidation layer for virtual machines.

dynamic load-balancing, (ii) volume sharing services: free-block allocation
and locking, (iii) volume versioning for virtual machines.

3.1 Fail-over and Load-balancing

A dual-path module provides fault-tolerance and/or dynamic load-balancing
functionality. As shown in Figure 5(a), the module has a single input and two
output devices. Using internal metadata, which need not be necessarily per-
sistent, this layer balances the load between two paths to the same device and
in case one of the paths fails, it sends all requests through the working one.
This is a very useful function for remote storage devices (accessed for instance
through iSCSI), where each path passes through an independent network path
(switches, cables, etc.). In the event of a network failure this layer easily per-
forms fail-over to the working path. Such a layer is very easy to implement
using fiolin, since the path configuration functionality is built in. Thus the fail-
over operation of the module amounts simply to selecting a different device in
case it receives errors through one of the paths. Load-balancing functionality
is also simple to implement, keeping some response statistics to make routing
decisions for sending requests through the two paths.

3.2 Volume Sharing

Sharing virtual volumes between many user applications requires coordinat-
ing (i) accesses to data and, as mentioned above, metadata via mutual exclusion
and (ii) allocation and deallocation of storage space. To facilitate such shar-
ing, Eolin can incorporate block-level locking and allocation mechanisms, de-
signed and implemented as optional, separate virtual modules. This essentially
makes locking and allocation in-band operations, eliminating out-of-band ser-
vices that are commonly used in file systems. The locking mechanism is inte-
grated in the virtual hierarchies as an optional virtual module and may be used
by fiolin devices to lock shared metadata or by applications that share data at
the block-level. Both kinds of modules can be inserted at various (and pos-

Molin: A Framework for Extensible Block-level Storage 9 5

sibly multiple) places in a virtual hierarchy according to the needs of a given
application.

3.2.1 Block-range locking. Violin can provide support for block-range
locking over a block volume. The main metadata in the locking layer is a free-
list that contains the unlocked ranges of the managed virtual volume. When
a lock control request arrives, the locking layer uses its internal metadata to
either complete or block the request. At an unlock request the locking layer
updates its metadata and possibly unblocks and completes a previous pending
lock request. The locking API should support multiple-reader, single-writer
locks in both blocking and non-blocking modes.

To achieve mutual exclusion, locks for a specific range of blocks should be
serviced by a single locking virtual layer. This is achieved by placing lock-
ing layers at specific points in the hierarchy. Multiple layers may be used for
servicing different block ranges. Thus, load balancing lock requests across
multiple devices is simplified.

Lock and unlock requests are block-mapped commands (see Section 2.2).
This allows us to distribute the locking layers to any desirable serialization
point in a hierarchy. Note that the metadata of a locking layer does not need to
be persistent. Instead, we use a lease-based mechanism to reclaim locks from
a failed application.

3.2.2 Block allocation. The role of a block allocator module is to han-
dle block management in a consistent manner for applications sharing the same
block volume. The allocator distributes free blocks to the applications and
maintains a consistent view of used and free blocks. All such block-liveness
information is maintained by the allocator, offloading all the potentially com-
plex free-block handling code from higher system and application layers.

The allocator metadata for managing free blocks consist of free-lists and
bitmaps to handle blocks of various sizes, which are kept consistent by using
the persistent metadata locking primitives. Frequent locking at fine granularity
will result in high allocation overheads. To address this issue we can amor-
tize the overhead associated with locking metadata by dividing the available
(block) address space of a shared volume in a sufficiently large number of al-
location zones. Each zone is independent and has its own metadata, which can
be locked and cached in memory when using this particular zone.

The metadata of locked zones are automatically synchronized to stable stor-
age, similarly to all other module metadata in Violin, in two occasions: (i) pe-
riodically every few seconds and (ii) when a zone is unlocked and its metadata
released from the cache.

9 6 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

3.3 Optimized storage support for virtual machine images

Nowadays, there is a growing resort to (system-level) virtual machines
(VM) in the context of data centers. They have proven to be a useful tool
to address needs such as server consolidation, interoperability, and flexible
administration (e.g. time and space mobility). As a consequence, a farm of
servers may now host thousands of different operating system images, which
raises concerns regarding the scalability of the underlying (shared) storage sys-
tem.

It has been observed that a VM image store exhibits a set of specific prop-
erties [I I]. In particular, (i) there is no write sharing for a given image, (ii)
block-level snapshots are used extensively, and (iii) different VM images (and
different snapshots of a given image) have many blocks in common.

By combining modules implementing different features such as versioning,
content-based addressing and (virtual and physical) space allocation, we could
obtain such a suitable VM image block store. Figure 5(b) illustrates the struc-
ture of such a storage system on a single node. The modular nature of Violin
facilitates the integration of multiple virtualization semantics. In this example,
copy-on-write techniques are used both at the level of the per-VM version-
ing layer and at the level of the (shared) content-based addressing module, to
achieve good performance and space efficiency.

4. Related Work

Violin is related to previous on (a) extensible filesystems, (b) extensi-
ble network protocols, and (c) block-level storage virtualization. In the lat-
ter area, the two most advanced open-source volume managers currently are
EVMS and GEOM. EVMS [4], is a user-level distributed volume manager
for Linux, which supports user-level plugins. However, it does not offer per-
sistent metadata or block remapping primitives to these plugins. Moreover,
EVMS focuses on configuration flexibility with predefined storage semantics
(e.g. RAID levels) and does not easily allow generic extensions (e.g. version-
ing). GEOM [7] is a stackable BIO subsystem for FreeBSD. The concepts
behind it are, to our knowledge, the closest to Eolin. However, GEOM does
not support persistent metadata which, combined with dynamic block mapping
are necessary for advanced modules such as versioning [5]. Eolin has all the
configuration and flexibility features of a volume manager coupled with the
ability to write extension modules with arbitrary virtualization semantics.

For a detailed discussion of all related work, please refer to [6].

Violin: A Framework for Extensible Block-level Storage

5. Conclusions
In this work we present Violin, a virtualization framework for block-level

disk storage and the motivation behind it. Violin allows easy extensions to
the block 110 hierarchy with new mechanisms and flexible combining of these
mechanisms to create modular hierarchies with rich semantics.

To demonstrate its effectiveness we implement Eolin within the Linux op-
erating system and provide several I10 modules. In previous work [6], we have
showed that Violin significantly reduces implementation efforts. For instance,
in cases where user-level library code is available, new Violin modules can be
implemented within a few hours. Finally, the performance overhead of Violin
over traditional, monolithic drivers and driver-based hierarchies, is within 10%
of their counterparts [6].

Overall, we find that our approach provides adequate support for embed-
ding powerful mechanisms in the storage 110 stack with manageable effort
and small performance overhead. We believe that Violin is a concrete step
towards supporting advanced storage virtualization, reducing storage manage-
ment overheads and complexity, and building self-managed storage systems.

Acknowledgments
We thankfully acknowledge the support of Natural Sciences and Engineer-

ing Research Council of Canada, Canada Foundation for Innovation, Ontario
Innovation Trust, the Nortel Institute of Technology, Nortel Networks, the
General Secretariat of Research and Technology, Greece and the support of
the European FP6-IST program through the SIVSS project and the CoreGRID
Network of Excellence.

References

[I] A. Acharya et al. Active Disks: Programming Model, Algorithms and Evaluation. In
Proc. of the 8th ACMASPLOS Conference, San Jose, CA, 1998.

[2] M. de Icaza et al. The linux raid-1 ,-4,-5 code. In Proc. of LinuxExpo, Apr. 1997.

[3] W. de Jonge et al. The Logical Disk: A New Approach to Improving File Systems. In
Proc. of 14th ACM Symp. on Operating Syst. Principles, 1993.

[4] Enterprise Volume Management System. http://evms.sourceforge.net.

[5] M. D. Flouris et al. Clotho: Transparent Data Versioning at the Block 110 Level. In 21st
IEEE Conference on Mass Storage Systems and Technologies, Apr. 2004.

[6] M. D. Flouris and A. Bilas. Violin: A Framework for Extensible Block-level Storage. In
Proc. of 13th IEEE ConJ on Mass Storage Systems and Technologies, Apr. 2005.

[7] FreeBSD: GEOM Modular Disk 110 Request Transformation Framework.

[8] G. A. Gibson et al. A Cost-Effective, High-Bandwidth Storage Architecture. In Proc. of
the 8th ACMASPLOS Conference, San Jose, CA, 1998.

9 8 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

[9] B. Phillips. Industry Trends: Have Storage Area Networks Come of Age? Computer,
31(7):10-12, July 1998.

[lo] D. Teigland et al. Volume managers in linux. In Proc. of USENIX Tech. Conference, June
2001.

[I 11 A. Warfield et al.. Parallax: Managing Storage for a Million Machines In Proc. of the
USENIX Workshop on Hot Topics in Operating Systems, June 2005.

CLUSTERIX DATA MANAGEMENT SYSTEM
(CDMS) - ARCHITECTURE AND USE CASES *

Konrad Karczewski and Lukasz Kuczynski
Institute of Computer and Information Sciences
Czestochowa University of Ethnology

{ xeno, Ikucz) @icis.pcz.pl

Abstract Nowadays grid applications process large volumes of data. This creates the need
for an effective data-management solutions. For the ClusteriX project the CDMS
(ClusteriX Data Management System) is being developed. Analysis of user re-
quirements and existing implementations of a Data Management System have
been the foundations for its creation. Special attention has been paid to make
the system user-friendly and efficient.

Taking into account grid specific networking conditions, for example differ-
ent bandwidth, current load and network technologies, between geographically
distant sites, CDMS tries to optimize data throughput via replication and replica
selection techniques. Another key feature to be considered during grid service
implementation is fault-tolerance. In the CDMS modular design and distributed
operation model assures single point of failure elimination. In particular multi-
ple instances of Data Broker are running simultaneously and their coherence is
assured by a synchronization subsystem.

Keywords: data management, data safety, replication, fault-tolerance, GRMS.

*This work has been supported by the Polish Ministry of Science and Information Society Technologies
under grant 6TI 1 2003C/06098 "ClusteriX - National Cluster of Linux Systems".

100 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

Data management issues are amongst the most important in modern grid
environment [I , 131. As the applications being run on grids become more real-
life oriented, they generate or depend on data sets of growing importance and
confidentiality.

One of the principal goals of data management systems in grids is to pro-
vide transparent and efficient access to globally distributed data [I]. Among
the most important issues that need to be solved are: optimization of the data
transfers over the WAN, reliability and security of data access and ease of use
P I .

The most frequently encountered approach to solving these problems is
based on application of metadata and mechanism of data replication [2, 111.
Metadata are used, e.g., for the translation of a logical filename to its physical
location. The replication mechanism should provide optimization of data ac-
cess and reliability. An example of a modern data management system based
on the above-mentioned mechanisms is the Reptor system [lo], developed as
a part of the EU DataGrid Project. Being one of the most advanced grid data
management systems, it still does not provide h l l transparency, and is difficult
to use. Its other shortcomings are: the lack of mechanisms of adaptation to
the network infrastructure, and presence of single points of failure, e.g., single
Metadata Repository.

ClusteriX (National Cluster of Linux Systems) is a distributed national com-
puting infrastructure with 12 sites (local Linux clusters based on 64-bit Ita-
nium2 processors) located across Poland [3, 141. ClusteriX sites are connected
by the Polish Optical Network PIONIER providing a dedicated communication
infrastructure. This paper presents our experience in building the ClusteriX
Data Management System (CDMS) its architecture and use cases [9].

The paper is organized as follows. In Section 2, we introduce the base
requirements placed on the Data Management System while the CDMS archi-
tecture minutes are presented in Section 3. Section 4 is devoted to system in-
terface, while Sections 5 and 6 describe respectively the integration of CDMS
with end-user applications and the GRMS Resource Broker. The paper finishes
with conclusions in Section 7.

2. Data Management System
A modern Data Management system should be implemented with the fol-

lowing features in mind: transparent access, reliability, security and safety of
transferred and stored data, access control, possibility of transparent data com-
pression and access optimisation.

The development of an intuitive and effective data access and system ad-
ministration toolkit was seen as an equally important task. It is particularly

ClusteriX Data Management System (CDMS) -Architecture and Use Cases 10 1

necessary when the end-user is not expected to be aware of the low-level mech-
anisms and in the CDMS an Virtual File System (VFS) abstraction layer was
implemented, creating an illusion of working with a local file system.

External
USER API Services

+ + +
CDMS Broker

I CDMS CORE

Storage Element

Figure I . Architecture o f the CDMS.

2.1 Transparent Data Access
Data access mechanisms should be implemented as a layer between client

application and Data Management System. Such an approach allows to hide
low-level mechanisms and improve them without the need for rewriting end-
user application. This, in addition to a well-designed API, provides developers
and scientists with a stable platform for Grid-oriented development. Moreover,
the end-users can utilize latest functionality without any modifications to their
software.

Moreover, this approach allows for modular design of the Data Access Sys-
tem which in turn makes possible fast delivery of a basic functional version
of the system and further development of its parts with no disturbances to the
functional part. For example this may allow for implementation of "intelligent
data access" functionality and "plugging it in" on selected distributed systems
which will provide the necessary infrastructure (e.g. multiple, geographically
distant Data Storage Elements).

102 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

2.2 Data access optimisation

A modern Data Management System should provide data access optimi-
sation mechanisms. The main task of this subsystem is choosing the most
suitable data location to use, taking into account multiple factors, such as:

available resources on the storage elements

network properties:

- bandwidth

- topology

- current throughput

rn user access permissions

Additionally to improve effectiveness and minimise data access time data
partitioning mechanism (splitting into smaller parts) could be used. In such
case Data Broker would decide on partitioning of the file and then it would
search optimal locations for the parts. Every part would be replicated in several
locations to minimise chance of losing the data in case of a failure. Such solu-
tion, besides improving the system fault-tolerance, would as well improve data
access time by copying several parts in parallel from different locations. Not
without value is fact that this storage method increases security of the stored
data. To provide correct data reconstruction metadata stored in the metadata
server would have to contain information allowing proper rebuilding of a file.

2.3 Reliability

Reliability is one of the most important aspects of the Data Management
System. The following basic functionalities are required:

improving fault-tolerance of the system by providing Data Replication
mechanism

automation and control by the Data Broker assures maximum trans-
parency

Increase of reliability level could be accomplished by elimination of the
single-point-of-failure. The basic way of achieving this is implementation of
a distributed Data Broker Service. This implies:

automated control takeover in case of failure

= metadata replication and synchronisation

distributed metadata server

heartbeat mechanism

ClusteriX Data Management System (CDMS) -Architecture and Use Cases 103

Figure 2. Chain Transfer

2.4 Security and Safety of Data
To provide required level of security, the Data Management System must

include:

user authentication and authorisation (e.g. GSI based)

data encryption possibility

permissions delegation (single-sign-on)

To improve data safety the following mechanisms could be implemented:

Access Control Lists embedded in the metadata

Data partitioning (only a part of data is available on each storage ele-
ment)

dataset name transformation (e.g. md5)

2.4.1 Access Control Lists. Access Control Lists allow to manage ac-
cess to resources, constrain users' rights and manage visibility of data. When
every part of the Data Management system will be capable of using ACLs the
security of the stored data can be managed according to user demands. The
data available to every member of a given community or even every user of
the Grid would be advertised and visible to everyone requesting it. This may
include scientific papers, results of community founded research, conference

104 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

materials, tutorials and such. Data considered available for anyone willing to
pay for it may be advertised, but it will be accessible only to users authorised
by its owner. Finally the confidential data would be invisible for anyone but its
owner and the authorised users.

To allow for such a functionality the ACLs must be included in the meta-
data and properly understood by the Metadata Server. The Data Broker uses
delegated user credentials while performing user-requested operations. This
allows to control the metadata operations commited by the Data Broker on
users behalf.

CDMS Storage E l e m e n t

,.cLUSTERIX (e Z Z

. CDMS Bmker p" -b

Figure 3. Data Partitioning

2.4.2 Data Partitioning. Data Partitioning enables increased data secu-
rity, since no Storage Element holds complete data and the partitioning infor-
mation is available only to Data Broker. Furthermore it is possible to accom-
modate part size to the space available to the user on a given storage element
which provides for better usage of the storage space.

In addition to the improvement in data security, data partitioning increases
the performance of the Data Management system by allowing parallel trans-
mission of multiple parts of the data set from different Storage Elements.
Moreover it enables load balancing between Storage Elements and eliminates
bottlenecks that would occur if data were not partitioned and a single Storage
element received a request for a large data set. Currently such a request will be
directed to multiple Storage Elements storing parts of the data.

ClusteriX Data Management System (CDMS) - Architecture and Use Cases 105

Data Partitioning Mechanism functioning consist of two parts: storing the
data in the system and its retrieval on user's demand. The first part consists of
the following steps:

rn client authenticates and authorises in the GSI subsystem

rn new dataset is registered in the Data Broker

Data Broker:

- decides on partitioning of the dataset and searches for the optimal
locations

- digests the dataset name

- encrypts and splits the data (if required) and stores the parts on the
Storage Elements

- updates the Metadata Server information

Upon successful completion of this sequence user's data is stored in the system
and by default visible only to its owner. This prevents the possibility of acci-
dentally leaving data prone to unauthorised retrieval by a forgetful user or by
a network failure preventing the owner from finishing the access control setup.
Access permissions may be specified in the data storage request if necessary.

Data retrieval operates in a reverse manner from the data storage process:

rn Client authenticates and authorises in the GSI subsystem and requests
data retrieval using dataset name

Data Broker:

- digests the dataset name and checks user's rights in the Metadata
Server

- retrieves the partitioning information and chooses the optimal Stor-
age Elements for data retrieval

- retrieves parts of the dataset, reunites files, decrypts and transfers
it to the requested location

2.5 Distributed Data Broker
To ensure stable operation of the Grid environment the elimination of a

single-point-of-failure is a critical task. Data Management System as one of
its most important subsystems must be well-protected from the possibility of
a breakdown in case of a computer system or network failure. Implementation
of a distributed Data Broker service is crucial to achieving such an immunity.

106 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

M E N T SYST

Figure 4. Distributed Broker Architecture

The proposed solution makes use of an Information System. The user agent
queries IS for the Data Broker location, receives current Primary Data Broker
address and continues communication with the Data Broker.

When the Primary Data Broker becomes unavailable because of a system
or network failure the Synchronisation Subsystem detects the problem and the
Secondary Data Broker takes over Primary Broker functions and updates IS
record about its parameters. When the original Primary Data Broker gets re-
connected it starts operation as the last one in the hierarchy and rebuilds its
information by querying the up-to-date systems.

3. System Architecture

The architecture of the ClusteriX Data Management System was introduced
in [9]. It has a modular design and consists of (Fig. 1):

- Main Management Module (CDMS Core)

- Global Data Catalogue (GDC)

- Local Data Catalogue (LDC)

- Transport Subsystem

- Synchronization Module

- Statistic Module

ClusteriX Data Management System (CDMS) -Architecture and Use Cases 107

- Optimization Module

- Replication Module

The main part of the system is the CDMS Core responsible for data col-
lections management, data coherence, running the Optimizer and Replicator
processes and data transfer initialization. Using data stored in the Global Data
Catalogue, the Main Management Module performs the mappings of logical
filenames to the Storage Element holding the data. Proper functioning of the
GDC is crucial for reliable operation of the CDMS, which makes replication
of this data vital for the entire system.

The responsibility of the Replication Module is to perform data replication
on the CDMS Core request. It currently allows for the initial and automatic
replication.

The initial replication process consists of three stages: choice of the suitable
Storage Elements, replication planning, and the replication itself. Accepting a
request for an incoming data transfer - from a user into the CDMS - the Main
Management Module queries the Optimization Module for possible locations
for the incoming data. Next it takes the first two entries from the returned list,
and initiates the parallel data transfer.

The automatic replication is carried out by the Replication Module when
the system load is low. It decides upon decreasing or increasing the number of
replicas using information provided by the Statistic Module. When the demand
for a given dataset increases, the number of replicas is increased as well. When
the data are no longer needed, the number of replicas is decreased accordingly
by removing the least accessed copies [12].

The main task of the Optimization Module is determining the best data lo-
cation from available replicas. The application of this module decreases delays
in data access and balances the load between Storage Elements. The Optimiza-
tion Module uses such statistical data as network throughput and performance
of Storage Elements, as well as measured values like current network load,
system load and available disk space on Storage Elements.

The Transport Subsystem has been introduced to increase the CDMS perfor-
mance during data transfers. It consists of the Proxy Transport Agents (PTAs)
and the Transport Agents (TAs). The PTA is responsible for transferring data
between the user and the CDMS. It runs as a standalone process, accepting
data transfer requests from the CDMS Core. Such a solution allows the CDMS
Core to select the agent located closest (in networking terms) to the served
user.

The main task of a TA is transferring data between Storage Element and the
Proxy Transport Agents. Data sent by the user to PTA are directed to a suitable
TA. The CDMS Core asks the Optimization Module for the suggested data lo-
cations, and then it requests the proper TA to perform the required operations.

108 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

An important feature of the Transport Subsystem is parallel data transfer be-
tween the Proxy Agent and the Transport Agents. It enables data replication
in the very moment they enter the Data Management System. Taking into ac-
count that the network infrastructure inside ClusteriX core has considerably
greater thoroughput than the external network, the overhead generated by the
replication is negligible.

3.1 Implementation
The CDMS has been implemented in the C language (Optimisation an

Replication Modules excepted) using the gSOAP package [4]. An adequate
data transmission security, x509 certificates infrastructure and gsiftp protocol
support have been achieved using Globus Toolkit 3.x libraries [5].

In the grid infrastructure based on the Globus Toolkit, users are identi-
fied using x509 certificates, which have unique subjects. This fact is the
foundation of user namespaces introduced in CDMS, which are named af-
ter the subject of an user certificate. This approach eliminates possibility
of collisions in file and directory names. Every user in the CDMS sys-
tem has his own file system root (I) located in his namespace. The Uni-
versal Resource Locator (URL) for the CDMS system is defined as follows:
cdms : / / [user -namespace] /url -path. The user-namespace part can
be omitted, in such case the subject of the certificate used to access the data
will be used automatically.

4. System Interface
The access to the system resources is possible via a Webservice interface

using the SOAP protocol. Such a solution allows to make client applications
independent from the operating system and programming language. An exam-
ple of a CDMS client application is the administrative toolkit implemented in
the C language for the LinuxIUNIX platform. Another example is the Grid-
Sphere portlet, offering a rich user-level access functionality, implemented in
the Java language [6].

Every interface function returns a message which consists of two parts. The
first one contains the error code and the error message. The second part is
strictly dependent on the called function, and contains the relevant data, for
example, directory listing. The system interface consists of the end-user and
the administrator parts.

The basic functionality of the CDMS is accessible by a set of functions
belonging to the end-user interface. They allow user applications to create
and remove directories, copy data between CDMS and local file system, list
contents of directories, etc. The basic set of user utilities is a part of the CDMS

ClusteriX Data Management System (CDMS) -Architecture and Use Cases 109

package. They have been deliberately implemented to resemble standard Unix
utilities. For example, c lx-1 s / displays contents of a user home directory.

A package of administration utilities has been provided as well. They use
the WebService interface to communicate with the CDMS broker. The pro-
vided functionality includes: creation and removal of user account, quota ma-
nipulation and modification of access control lists.

The CDMS administration will be greatly simplified by a Gridsphere portlet
which is currently under development. It will allow the system to be admin-
istered via a web browser, making this task completely independent from the
operating system.

5. Integration of End-User Applications with CDMS
Computational applications can use CDMS directly or indirectly. The most

common situation is when an application works with files stored on a local file
system. In such case, input files of the application can be staged in from the
CDMS, and the results stored in the CDMS during the stage-out phase. This
is the "indirect" use, and does not require any modification of the application
itself.

Another case is when the application is modified to use the CDMS directly.
This involves use of the WebService interface via the SOAP protocol. Addi-
tionally any interaction with the CDMS must be authenticated and later en-
crypted via the GSI layer, so support for this feature is another requirement
for the application. After satisfying these requirements, the end-user would be
able to request data transfer to and from CDMS during computations.

The general scheme of the application execution is very similar in both
cases. First the user places a request to the Resource Broker, e.g. GRMS,
specifying resource requirements, input and output data, and providing it with
a credential, allowing it to interact on the user behalf with CDMS as well as
the local jobmanagers. The Resource Broker selects an appropriate computa-
tional resource, requests input data transfer and commits the application to a
local job manager. After the computations are finished, the obtained results
are retrieved from the local file system and placed in the CDMS. The sole dif-
ference is that the CDMS-aware application can fetch additional data during
run-time, for example, after assessing results obtained at a specific point of
computations. Also, such an application can place partial results in the Data
Management System allowing the user to check on the application progress
periodically, or use them as the input data for another application.

6. Integration with GRMS
A very important part of the CDMS development was to implement mech-

anisms of cooperation with the Resource Broker. The final result is almost a

110 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

complete transparency of this cooperation from the user point of view. The
only difference is a modification of the URL. In a basic grid infrastructure data
management is based on a ftp server accessed via the gsiftp protocol, and the
URLs point to such a server. In a CDMS-enabled infrastructure URLs point to
logical file names (Fig.5), which are further resolved by the Data Broker.

<grms job appid = "demo">
<simple j ob>

<executable type="singleH count="l">
<file name="exec-f ile" type=I1in">

<url>cdms:///demo.pl</url>
</file>

</executable>
</simple j ob>

</grms j ob>

Figure 5. Sample job description including CDMS URL. The demo. pl file is located in the
root directory of the user running this job

The GRMS analyses the job description, and decides whether an initial data
transfer is necessary. When the application specifies a remote source of data in
a standard grid infrastructure, GRMS is responsible for copying the data via a
third-party transfer to a computational resource. With CDMS such a scenario
is not possible because the physical data location is unknown. In this case, the
GRMS connects to the CDMS Broker and requests the data to be transfered on
the designated node.

In the CDMS Webservice interface, multiple functions for copying data to
computational nodes are defined. For the integration with Resource Brokers,
the following functions are designated:

1) enum CopyStatus (COPYING, FINISHED, FAILED } ;

2) CopyStatus copyToCEBlocking(string lfn, string url) ;

3) CopyStatus copyFromCEBlocking(string lfn, string url) ;

4) string copyToCE (string lfn, string url) ;
5) string copyFromCE(string lfn, string url) ;

6) CopyStatus getCopyStatus(string sid) ;

The blocking functions (2 and 3) require as the parameters the logical file
name (URL in CDMS), and external data locations, e.g., URL pointing to the
computational resource storage. They return the status of copy operation (FIN-
ISHED or FAILED). The non-blocking functions (4 and 5) accept exactly the
same parameters as their blocking versions, but they return an unique data
transfer session identifier (SID). It can be used to check the current status of

ClusteriXData Management System (CDMS) -Architecture and Use Cases 1 11

a data transfer via the getcopystatus function. It may return one of the
states defined in the Copystatus enum. Such an approach allows for the
CDMS integration with any Resource Broker.

6.1 Stage-In Scenario
The sequence diagram (Fig.6) presents the CDMS actions during a data

transfer request from the Resource Broker.
In the first step, the GRMS decides upon the resource assignment, and re-

quests a data transfer to be performed. At the moment, GRMS uses blocking
functions so the copyToCEBlocking function will be called (1).

Figure 6. Stage-in sequence diagram

The Management Module of CDMS verifies if the requested file exists in
CDMS (2), and calls the Optimization Module to determine the best physical
data location to be used (4). The Optimization Module requires, as its in-
put, the destination of requested data, list of Storage Elements holding replicas
of the file, and file size. Using these parameters and querying the Network
Resource Manager, the Optimization Module orders the list of Storage Ele-
ments by feasibility and returns it to the Management Module. The CDMS
Broker delegates user credentials (obtained from the GRMS) to the selected
Storage Element, and requests it (6) to perform data transfer to a computa-
tional resource (7). When this data transfer is finished (or it has failed), the

112 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

copyToCEBlocking function returns (10) with a proper status code, and
the GRMS continues with the job preparation and execution.

Figure 7. Stage-out sequence diagram

6.2 Stage-Out Scenario
After the job is finished, the results have to be retrieved from the compu-

tational resource. If the user requested them to be placed in the CDMS, the
GRMS again contacts the Data Broker to request data transfer. In Fig.7 the
sequence diagram for such a scenario is shown.

First the GRMS calls (I) a blocking function copyFromCEBlocking
with the proper parameters (logical file name and physical data location). The
CDMS Broker checks whether such a file exists (2). If so, all the replicas will
be updated to the new version and if it is a new file, CDMS creates its logical
instance in the Global Data Catalogue, and starts the optimization process (4).
In this case, the Optimization Module requires only the file size and physical
data location as parameters. The Management Module receives an ordered list
of feasible Storage Elements, then delegates user credentials and requests the
data retrieval to be performed (6), using the Webservice interface of Storage
Element. After the transfer is finished, the copyFromCEBlocking function
returns (lo), and GRMS continues with the job finalizing procedures, while
CDMS initiates the replication process for the newly received data (1 1).

CIusteriXData Management System (CDMS) -Architecture and Use Cases 1 13

7. Related work
Because the idea of Data Management encompasses databases, distributed

filesystems, remote file access protocols as well as local filesystems and HMS
solutions we decided to focus on a subset of available systems. Taking into
account that the CDMS is designed to work in a Globus Toolkit based grid in-
frastructure we will treat this feature as the common denominator for discussed
solutions.

7.1 Data movement in the Globus Toolkit

The Globus Toolkit offers a basic set of grid services. Among them there
are Data Management related ones, namely GridFTP, RFT, RLS and DRS[5].

The GridFTP is an extension to the standard FTP. Added are GSI based
authentication and authorisation mechanisms and the basic, fast and effective
file transfer protocol is preserved. Although globus-url-copy and the GridFTP
are in general very powerfull tools they have some limitations. Most important
is the fact that while globus-url-copy can recover from remote failures - server
and network outages - a problem on the client side means that the recovery is
not possible. To address this issue a service preserving the data transfer state is
needed. Such a solution is offered by the Reliable File Transfer (RFT) service.

The RFT is a service based on the Web Service Resource Framework
(WSRF), which provides the functionality encountered in resource brokers -
user can submit a data transfer request via a webservice interface, specifying
data source and destination. Later the transfer status may be controlled via the
same interface. Similar features are available in CDMS as well, but the CDMS
was developed with Globus Toolkit 3.x in mind and the RFT was introduced
in the 4.x series.

The Replica Location Service (RLS) is a tool providing simple, distributed
registry for keeping track of replicas on physical locations. Logical file namess
(unique identifiers for contents of a file) are mapped to physical file names on
a storage system.

The Data Replication Service ensures that a specified set of files exists on a
storage site. It is based on the RLS and RFT and provides WSRF interface. It
was introduced in Globus Toolkit 4.0.

The CDMS provides automated data replication based on independent
mechanisms.

7.2 Alternative implementations
Data Management System (DMS) is a data management solution developed

in the frame of the PROGRESS project[7]. It's main goal was to provide a data
storage mechanism for the PROGRESS system and data access via a broad

114 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

gamut of network protocols. The system architecture is quite similar to the
CDMS architecture, but obviously it is aimed at a very narrow user group so a
feature comparison is not really possible.

In general there are different data management solutions available, but usu-
ally they are either developed for a specific user group or aimed at specific
task. Moreover in many projects an intuitive user interface was not considered
as an important goal and they require a fair amount of network protocol or
grid knowledge from the end-user. The CDMS strives to fill the gap providing
intuitive user interface to a complex data management solution.

8. Conclusions
The CDMS is an advanced grid data management system, providing the

end-user with efficient mechanisms for data transfer and storage. A very im-
portant feature of this system is its near complete transparency to users and
seamless integration with the Resource Manager. On the other hand, advanced
users are able to efficiently utilize the CDMS for inter-application data transfer,
and to implement modules adapting CDMS to their needs.

References

[l] Allcock, B., et al.: Data Management and Transfer in High Performance Computational
Grid Environments. Parallel Computing Journal 28,s (2002) 749-77 1

[2] Bruin, R.P., Dove, M.T., Calleja, M., Tucker. M.G.: Building and Managing the eMinerals
Clusters: A Case Study in Grid-Enabled Cluster Operation. Computing in Science &
Engineering 7 ,6 (2005) 30-37

[3] ClusteriX Project Home Page, http://clusterix.pcz.pl

[4] gSOAP Project Home Page, http://www.cs.fsu.edu/ engelen/soap.html

[5] GLOBUS Toolkit Homepage, http://www.globus.org/toolkit

[6] Gridsphere Project Home Page, http://gridsphere.org

[8] Karczewski, K., Kuczynski, L., Wyrzykowski, R.: Secure Data Transfer and Replication
Mechanisms in Grid Environments. Proc. Cracow Grid Workshop - CGW'03, Cracow,
2003, 190-196

[9] Karczewski, K., Kuczynski, L., Wyrzykowski, R.: CDMS - ClusteriX Data Management
System. Proc. Cracow Grid Workshop - CGW'04, Cracow, 2004,241-247

[lo] Kunszt, P., Laure, E., Stockinger, H., Stockinger, K.: Advanced Replica Management
with Reptor. Lect. Notes in Comp. Sci. 3019 (2004) 848-855

[l I] SDSC Storage Resource Broker, http://www.sdsc.edu/srb/

[12] Slota, R., Skital, L, Nikolow, D., Kitowski, J.: Algorithms for Automatic Data Replication
in Grid Environment (this volume)

[13] Valentin, O., Lombard, P., Lebre, A., Guinet, Ch., Denneulin, Y.: Distributed File System
for Clusters and Grids. Lect. Notes in Comp. Sci. 3019 (2004) 1099-1 104

ClusteriXData Management System (CDMS) -Architecture and Use Cases 1 15

[14] Wyrzykowski, R., Meyer, N., Stroinski, M.: Concept and Implementation of ClusteriX:
National Cluster of Linux Systems. Proc. LC1 1nt.Conf. on Linux Clusters: The HPC
Revolution 2005, Chapel-Hill, NC, April 2005

I11

SEMANTIC GRID

ARCHITECTURAL PATTERNS
FOR THE SEMANTIC GRID *

Ioannis Kotsiopoulos, Paolo Missier, Pinar Alper, Oscar Corcho,
Sean Bechhofer, and Carole Goble
School of Computer Science
The University of Manchester
United Kingdom
{ ioannis, pmissier, penpecip, ocorcho, seanb, carole} @cs.rnan.ac.uk

Abstract The Semantic Grid reference architecture, S-OGSA, includes semantic provi-
sioning services that are able to produce semantic annotations of Grid resources,
and semantically aware Gridservices that are able to exploit those annotations in
various ways. In this paper we describe the dynamic aspects of S-OGSA by pre-
senting the typical patterns of interaction among these services. A use case for
a Grid meta-scheduling service is used to illustrate how the patterns are applied
in practice.

Keywords: Semantic Grid, Grid services, architectural patterns.

*This work is supported by the EU FP6 OntoGrid project (STREP 51 1513) funded under the Grid-based
Systems for solving complex problems, and by the Marie Curie fellowship RSSGRID (FP6-2002-Mobility-
5-006668)

120 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

The Grid aims to support secure, flexible and coordinated resource sharing
by providing a middleware platform for advanced distributed computing
[6] . Grid middleware architectures aim to allow collections of any kind of
resourcescomputing, storage, data sets, digital libraries, scientific instruments,
people, etc to easily form Virtual Organizations (VOs) that cross organiza-
tional boundaries in order to work together to solve a problem. However,
existing Grid middleware architectures and the standards on which they are
based on, fall short of addressing some of the original vision of configurable,
self-healing, adaptive, and interoperable middleware [6]. This is due mainly
to the following reasons:

Knowledge burial. Knowledge and metadata regarding Grid entities is
currently generated and used in an ad hoc fashion, much of it buried in the
middleware's code libraries and database schemas. This esoteric expression
and use of knowledge hinders interoperability when it comes to building open,
interoperable and adaptive systems. Existing Grid middleware is therefore
considerably affected by syntactic changes in protocols and representations,
and it becomes highly dependent on human intervention during its operation.

Dominance of XML-based vocabularies and protocols. The Grid com-
munity has developed a number of specifications and standards that aim to
increase interoperability among middleware components. XML has become
the de-facto language not only for expressing these specifications, but also
for describing Grid entities and their behaviour. However, XML-based
specifications do not provide a complete solution to the problem of knowledge
burial due to the lack of a shared formal interpretation of XML documents.

Lack of models for Grid processes. Many aspects of the Grid are still not
formally defined, therefore it becomes difficult to identify the challenges
and even more difficult to find solutions. Take as an example the formation
of Virtual Organizations (VOs); creating a model for forming VOs can
help setting-up a community-wide terminology, highlight differences among
existing systems and bring about previously unforeseen issues to be solved
for interoperability. This model should be the product of a knowledge
acquisition process, similar to those being undertaken by the Web [4], Web
Services [3]and Semantic Web Services communities [9, 141. The outcome
of the modeling process can be used for the development of interoperable
metadata based on explicit semantics.

Architectural Patterns for the Semantic Grid 121

The Semantic Grid is an extension of the current Grid in which information
and services are given well defined and explicitly represented meaning, better
enabling computers and people to work in cooperation [8]. In the Semantic
Grid, the goal of sharing virtualized computational and data resources is ex-
tended to include explicit metadata and knowledge. During the last few years,
several projects have embraced this vision and there are already successful pi-
oneering applications that combine the strengths of the Grid and of semantic
technologies [15]. As a result of some of these efforts, the S-OGSA refer-
ence architecture has been recently proposed [5], with the aim of providing a
systematic approach for designing Semantic Grid applications.

This paper is focused on the dynamic aspects of semantic Grid. We begin
by presenting a summary of S-OGSA ("semantically enhanced OGSA"); then
introduce a use case for Semantic Grid, namely semantic meta-scheduling of
Grid resources [l 11. With the help of the use case, we present two service inter-
action patterns that demonstrate the key aspects of Semantic Grid dynamics in
S-OGSA. Finally, we provide some conclusions and future research directions.

2. Semantic Grid concepts
In this section we provide a summary of the fundamental properties of S-

OGSA; a more comprehensive discussion can be found in [S] . S-OGSA con-
sists of (i) an information model of semantic resources, which extends the
OGSA model, and (ii) two new types of Grid services, Semantic Provision-
ing Sewices and Semantically Aware Grid Services.

2.1 A Semantic Grid Information Model

Two types of entities are at the basis of the information model:

Grid Entities (G-Entities) are anything that carries an identity on the Grid,
including resources and services [19];

Knowledge Entities are special types of Grid Entities that represent or could
operate with some form of knowledge. Examples of Knowledge Entities
are ontologies, rules, knowledge bases or even free text descriptions that
encapsulate knowledge that can be shared. Knowledge services are those that
provide access to or operate over those knowledge resources, e.g. rule engines
and automated reasoners.

Semantic Bindings (S-Bindings) are the entities that come into existence
to represent the association of a Grid Entity with one or more Knowledge
Entities. The existence of such an association transforms the subject Grid
entity into a Semantic Grid Entity. Semantic Bindings represent metadata

122 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

assertions on web resources. In our model, Semantic Bindings are first
class citizens as they are modelled as Grid resources with an identity and
manageability features as well as their own metadata.

Semantic Grid Entities are those Grid Entities that are either the subject of
a semantic binding, are themselves a semantic binding, or a Knowledge En-
tity. In keeping with our design principles, Grid entities can simultaneously
be associated with zero or multiple knowledge entities of different forms and
capabilities, and can acquire and discard associations with knowledge entities
through their lifetime. It should be noted that S-OGSA does not prescribe any
specific technology for the realisation of these.

2.2 Semantic Provisioning Services
These are services that provision semantic entities. These Semantic Services

are themselves Grid Services. Following the aforementioned classification of
semantic entities, two major classes of services are:
Knowledge provisioning services (KPS), which can produce (and in some
cases store) knowledge resources, and that can be used to manage knowledge
resources. KPS support the creation, storage and access of different forms
of knowledge resources. For example: ontology services (a major form of
knowledge) and reasoning services.

Semantic Binding provisioning services, which can produce (and in some
cases store) S-Binding resources, and that can be used to manage S-Binding
resources. For example: semantic binding index services, for accessing and
storing metadata associating Grid entities with knowledge entities; and an-
notation services for generating metadata from different types of information
sources, like databases, files or provenance logs. S-Bindings are stateful, so
they are subject to soft state processes; i.e. they will time out, get deleted or be
removed. A typical way of producing S-Bindings is by annotating Grid entities
as is shown in the Grid entities annotation pattern (Section 4).

2.3 Semantically Aware Grid Services
This class of Grid Services are able to exploit semantic technologies to con-

sume semantic bindings in order to deliver their functionality. Their role is
complementary to the role of Semantic Provisioning Services since they con-
sume the semantic entities held by Knowledge provisioning services and Se-
mantic Binding provisioning services and use their services. The combina-
tion of Semantic Provisioning Services and Semantically Aware Grid Services
can address the knowledge burial problem discussed in Section 1 since explic-
itly shared knowledge can be consumed by third party services. Semantically

Architectural Patterns for the Semantic Grid 123

Aware Grid Services are able to exploit explicit semantics, and therefore can
benefit from the additional context it provides for service operation. Examples
include:

A VO Manager service that can perform semantics-aware service ac-
cess authorization;

w A Grid resource catalogue that supports semantic searches;

An ontology service that is capable of incorporating new concepts into
an ontology.

3. The Grid scheduling use case
We illustrate the use of semantic grid concepts in practice, by describing an

existing Grid service that is currently being enhanced as a semantics-aware ser-
vice. The service addresses a real and common problem in the area of resource
co-allocation on the Grid. The problem of resource co-allocation emerges
when dealing with complex workflows that require multiple data, computing
and network resources; these resources are commonly highly distributed, and
are subject to autonomous and independent management by different organi-
zations.

We are specifically interested in resources whose usage is controlled by
schedulers on the Grid, either at the local or the cluster level; allocating mul-
tiple such resources and orchestrating their access requires the introduction of
a new type of Grid service, called a meta-scheduler (MS) or super-scheduler.
The MS is responsible for the co-scheduling [17] of resources in order to as-
semble, on demand, a virtual machine that enables the execution of distributed
jobs consisting of many parallel tasks. In particular, the MS provides higher-
level resource management by implementing a consistent interface into various
Grid scheduling systems, and thus hides much of the heterogeneity of the local
schedulers that control the actual underlying resources.

For our use case, we focus on the generic meta-scheduler recently proposed
by Waldrich et a1 [20], whose design attempts to generalize on the type of
resources that can be scheduled. This MS interfaces with multiple local sched-
uler~, negotiating with them advance reservation of resources based on user
requirements that may include time and QoS constraints. The goal of the ne-
gotiation is to determine time slots where the required resources are available
for the requested start times of the application or workflow parts. The meta-
scheduler implements two main fhnctionalities: (i) allocation of a single re-
source for a single application for a fixed period of time, and (ii) co-allocation
of multiple resources for the same fixed period of time for single or multiple
applications.

124 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

In order to be able to participate in the negotiation, schedulers must satisfy
at least the first of the following requirements:

1 provide advance reservation of resources by offering job execution start
and stop times;

2 allow at least partial access to the local schedules, e.g. the available
timeslots;

3 allow for some control on existing reservations, e.g. by handling re-
quests for cancellation, or time extensions.

Thus, meta-scheduling includes the following main steps:

discover schedulers that (i) manage resources that are compatible with
the requirements of the Grid workflow, and (ii) satisfy (at least) the first
of the remaining two requirements above;

w negotiate suitable timeslots with the pre-selected schedulers;

commit to the advance reservation, and interact with the schedulers to
handle any subsequent change in the agreed-upon reservation.

The meta-scheduler interacts with local schedulers through dedicated
adapters that hide the heterogeneity of the schedulers' native interfaces. These
adapters offer a uniform set of abstract operations to the meta-scheduler, which
include requesting available start time slots for jobs, submitting scheduling re-
quests for a specific time slot, and requesting the state of the current reserva-
tion.

The meta-scheduler described in [20] negotiates with the local adapters us-
ing the WS-Agreement framework [I]. It has been integrated into the UNI-
CORE Grid system, and its functionality has been demonstrated on the VIOLA
testbed for advanced network services [12]. The meta-scheduler is accessible
through UNICORE client plugins, which allow users to specify requests for
co-allocated resources to run a distributed job on VIOLA.

3.1 Limitations of the current meta-scheduling model
The focus of the current implementation is on the meta-scheduling algo-

rithm, rather than on the discovery and pre-selection of the eligible schedulers,
and on the design of the adapters. However, the latter is a serious issue for
the scalability of the proposed approach. Our study of meta-scheduling as a
promising Semantic Grid use case stems from the observation that, while the
adapters provide a uniform set of operations, no shared data model is available
to describe a scheduler's set of capabilities. For example, there is no explicit
and shared definition of scheduling concepts like timeslot or schedule queue,

Architectural Patterns for the Semantic Grid 125

or of capabilities like timeslot reservation change. Instead, these concepts are
left implicit in the implementation of the adapters, which only expose a simple
set of scheduling operations.

This arrangement results in an architecture that is vulnerable to changes.
Firstly, when the schedulers' capabilities change, they are not easily reflected
in the adapters, which leave this knowledge implicit within their code. Sec-
ondly, when the meta-scheduler requirements for the required capabilities
change, eg due to changes in the meta-scheduling negotiation strategy or al-
location decision algorithm, there is no shared vocabulary to describe the new
requirements.

Motivated by these observations, we have proposed [l l] a semantic ap-
proach to meta-scheduling on the Grid, which improves upon the current de-
sign by:

introducing a shared, explicit and lightweight but extensible semantic
model to describe a scheduler's set of capabilities as well as its current
state (which the meta-scheduler will need to query, see requirement 2).
This is known as the Grid Scheduling Ontology;

enhancing the adapters so that they can generate metadata regarding the
schedulers' capabilities;

enhancing the existing meta-scheduler as a Semantic Grid service, which
is (i) aware of the available schedulers' semantics annotations, and (ii)
able to exploit them to perform scheduler discovery and pre-selection.

3.2 The Grid Scheduling semantic model
The design of the enhanced meta-scheduler is based on a semantic model of

Grid scheduling concepts. A detailed presentation of the model can be found
in [I I]; what follows is a brief summary.

At the core, the model includes concepts for schedulers, scheduler capabilities,
scheduler reservation, and additional concepts to represent the state of a local
schedule; each of these classes is the root of an extensible hierarchy. Fur-
thermore, relationships amongst these root classes are established using object
properties, used for instance to associate sets of capabilities to a scheduler.

The model is defined as an ontology in OWL DL [12]; using the OWL DL
operators, scheduler classes can be defined to contain all and only schedulers
with a defined set of capabilities. For example, a limited-disclosure-scheduler, a
subclass of scheduler, is the class of all schedulers that allow their local sched-
ule to be queried.

These intensional definitions provide a focused way to add semantic annota-
tions to individual schedulers, which are instances of one or more of the sched-
uler classes. In their simplest form, annotations include capabilities metadata,

126 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

which may state for instance that that "a scheduler is both capable of offering
advance reservation, and allows queries on its current schedule".

These annotations facilitate the schedulers' pre-selection by a meta-
scheduler. More precisely, they allow a Description Logic reasoner [2] for the
type of DL supported by OWL, to automatically classify a scheduler whose se-
mantic annotations are known, as a member of one or more scheduler classes,
defined intensionally as shown above. Once this classification has taken place,
it is easy to show that scheduler discovery using this model amounts to (i)
selecting from the ontology a scheduler class whose definition satisfies the se-
lection criteria, and (ii) querying the ontology class to retrieve all the individual
schedulers in the class.

Casting this discovery pattern within the Semantic Grid context is straight-
forward: local schedulers (LS) are Grid entities, and their semantic annotations
can be defined as knowledge entities using the terminology introduced earlier;
they are maintained in a metadata store as first-class Grid Entities themselves.
Semantic bindings in this case embody the association between schedulers and
their annotations; the bindings are exploited by the meta-scheduler, which be-
comes a semantically -aware and -capable Grid service.

Figure 3 shows how the meta-scheduler may make use of the S-OGSA se-
mantic services suite presented in Section 4. In the next section, S-OGSA style
interactions are described in a principled way, using the Grid meta-scheduling
case study as an example.

Glid Scheduling

Figure I . Casting meta-scheduling in the S-OGSA context

Architectural Patterns for the Semantic Grid 127

4. Service interaction patterns for the Semantic Grid
The description given in Section 2 provides a static view of the S-OGSA

architecture. Ultimately, however, the goal of provisioning and consuming
semantics in the Grid is realized when S-OGSA services interact with one
another and with Grid entities. We now present the two most relevant service
interaction patterns that define these dynamic aspects of the Semantic Grid.
The patterns follow the main steps in semantic information processing in S-
OGSA, namely:

Producing semantic annotations, i.e., ontology-referenced metadata for
some Grid entity (resources or services), and representing those annota-
tions as persistent knowledge entities. Grid entities and their annotations
are thus both first-class Grid citizens, and can participate in a semantic
binding;

Resolving the semantic bindings in order to retrieve annotations for
given Grid entities.

These patterns describe the preparatory actions that any semantically-aware
Grid service, such as the meta-scheduler and the adapters that are responsible
for producing the metadata, would carry out before semantics can be exploited.

The patterns are presented according to the well-known format discussed
in [16]. The dynamics of each pattern are explained with UML sequence dia-
grams while additional comments are used inside the sequence diagrams wher-
ever the interaction is complex or needs some clarification, so as to make the
diagrams as self-contained as possible.

4.1 Grid entity annotation pattern
Definition: The Grid entity annotation pattern encapsulates the functions
needed to annotate Grid data resources or services, producing either raw or
semantic metadata and store them persistently. By raw metadata we mean
any annotation that can be associated to a piece of data, or, more generally, to
a Grid entity. Semantic metadata, on the other hand, is metadata that carries
explicit references to the semantic models, i.e., reference ontologies, required
for its interpretation. In this work, we are only interested in the latter. When
annotations are stored in a Metadata store they become Grid Resources since
they are given a unique identifier. From this set of annotations, those that link
Grid Entities with Knowledge Entities are called Semantic Bindings.

Example: The capability profile of a scheduler can be expressed using
terminology from a Grid Scheduling Ontology (GSO), so that any user who
has access to the ontology may be able to interpret the profile. The LS (Local
Scheduler) Semantic Adapter shown in Figure 3 supervises and monitors one

128 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

local scheduler and produces semantic annotations regarding its capabilities
and state changes. Annotations are used by the metascheduler for service
pre-selection.

Context: Generation and storage of semantic metadata for Grid entities.

Problem: The use of intelligent reasoning mechanisms requires semantic
metadata.

Solution: The annotation process can be either done manually, semi-
automatically or on-demand without any user interaction. This pattern is
concerned with automatic and semi-automatic annotations according to which
an Annotation Service is able to fetch reference ontologies from an Ontology
Service, and use them to create semantic annotations that can be interpreted
using those ontologies. The outcome of the annotation is persistently stored
using the Metadata Service.

Dynamics: The annotation process is triggered by a requestor that wants to
annotate a piece of data. First, the annotation service needs to obtain a ref-
erence to a suitable ontology. For this, it invokes the Ontology Service which
returns a handler to this ontology. During the annotation process this handler is
used to retrieve ontology concepts and properties from the Ontology Service.
Optionally, the Annotation Service may also retrieve existing annotations from
the Metadata Service, for reference or for updating purposes. When the an-
notation process finishes, the annotation is persistently stored in the Metadata
Service and assigned a unique identifier. The annotation has now become a
special type of Grid Entity that links Knowledge Entities (i.e. the ontology) to
Grid Resources. This Grid Entity is called a Semantic Binding and can be re-
trieved from the Metadata Service using the aforementioned unique identifier:
the Semantic Binding ID.

Associated to the annotation is also, potentially, its provenance metadata,
describing the annotation process itself (when it was performed, by whom,
the external resources it is based on, and so forth). Note that this pattern is
only concerned with S-OGSA service interactions, rather than with the spe-
cific annotation process, which may vary depending on the domain of the Grid
resource and the purpose of the annotation.

4.2 Metadata and Knowledge querying Pattern
Definition: This pattern allows an application to retrieve semantic bindings
andlor query the semantic metadata associated to a set of Grid Entities, with

Architectural Patterns for the Semantic Grid

Figure 2. Data annotation interaction patterns

the help of the metadata and ontology services.

Example: The capabilities required for a scheduler to participate in advance
reservation are represented by one or more scheduler classes in the ontology.
As we have shown, eligible schedulers are all and only the instances of those
classes. Retrieving those instances may require reasoning capabilities, as well
as access to the metadata storage.

Context: Semantically aware Grid services that need to retrieve semantic
bindings in order to perform their function.

Problem: Exploiting semantic bindings involves retrieving semantic metadata
associated to some Grid entity.

Solution: Since semantic metadata can be implemented in a formal language
(e.g., RDF Schema, OWL), reasoning techniques can be used in order to
retrieve the metadata. Depending on the reasoning mechanisms available for
the formal language in which the metadata is implemented, different types
of inferences will be available, from the retrieval of subclasses or ancestors

130 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

of a given class to the classification of sets of individuals according to their
most specific class. During the query answering process, we can exploit the
reasoners capabilities in order to infer new facts by aggregating knowledge
already stored in the Metadata Service.

Dynamics: The behaviour of the Metadata Querying Pattern is shown in Fig-
ure 3. Retrieving raw metadata is straightforward. For semantic metadata,
the metadata service uses the ontology service for expanding or restricting the
queries that are sent in the message, such as adding subclasses of the concepts
used in the query, or detecting inconsistencies in the query before they are
issued to the metadata service.

5. Discussion
In this paper we have provided a dynamic view of the Semantic Grid by

focusing on some of the most common interaction patterns among the seman-
tic middleware components identified in S-OGSA. Our coverage of patterns
here is far from being exhaustive and there are several variations to undertak-
ing the two core Semantic Grid functionalities covered in this paper, namely
annotation and metadata querying.

The annotation (or metadata generation) pattern that we have covered dis-
plays the case, where metadata for grid entities is generated semi-automatically
and on-demand, which in the illustrative scenario corresponds to the LS Se-
mantic Adapter's annotation of a scheduler that has recently joined the VO, or
to a scheduler that has just changed its state. On-demand and semi-automatic
characteristics require the metadata generation pattern to include phases for
discovery of annotation resources (e.g. ontologies).

Annotation could also be done automatically and initiated dynamically as
Grid entities come into existence. Cases where VO membership of Grid
entities change frequently; where most middleware activities heavily rely
on existence of grid entity metadata, or where metadata represents histori-
cal/contextual information of a Grid entity (e.g. provenance), all necessitate
annotation to be a sustained activity. In the sustained annotation case, the
resource discovery phase is generally skipped, and the annotation tooling is
configured to use a specific set of resources and methods.

The metadata querying patterns we have covered demonstrated capabilities
ranging from simple retrieval of raw metadata to expansion of semantic meta-
data via ontological inference.

The patterns are intended to be the building blocks of more complex inter-
actions that build-up activities of middleware and applications in the Semantic
Grid ecosystem. For instance, in our illustrative scenario, the motivation for

Architectural Patternsfor the Semantic Grid

Figure 3. Metadata storage interaction patterns

providing semantic descriptions for local schedulers came from the need for
the Semantic Discovery activity.

Such semantically-enhanced activities are also currently being investigated
in fields such as the Semantic Web (SW) and Semantic Web Services (SWS).
Work in these areas investigates i) suitable technologies and models for
semantically describing resources in their respective distributed environment
(e.g., the Web or the Web services) and ii) how these semantic descriptions
can be exploited in the context of a particular activity with special focus

132 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

on discovery, negotiation and composition. There are certain aspects of the
Grid that appear to have higher priority when compared to other distributed
environments. These aspects and their effect on semantics can be summarized
as follows:

Dynamism and Dependency Management. Unlike other distributed en-
vironments, the resources in the Grid are very dynamic. Resource state
changes frequently, and information regarding the state of the system has
a definite lifetime. Grid information systems aggregate resource state
information (generally represented as XML based resource properties)
into index services in order to provide an aggregate system snapshot and
enable discovery of resources based on their properties. To the extent that
semantic metadata adds to resource state information, managing the lifetime
of the semantic bindings becomes important. These issues, which have so
far attracted little research attention in the semantic web (SW) and seman-
tic web services (SWS) communities, need to be addressed in the Grid context.

Trust and Consistency. Building a well-controlled resource sharing environ-
ment is the main aim in the Grid. Introduction of metadata and knowledge into
the Grid brings about the issues of trust-ability and consistency of these. These
issues are also under investigation in the SW and SWS communities [7]. The
uptake of semantics in the Grid depends on existence of usable models and
frameworks in this area.

6. Future Directions
Our current S-OGSA architectural descriptions, including their static and

dynamic aspects, do not prescribe any semantic technology and content for
the realization of semantic entities and services in the Grid. We are aware
that the guidance of S-OGSA would increase if it is accompanied with
some generic content and experience reports (e.g. best practices) on particular
technology choices. Therefore, as part of our future work we will be providing:

Meta-models for knowledge and metadata. In order to facilitate interop-
erable use of the S-OGSA entities in a Grid environment we need to provide
minimal information on what they are. This will be done by modelling the
different types of realizations for Semantic Bindings (e.g., RDF, natural
language) and Knowledge Entities (e.g., ontologies, rule bases).

Profiles for S-OGSA. In this chapter we have demonstrated S-OGSA with a
scenario where Description Logic based knowledge and RDF based metadata
representations have been used to provide semantic capability descriptions for

Architectural Patternsfor the Semantic Grid 133

schedulers and their discovery through use of a DL classifier. The choice of re-
alization technology for knowledge and metadata modelling depends on many
factors including the nature of the problem at hand, the characteristics of the
candidate semantic technologies and the availability and maturity of their as-
sociated tools/services. Returning to our example in this chapter, the use of an
open-world based DL classifier proved suitable for discovery of distributed re-
sources. This however should not imply that these particular technologies are
fit for the solution of other Grid problems (e.g. policy reconciliation, agree-
ment negotiation). In fact closer investigation of such problems [7]has shown
that semantic technologies other than DL and RDF could be ideal for tailoring
solutions to these problems. Based on this observation we would like to pro-
vide profiles for S-OGSA that demonstrate exploitation of different semantic
technologies for the solution of different Grid problems.

References

[l] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web services agreement specification. Techni-
cal report, Global Grid Forum, July 2005. https://forge.gridforum.org/projects/graap-
wg/document/WS-AgreementSpecification/en/l6.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard.
Web services architecture. Available at http:Nwww.w3.orglTR/ws-arch/, 2004.

[4] D. Brickley and R. V. Guha. Rdf vocabulary description language 1.0: Rdf schema.
Available at: http://www.w3.org/TR/rdf-schema/, 2004.

[5] 0. Corcho, P. Alper, I. Kotsiopoulos, P. Missier, S. Bechhofer, D. Kuo, and C. Goble. An
overview of s-ogsa: a reference semantic grid architecture. Journal of Web Semantics, 4,
2006.

[6] I. Foster, H. Kishimoto, A. Sawa, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,
F. Siebenlist, R. Subramaniam, J. Treadwell, and J. V. Reich. The open grid services
architecture, version 1.0. Technical report, Open Grid Services Architecture WG, Global
Grid Forum, 2005.

[7] R. Gavriloaie, W. Nejdl, D. Olmedilla, K.E. Seamons, and M. Winslett. No registration
needed: How to use declarative policies and negotiation to access sensitive resources on
the semantic web. In 1st European Semantic Web Symposium (ESWS2004), pages 342-
356. Springer-Verlag, 2004.

[8] C. A. Goble, D. D. Roure, N. R. Shadbolt, and A. A. Fernandes. In The Grid 2: Blueprint
for a New Computing Infrastructure Second Edition, chapter Enhancing Services and Ap-
plications with Knowledge and Semantics. Morgan Kaufmann, i. foster and c. kesselman,
edition, 2003.

[9] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,
B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bringing seman-
tics to web services: The owl-s approach. In First International Workshop on Semantic

134 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Web Services and Web Process Composition (SWSWPC 2004), San Diego, California,
USA, 2004.

[I 01 D. L. McGuinness and F. v. Harmelen. OWL Web Otology Language Overview, February
2004. W3C Recommendation.

[I 11 P. Missier, P. Wieder, and W. Ziegler. Semantic support for Meta-Scheduling in Grids.
Submitted.

[I21 Online. VIOLA - Vertically Integrated Optical Testbed for Large Application in DFN,
2005. Project web site: http://www.viola-testbed.de/.

[I31 L. Pouchard, L. Cinquini, and G. Strand. The earth system grid discovery and seman-
tic web technologies. In Workhop for Semantic Web Technologies for Searching and
Retrieving ScientiJic Data, at the 2nd International Semantic Web Conference, 2003.

[I41 D. Roman, U. Keller, H. Lausen, J. d. Bruijn, R. Lara, M. Stollberg, A.Polleres, C. Feier,
C. Bussler, and D. Fensel. Web service modelling ontology. Journal ofApplied Ontology,
1 :77-106,2006.

[15] D. De Roure, Y. Gil, and J. A. Hendler. Guest editors' introduction: E-science. IEEE
Intelligent Systems, 19:24-25, 2004.

[I61 D. C. Schmidt, M. Stal, H. R., and F. Buschmann. Pattern-Oriented Software Architec-
ture: Patterns for Concurrent and Networked Objects, volume 2. John Wiley and Sons
Ltd, 1 edition, 2000.

[I71 J. Schopf. Ten Actions When Grid Scheduling - The User as a Grid Scheduler. In
J. Nabrzyski, J. Schopf, and J. Weglarz, editors, Grid Resource Management - State of
the Art and Future Trends, pages 15-23. Kluwer Academic Publishers, 2004.

[IS] N. Shaman, N. Alpdemir, J. Ferris, M. Greenwood, P. Li, and C. Wroe. The mygrid
information model. In UK e-Science All Hands Meeting, 2004.

[19] J. Treadwell. Open grid services architecture glossary of terms. Technical re-
port, Open Grid Services Architecture WG, Global Grid Forum, 2005. Available at:
http://forge.gridforum.org/projects/ogsa-wg.

[20] 0. Waldrich, P. Wieder, and W. Ziegler. A meta-scheduling service for co-allocating
arbitrary types of resources. In Proc. of Sixth International Conference on Parallel Pro-
cessing and Applied Mathematics (PPAM 2005), 2005.

A METADATA MODEL FOR THE DISCOVERY
AND EXPLOITATION OF SCIENTIFIC STUDIES

Shoaib Sufi
CCLRC, Daresbury Laboratory, Warrington WA4 4AD. United Kingdom

s.a.sufi@dl.ac.uk

Brian Matthews
CCLRC, Rutherford-Appleton Laboratory, Didcot, Oxfordshire OX11 O M , United Kingdom

b.m.matthews@rl.ac.uk

Abstract A general model for the representation of scientific study metadata does not ex-
ist. The e-Science enablement of the data holdings of CCLRC requires such a
model to allow access to the data resources of the facilities in a uniform way. By
proposing a model and an implementation, the adoption of such a system would
aid interoperability of scientific information systems in the organisation and
form a specification of the type and categories of metadata that studies should
capture about their investigations and the data they produce inside and outside
of CCLRC. This allows further exploitation of scientific Studies and associated
datasets, ease citation, facilitate collaboration and allow the easy integration of
pre-Grid metadata into a common Gridte-Science enabled scientific information
platform. In this paper, we describe a science metadata model developed at
CCLRC, with its motivation, overall design, usage and future development.

Keywords: metadata, e-Science, data curation, data integration, search, browsing.

136 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction
Scientific research projects have two major outputs: publications, in jour-

nals and other forms of literature; and the data sets generated during the course
of observations and experiments. These are then subject to analysis and visu-
alisation to generate the results reported in the literature. Traditionally, science
has concentrated on the former output as the major means of disseminating
the results of research, whilst access to the latter has been restricted to small
groups of individuals closely associated with the original researcher. However,
modern distributed information systems offer the opportunity to provide access
to both outputs to a wider audience. This allows other researchers to verify the
results of the analysis, and also to reuse the data-sets to carry out secondary
analysis, possibly in combination with results from elsewhere, to produce new
insights without the cost of repeating the original experiment.

These data resources are typically stored in many file systems and databases
physically distributed throughout organisations with, at present, no uniform
way of accessing or searching them to find what data is available. It is often
necessary to open and read the actual data files to find out what information
they contain. There is little consistency in the information which is recorded
for each data-set held and sometimes this information may not even be avail-
able on-line, being recorded only in experimenters' logbooks. This situation
creates the potential for serious under-utilisation of these data resources or
for wasteful re-generation of data. It also hinders the development of cross-
discipline research, as this requires the location and combination of data across
traditional disciplinary boundaries.

Metadata is seen as a key factor in the archiving and distribution of scientific
data. Through the use of good metadata models, defined at the appropriate
level, scientists can publish and share data, and allow the results of experiments
and studied to be browsed and searched. Appropriate metadata thus encourages
reuse of data within and across scientific disciplines.

The CCLRC Scientific Meta-Data Model (CSMD) is a study-data orientated
model [I]. It seeks to capture the high level information pertaining to scientific
studies and the data that they produce. As a base minimum the CSMD forms
a specification of the types of information a scientific study should maintain in
order to be useful to parallel and follow on studies as well as to the researchers
themselves in later years (e.g. loss of original data, check previous results
and perform some new form of analysis). The CSMD supports indexing at
various levels of granularity from the study to investigations inside the studies
to data collections and atomic data objects (e.g. files and databases, including
query tables). The indexing mechanism supports keywords and taxonomic
classification while including support for reference to controlled vocabularies.
The latest version is version 2 [2].

A Metadata Model for the Discovery and Exploitation of ScientiJic Studies 137

The CSMD is being used as the core metadata carrier for the Grid enabling
of the world class large scale scientific facilities at CCRLC covering area such
as Neutron Science, Lasers and Synchrotron Science. A generic model cover-
ing all these requirements did not previously exist, and therefore CSMD was
developed as a core component of any facility Data Grid aiding collaboration,
exploitation and citation of scientific studies across the virtual organisation.

In this paper, we briefly describe the notion of a Science Data Portal as
developed in CCLRC. We go on to describe the metadata model used in the
data portal, both in its overall structure, and some of the details, including an
example. In future developments, we discuss how this metadata model can be
related to metadata formats for cataloguing publications.

2. A Science Data Portal
The concept of a data portal [8-1 Ilhas been developed as a tool for browsing

and searching the contents of distributed scientific data sources across a variety
of scientific domains. Such a system has potentially a wide spectrum of users
from scientists working in related fields wanting to find information on a topic,
through experimenters interested in accessing and analysing their own data, to
the data curators based at the facilities themselves who want to use the portal
as a data management tool.

A data portal system has been developed within CCLRC [8-91 to enable
researchers to access and search metadata about data resources held at the ISIS
and SRS facilities within CCLRC. The system being developed has three main
components: a web-based user interface; a metadata catalogue; and generic
data resource interfaces, integrated using standard Web protocols. The system
can offer a distributed interface to scientific data resources both inside and
outside CCLRC.

The data resources accessible through the data portal system may be located
on any one of a number of data servers. Interfaces between these existing data
resources and the metadata catalogue are being implemented as web services
based wrappers that will present the relevant metadata about each resource to
the catalogue so it appears to the user to be part of the central catalogue.. These
wrappers are implemented as XML encoding of the specific metadata relating
to that resource using the metadata model schema; wrappers are an established
technique for providing such interfaces 1151.

2.1 A Metadata Catalogue

In order to construct a generic data portal, including mechanisms for cata-
loguing, browsing and accessing data resources across a wide number of sci-
entific domains, a generic metadata model for scientific data is needed.

138 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

There are many metadata formats supporting specific data sources and do-
mains such as CERA which has been developed for earth observation data [I31
and the NERC Datagrid metadata model for environmental data [14]. Also,
there are general models of metadata such as the Dublin Core [12] for discov-
ery information for library resources. However, there has been few attempts
to provide a metadate model to cover the generic nature of the scientific data
holdings, similar to the Data Documentation Initiative [16] developed for the
social sciences. Such a metadata for science has the requirement of being both
more specialised than general metadata models , whilst being more general
than metadata formats for specific domains in science, and covering a large
range of metadata types, as defined classifciations of metadata such as [17].
The CSMD is designed to be such a generic model for science data holdings.

When the metadata model is used in a particular domain, more detailed
metadata may be provided. A mechanism is needed to access such metadata in
an interoperable way from the generic scientific metadata while preserving the
meaning, and allows deeper searches into the domain specific metadata. Thus
the CSMD is designed to be extensible for particular domains of interest.

The logical structure of the metadata in the catalogue is based on the scien-
tific metadata model. Figure 1 gives a breakdown of the metadata model into
its six major components. The study metadata corresponds to associative de-
scriptive metadata, the access condition to associative restrictive metadata, data
description to a form of schema metadata (describing how the data is laid out in
the file structure), data location to navigational metadata, and related material
to associative supportive metadata. Additionally, keywords can be assigned
from controlled vocabularies for topic based browsing. These components are
considered in more detail in later sections of this paper.

The model is necessarily very generic to cater for a large range of differing
types of data. Specialisations of this metadata format will be used for each
domain, and generic queries can be then devised to search over the common
views on the metadata. The model uses a hierarchical model of the struc-
ture of scientific research programmes, projects and studies, and also a generic
model of the organisation of data sets into collections and files. This allows
a flexible structure to be developed, relating different data sets and their com-
ponents together. For example related sets derived from one another from raw
data through data reduction and analysis to a final result; alternative and failed
analyses can also be recorded, as well as calibration data sets, against which
results are measured.

The metadata catalogue is implemented using a standard relational database.
Once the specific data sets required by the user have been identified using
the available metadata, the catalogue provides links to the files holding the
actual data. Users can then use these links to access the data with their own
applications for analysis as required.

A Metadata Model for the Discovery and Exploitation of ScientiJic Studies 139

Keywords associated with the study. Provides an index to
the subject of Ihe study, possibly from a controlled vocabulary.

Provenance of the study. Descr~bes who did the
study, what was done, why and when.

Conditions of Use. Provides information on who can
access the data, any requirements of the users, and
how the data can be accessed.

Detailed description. Provides information on how
the data data holdings are organised into data
collections and atomic data objects.

Locality of the data. Provides a navigational
structure lo where the data can be found.

References. Provides links into the supporting
literature, other studies, and community information to
give context for the study.

Figure 1. The Top-level Components of the Metadata Model

3. The Metadata Structure

The metadata within the general metadata structure is laid in a series of
classes and subclasses. We do not describe the whole model in detail for rea-
sons of space, but rather select some areas of particular interest.

3.1 Modelling Scientific Activity

The data model attempts to capture scientific activities at different levels:
the main unit is the Study, which lies in a context of a science research pro-
gramme, governed by policies. Each study has an Investigator that describes
who is undertaking the activity, and the Study Information that captures the de-
tails of this particular study. Studies include particular scientific investigations.
The general structure of the metadata is given as a UML diagram in Figure 2.

Policy are company or government policies which initiate Programmes of
work.

Programmes are related studies that have a common theme which are usu-
ally funded and resourced directly or with an intermediary organisation
under the rubrick of the programme. The UK e-Science Programme is
an example of this.

140 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 2. Model of the hierarchy of scientific data holdings

Studies (sometimes referred to as Projects): Studies investigate some as-
pect of science and have a Principal Investigator and/or institution, co-
investigator~ and are usally funded. e.g. single projects such as EPSRC
projects, or application for beam time on ISIS.

Investigations are studies or parts of studies that have links directly to data
holdings. More specific types of investigations include experiments,
measurements or simulations.

Experiments: investigations into the physical behaviour of the envi-
ronment usually to test an hypothesis, typically involving an instru-
ment operating under some instrumental settings and environmen-
tal conditions, and generating data sets in files. E.g. the subjection
of a material to bombardment by X-Rays of known frequency gen-
erated by the Synchrotron Radiation Source with the result diffrac-
tion pattern recorded.

Measurements: investigations that record the state of some aspect of
the environment over a sequence of points in time and space, us-
ing some passive detector, e.g. the measurement of temperature at
a point on the earth surface taken hourly using a thermometer of
known accuracy.

A Metadata Model for the Discovery and Exploitation of Scienti$c Studies 141

Simulations: investigations that test a model of part of the world, and
a computer simulation of the state space of that model. This will
typically involve a computer program with some initial parame-
ters, and generate a dataset representing the result of the simula-
tion. E.g. a computer simulation of fluid flow over a body using a
specific program, with input parameters the shape of the body, and
the velocity and viscosity of the fluid, generating a data set of fluid
velocities.

Each investigation has a particular purpose and uses a particular experimen-
tal set up of instruments or computer systems. Experiments may be organised
within larger studies, which themselves may be organised into programmes of
linked studies.

Classes within the model have several fields. For example, investigator has a
name, address, status, institution and role within the study. For reasons of space
we cannot provide a complete description of all the available classes within the
metadata model. For illustration, we consider the Study class. Within a Study,
there are several fields, as in Table 1.

Funding Source of funds of the study, including grant-funding body.

Time Date, time and duration of study.
Can be either a point time and date, or a begin time and end time.
We expect it to be in a standard format: dd/mm/yyyy for dates; hh:mm:ss for
times.

Purpose Description of purpose of study, including:

w Free text abstract of investigation

Keywords categorising subject of investigation, preferably selected
from a controlled vocabulary.

Study type: a field that can be used to indicate the type of study being
undertaken.

Status Status of study, (not-started, in progress, complete).

Resources Statement of the resources being used, e.g. which facility.

Table 1. Study Description Class Fields

3.2 Modelling scientific data holdings

Investigations have datasets associated with them; similarly, in CSMD, each
investigations in associated a set of metadata describing the data holding (DH)

142 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

associated with that investigation. The metadata format given here is designed
for use on general scientific data holdings. Thus, data holdings have three
layers: the experiment, the logical data, and the physical files. The overall
structure of the model for scientific data holdings is given in Figure 3. Data
holdings are considered as hierarchies, with Data Sets, generalised to Data
Collections (DC), broken down into individual logical Data Files, generalised
in the model as Atomic Data Objects (ADOs) as they may not be held in file-
store, but in for example databases. At each level of granularity, metadata can
be provided giving representation information [IS] at the appropriate level of
the data holding.

An investigation is a study that generates raw data. This raw data can then be
processed via a set of tools, forming on the way intermediate data sets, which
may or may not be held in the data holding. The final processing step generates
the final analysed data set. At each stage of the data process stores data in a
set of physical files with a physical location. It is possible that there may be
different versions of the data sets in the holding. In a general data portal, all
stages of the process should be stored and made available as reviewers of the
data holdings may wish to determine the nature of the analysis performed,
and other scientist may wish to use the raw data to perfom different analyses.
Thus type markers ('raw', 'intermediate', 'final') need to be kept with DCs and
ADOs and relationships between the DCs of different types recorded.

Thus each data holding takes the form of a hierarchy: one investigation gen-
erates a sequence of logical data collection, and each data collection is instanti-
ated via a set of physical objects. The design of the metadata model is tailored
to capture such an organisation of data holdings. A single metadata record in
this model can provide sufficient metadata to access all the components of the
data holding either all together or separately.

This models distinguishes between the logical data holding, describing the
data objects and their structural hierarchy, and the data location. The data loca-
tion provides a mapping between the URIs used in the data definition compo-
nent of the metadata model, and the actual URLs of the files. This can provide
facilities for describing mirror location for the whole structure, and also for
individual files.

3.3 Parameters
Parameters can be associated with either Data Holdings, Data Collections,

or ADOs. The same metadata item is used to represent either experimental
conditions and measured items stored as data points in the data collection, but
are rather distinguished via a parameter type qualifier ('fixed' or 'measured').
Each parameter has a set of fields describing its value (if fixed in as an input
parameter), the units of measurement used to qualify the data points, the range

A Metadata Model for the Discovery and Exploitation of ScientiJic Studies 143

Data- Set I [Raw] Data- %t 2 [Infer] Data-Set 3 [Find]

Figure 3. Model of the hierarchy of scientific data holdings

of values over-which a parameter can take and the error margin expected on
the value. Additionally, there is support for parameter aggregation.

3.4 Other metadata components
Additionally to the provenance and data holding components of the meta-

data record in CSMD, there are also components for recording other aspects of
the information pertinant to a study. We discuss them here briefly.

Topic. A top-level topic can be associated with an study. This can describe
which discipline the study falls under (e.g. Chemistry, Crystallography), and
also some more discipline specific keywords, which can be selected from an
associated controlled vocabulary; the metadata record will also track which
controlled vocabulary is being used. This component in intended for use as a
index for searching and browsing through the metadata catalogue.

Access control. Access is controlled by the access entry in the metadata
record; how this is actually done is dependent on the data holder. Typically, it
will contain a list of users or groups who are allowed access to the metadata
and data, or a pointer to an access control system which contains such data for
this study. For example, there might be an access type, with settings such as
open, on application, restricted, commercial in confidence. This may be given
in conjunction with explicit instructions on how to access the data, and who
to contact. Access control should be reflected throughout the metadata model

144 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

allowing different granularity of access control. For example, whilst a study
overall maybe public, certain parts of the data holding (perhaps unprocessed
files) maybe restricted to the investigators themselves.

Related Materials. One or many links and or textual descriptions of ma-
terial related to this study e.g. earlier studies or parallel studies. Also, this
component would be the appropriate place to link to associated publications
derived from the dataset, publications which are cited by the investigation, and
supporting material such as glossaries and dictionaries.

4. Metadata Conformance
The full CSMD metadata model is very detailed and using it to its full po-

tential requires a great deal of metadata to be entered. This is a time consuming
process, requiring a great deal of effort on the part of the experimentor andlor
facility administrator, and in practice, the application of the metadata may not
require the full level of detail to support an desired application. Thus we have
defined levels of conformance for the CSMD, as detailed in Table 2.

1 Study and Investigation metadata with indexing at the Study level
2 Level 1 + DataHolding metadata (i.e. DataSets and DataObjects)
3 Level 2 + related material, Access condition, indexing to data collection levels
4 Level 3 + indexing to data object level and data object parameter information
5 All metadata components are filled as L4 + funding, resources used, facilities used etc

Table 2. CSMD Conformance Levels

Conformance level 1 provides "search metadata" similar to that typically
provided by simple library or publication metadata such as Dublin Core.
CSMDs mapping to Dublin Core is discussed in [19]. As the level of con-
formance is increased, first information about the data holding is included,
allowing the data collections to be searched in detail. Then contextual and ac-
cess control information is added, allowing data collections to be accessed via
the portal. Levels 4 and 5 then add further detail to the model for more com-
plex exploration of the data holdings. Currently, the CCLRC Data Portal is
conformant to level 2 with additionally more detailed parameter information.

5. An Example
As an example of this scientific metadata model, consider the SXD infor-

mation from the ISIS Neutron Spallation Source. A study in this case is an
application for beam-time, uniquely identified with an RB number, which cov-
ers a programme of investigations, and is described by a description of the
purpose in the original study application. This programme is in turn broken

A Metadata Model for the Discovery and Exploitation of Scientific Studies 145

down into a series of individual investigations, each of which are experiments
on the SXD detector. Each investigation may have a sequence of runs, each
generating a data set. Each run keeps the major parameters of the experiment
the same (e.g. temperature of study), but alter some other parameter (e.g. ori-
entation of the sample in the target). This information needs to be preserved in
the metadata model.

For example an investigation with name Benzene, variable temperature
study: 150K, would have a user, purpose and date and time information as-
sociated with it. It should have a unique ID (not necessarily the RB number
as that may relate to a programme of investigations), and it will have a set of
RAW data files associated with it, for example: files SXD10091, SXD 10092,
SXD10093, SXDlOO94, SXD10095. There may also be a set of intermediate
SXD files, and also a set of processed final files in standard data formats for
specific programs, such as .HKL, .INS and .RES files. The system should keep
track of the relationship between files, and record which have been processed.
We give a sample of the fields in the metadata. We use #classname to repre-
sent cross-references between classes. Thus the metadata of the experiment is
represent as follows.

Experiment
StudyID SXD 1009 1
Study Name Benzene, variable temperature study: 150K
Investigator #investigator
Study Information #study-information
Data holder #data-holder
Instrument #instrument
Conditions #conditions

The Investigator gives details of the people involved in the study.

Investigator
Name Anne X. Perimenter
Institution University of Somewhere
Status Lecturer
Role Principal Investigator
Address Dept of Organic Chemistry, Univ of Somewhere, Somewhere, UK.

Study information gives the information on this study.

Study Information
Funding Source EPSRC
Time 111 1/00, 11.45
Purpose #purpose
Status Complete
Resources Beam time on ISIS using the SXD, for 1hr on 111 1/00

146 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

The Purpose itself may have several fields.

Purpose
Abstract To study the structure of Benzene at a temperature of 150K.
Keywords Chemistry: organic: benzene: denatured benzene, C6H6, C6D6

The data holder refers to the institution principally responsible for holding
the data.

Data Holder
Institution ISIS, CCLRC Rutherford Appleton Laboratory

The conditions in this case just record the temperature under which the Sam-
ple has been studied.

Conditions
Temperature 150K

This will also have to accommodate different organisations of files, not just
the raw/intermediate/final as given in the ISIS model. Files may also be in
several different locations, separating out the identity of data sets from the
location. Giving filetypeldirectory pairs does this:

Data location
Data holding loca- ftp://ftp.isis.rl.ac.uk/SXD/ SXD1009/
tions

http://www.dooc.uos.ac.uW-perimenterlbezenel
Data set Directo- (RAW, raw/), (Intermediate, SXD/), (HKL, HKLI), (INS, INS/),
ries (RES, RES/).

The data description would break down into a hierarchy of entries. Firstly
the top-level entry, which contains references to the data sets of the study.

Data description
Data Sets #raw, #intermediate, #processed

Then the raw data set would have references to the metadata for each file
(not the file itself):

Raw
Dataset type RAW
Files #SXD 1009 1 .RAW, #SXD 10092.RAW, #SXD 10093 .RAW,

#SXD 10094.RAW, #SXD10095.RAW

A Metadata Model for the Discovery and Exploitation of Scientijk Studies 147

Each file would have a metadata entry, giving its URI:

SXD10091.RAW
URI SXD 1009 1 .RAW

There will also be a dataset entry for intermediate files and processed files,
omitted for brevity. The data set can be represented as a XML model, and can
be displayed in the CCLRC Data Portal.

6. Conclusions and Future Development
The CCLRC Data Portal has been successfully piloted within the context

of the e-Science programme at CCLRC, using sample data from the ISIS and
SRS facilities at CCLRC. The CSMD has also been used on a variety of UK
e-ScienceIGrid enabling projects as the premier metadata model, including
the NERC e-Minerals [3], EPSRC e-Materials [4], and the EPSRC Integra-
tive Biology [5] projects. Further, it has been used as a template on a vari-
ety of other projects in the e-Science field; for example, the EPSRC MyGrid
project adopted version 1 and enhanced the provenance information [6]; and
the JISC eBank project has developed the format for crystallography data [7].
The model has proven adaptable to a wide variety of situations.

The major current activity is to roll out the data portal onto the ISIS ICAT.
This will cover a twenty year back catalogue of experiments on the ISIS Neu-
tron Spallation Source. This projects is using a Relational Schema based on
version 2 of the CSMD. Further, the EPSRC CCPl (Collaborative Computa-
tional Project in Quantum Chemistry) is assessing CSMD for metadata needs
on their Grid Data Management Middleware. Future work includes using the
model and data portal within other facilities at CCLRC, such as the Diamond
Light Source, a new x-ray synchrotron, and the Central Laser Facility.

A common metadata format for scientific data also allows the possibility of
providing a single point of access to both the major outputs of science: data and
publications. By using the common or interoperable features of the generic sci-
entific metadata model, we allow the possibility of combined searches across
both domains, or alternatively, using the metadata from one domain (say scien-
tific publications) to search and access appropriate information from the other
(say retrieve relevant data sets to test the claims of the publication).

The current work under the JISC funded CLADDIER project [20] seeks to
integrate the use of persistent Identifiers across data and publications using
existing Publication institutional repository systems, inparticular the CCLRC
ePubs system. In order to have a common search mechanism over library and
data portals, a base level of simple metadata is required; this can be provided
by Dublin Core and as we have seen, CSMD conformance level 1 can provide
Dublin Core metadata. The Related Material component of the metadata can

148 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

record citation of data by publications and conversely the citation of publica-
tions by the data, to give context to the study. Common controlled vocabular-
ies can be used to index both data and publications. Further issues arise when
we use metadata at different levels of abstraction as in the FRBR model [21]
(which appears to have a close relationship to the notions of data holding in
CSMD) and versioning of data holdings for citation in a publication.

Future considerations on the use of the CSMD will consider the require-
ments of Digital Curation (preservation, enrichment and availability) upon the
metadata record; metadata population strategies in the scientific process; and
re-expression as an ontology. Experience to data has shown that the CSMD
covers a wide area of scientific research work in sufficient detail in a robust
yet usable fashion. We would anticipate that the model would be suitable as a
common core for other more domain specific metadata models; ultimately to
allow rich discovery and exploitation of the scientific record into the long-term
hture.

Acknowledgments
We would like to thank Kerstin Kleese van Dam, and the other members of

the CCLRC e-Science Data Management team.

References

[l] S. Sufi, B. Matthews, K. Kleese van Dam. An Interdisciplinary Model for the Repre-
sentation of Scientific Studies and Associated Data Holdings. UK e-Science All Hands
meeting, Nottingham, England, 02-04 Sep 2003

[2] S. Sufi, B. Matthews CCLRC Scientific Metadata Model: Version 2. DL Technical Re-
ports, DL-TR-2004-001,2004. http:Nepubs.cclrc.ac.uWwork-details?w=30324

[3] L. Blanshard, K. Kleese van Dam, M. Dove Environment from the Molecular Level e-
Science project and its use of CLRC's Web Services based Data Portal Proceeding of the
1st. International Conference on Web Services, 2003.

[4] L. Blanshard, R. Tyler, K. Kleese van Dam. eMaterials: Integrating Grid Computation and
Data Management Services. UK e-Science Programme All Hands Meeting (AHM2004),
Nottingham, 2004

[5] D. J. Gavaghan, A. C. Simpson, S. Lloyd, D. F. Mac Randal, D. R. S. Boyd. Towards a
Grid infrastructure to support integrative approaches to biological research Phil. Trans.
Royal Society Series A 363 1829-1841,2005

[6] N. Shaman, N. Alpdemir, J. Ferris, M. Greenwood, P. Li and C. Wroe. The myGrid
Information Model. UK e-Science All Hands Meeting 2004 Nottingham, England, 2004.

[7] S. J. Coles, J. G. Frey, M. B. Hursthouse, M. E. Light, A. J. Milsted, L. A. Can; D.
DeRoure, C. J. Gutteridge, H. R. Mills, K. E. Meacham, M. Surridge, E. Lyon, R. Heery,
M. Duke, M. Day. An e-Science environment for service crystallography -from submis-
sion to dissemination. Journal of Chemical Information and Modeling, Special Issue on
escience, 2006.

A Metadata Model for the Discovery and Exploitation o f Scientific Studies 149

[8] J V. Ashby, J. C. Bicarregui, D. R. S. Boyd, K. Kleese van Dam, S. C. Lambert, B.
M. Matthews, K. D. O'Neill. The CLRC Data Portal British National Conference on
Databases, 2001.

[9] J .V. Ashby, J. C. Bicarregui, D. R. S. Boyd, K. Kleese van Dam, S. C. Lambert, B.
M. Matthews, K.D. O'Neill. A Multidisciplinary Scientific Data Portal. HPCN 2001:
International Conference on High Performance and Networking Europe, Amsterdam,
2001.

[lo] C. Houstis, S. Lalis. ARION: An Advanced Lightweight Software System Ar-
chitecture for accessing Scientific Collections, Cultivate Interactive, no.4, 2001.
http:Nwww.cultivate-int.org/issue4/arion/

[I 11 J. Ryssevik, S. Musgrave. The Social Science Dream Machine: Resource discovery, anal-
ysis and delivery on the Web, Proceedings of the the [ASSIST Conference, Toronto, 1999.
http://www.nesstar.org/papers/iassist~0599.html

[12] The Dublin Core Metadata Initiative, http:l/www.dublincore.org.

[13] H. Hoeck, H. Thiemann, M. Lautenschlager, I. Jessel, B Marx, M. Reinke. The CERA
Metadata Model. Technical Report No. 9, DKRZ - German Climate Computer Centre,
1995, http://www.dkrz.de/forschung/reports/report9/CERA.book.html

[14] K. O'Neill, R. Cramer, M. Gutierrez, K. Kleese van Dam, S. Kondapalli, S. Latham, B.
Lawrence, R. Lowry, A. Woolf. A specialised metadata approach to discovery and use of
data in the NERC DataGrid Proceedings of the UK. e-science All Hands Meeting, 2004.

[IS] C. Baru, A. Gupta, V. Chu, B.Ludscher, R. Marciano, Y. Papakonstantinou, P. Velikhov.
XML-Based Information Mediation for Digital Libraries Digital Libraries '99, 1999.
http://www.npaci.edu/DICE/Pubs/dl99-demo.pdf

[16] The Data Documentation Initiative. http:/lwww.icpsr.umich.edu/DDI/

[17] K. G. Jeffery. Metadata. Information Systems Engineering, S. Brinkkemper, E. Linden-
crona, A. Solvberg (Eds), Lecture Notes in Computer Science, Springer Verlag, 2000.

[IS] Reference Model for an Open Archival Information System (OAIS). CCSDS 650.0-B-1
Blue Book. Issue I. IS0 14721:2003,2002.

[19] B. M. Matthews, M. D. Wilson, K.Kleese van Dam. Accessing the Outputs of Scientific
Projects In Proceedings of CRIS 2002, Current Research Information Systems, Kassel,
Germany, 2002.

[20] CLADDIER http://claddier.badc.ac.uk/

[21] Functional Requirements for Bibliographic Records, International Federation of Li-
brary Associations and Institutions, UBCIM Publications New Series Vol 19, 1998.
http://www.ifla.org/VII/s 13/frbr/frbr.pdf

IDEAS FOR THE PROVISION OF ONTOLOGY
ACCESS IN GRID ENVIRONMENTS

Miguel Esteban Gutikrrez and Asunci6n G6mez-Pkrez
Ontology Engineering Group
Universidad PolitPcnica de Madrid
Campus de Montegancedo s/n, 28660, Boadilla del Monte
Madrid, Spain

mesteban@fi.upm.es

asun@fi.upm.es

Abstract Ontologies are the backbone of the Semantic Web. Current grid architectures
do not consider their usage, and there are no protocols nor standards in the Grid
community for dealing with them. Therefore, the provision of appropriate means
for accessing, querying and using ontologies effectively is a key factor if we want
to enrich the current grid with semantic technologies and to support progress
towards the next generation Grid, that is, the Semantic Grid.

Keywords: ontologies, Semantic Grid, semantic technologies, WS-DAIOnt, WS-DAI,
OGS A.

152 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

The increasing use of semantic technologies has reached almost every
computer-related field, including the Grid. The next generation Grid should
virtualise the notion of distribution in computation, storage, and communica-
tion over unlimited resources using well-defined computational semantics, as
the Semantic Grid [7] is proposing. A grid node may provide new resources
and services and their functional and non functional properties should be ex-
plicitly defined by means of ontologies, formal and explicit specifications of
shared conceptualizations [15]. Therefore, if semantic technologies are to be
used, it is fundamental to provide the appropriate means for accessing, query-
ing and using ontologies in the Grid.

In this chapter, we analyse the problem of accessing, querying and using
ontologies concerned with the current Grid architecture, taking as starting point
the lessons learnt about this topic in the Semantic Web.

The chapter is organised as follows: Section 2 collects some of the most im-
portant lessons learnt in the Semantic Web regarding ontology access, query
and use. Section 3 comprises an analysis of the ontology access problem in the
context of the current Grid. Section 4 presents WS-DAIOnt, a proposed mech-
anism for ontology access in the current Grid. Finally, Section 5 concludes
with the current state of development.

2. Lessons Learnt from the Semantic Web

Recently, the W3C has recommended three languages: RDF ', RDFS and
 OWL^, to represent knowledge in the Semantic Web.

In addition, several ontology development tools (i.e., protkgk4, W ~ ~ O D E ' ,
KAON~) support the creation of ontologies in such languages. There are also
ontology query languages like SPARQL [13], RDQL [14], RQL [12], SeRQL
[5] used for retrieving RDF(S) and OWL ontologies, and inference engines like
F ~ C T ~ and RACER [l 11 that infer knowledge and data that are not explicitly
declared in the ontologies. Normally, these querying and inference tools are
strongly related to the language in which the ontology is implemented. Such
languages differ in their expressiveness (the kind of knowledge that can be
represented) and in their inference mechanisms (the kind of reasoning they

Ideas for the Provision of Ontology Access in Grid Environments 153

carry out). For a detailed description and comparison of languages and tools
we recommend [lo].

The diversity of existing ontology languages and tools causes the transla-
tion problem, which appears when an ontologist decides to reuse an ontology
(or part of it) with a tool other than the one used in its development, or in a lan-
guage other than those in which the ontology is available. On the other hand,
several APIs and query languages permit accessing ontologies implemented in
a given language and an ontology user (or an application that uses the ontol-
ogy) should know how to retrieve the ontology content using those APIs. As
example, we can say that RDF(S) ontologies can be stored in sesame8, 3store9,
Joseki", Jena", ~ o w a r i ' ~ or even Oracle with its support for RDF(s)'~, and
each has its own means for accessing the RDF(S) ontologies.

In this scenario interoperability and portability problems arise since the
heterogeneity (different characteristics, properties and capabilities) of the lan-
guages and tools used for the development and storage of the ontologies might
prevent the reutilization of these ontologies in different infrastructures because
of their technological differences, namely, their limitations, restrictions and
requirements.

At present, there are some language specific initiatives in the Semantic Web
community devoted to solving specific problems, such as the W3C SPARQL
query language, created to provide a RDF(S) query language for accessing to
RDF(S) stores14 [13], or the DIG interface, targeted to providing a common
API for description logic-based systems interoperability [4].

Despite all these initiatives, the Semantic Web community does not have a
standard mechanism or protocol for accessing ontologies implemented regard-
less of the language and tool used for its development.

3. Possibilities for Providing Ontology Access in the Grid
Up to now, current grid architectures have not taken into consideration on-

tology use; therefore, no protocols nor standards are available in the grid com-
munity to access and use them.

To use ontologies as other resources in the Grid, we must be able to access
their contents physically, as we do with any other available resource. There-
fore, the first requirement for using ontologies is to have the appropriate means

9http://threestore.sourceforge.net/
'Ohttp://www.joseki.org/
" http://jena.sourceforge.net/
'2http://www.kowari.org/
13http://www.oracle.com/technology/tech/semantic~technologies/
I4~argeted at retrieving data, not creating, deleting or updating data.

154 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

for accessing them. Building on these basic capabilities, it will be possible to
develop and deploy ontology-based functionalities in the Grid.

In this section we discuss where ontology access fits in the Open Grid Ser-
vices Architecture (OGSA), and how ontology access services can be imple-
mented. By ontology access we mean the mechanism or protocol needed for
providing physical access to ontologies; by ontology access services we refer
to the set of services that provide the means for accessing ontologies that are
deployed as resources inside an OGSA-based grid.

3.1 Laying Ontology Access Services in OGSA
The Open Grid Services Architecture specification [8] is the blueprint for

standard-based service-oriented grid computing. The specification collates the
requirements for such an architecture15 and also identifies the set of capabil-
ities (offered as services) that may be needed in order to satisfy the defined
requirements: infrastructure services, job management services, data services,
resource management services, security services, self-management services
and information services. For a detailed description of both requirements and
capabilities, please refer to [8].

Ontologies can be queried as to their content. Content includes the concepts
and relationships, as well as intensional information about those concepts, as
for example, the definitions that apply to a particular class. Ontology access
services should then provide access to all this information and even support
queries over this information. Thus, ontology access services can be seen as
a particular type of data service, a service that holds some data and provides
mechanisms for creating, retrieving, updating and deleting these data. Accord-
ing to this, the most sensible mechanism for providing ontology access services
should be based on the existing infrastructure in OGSA for data access.

The following subsection reviews the data access and integration facilities
in OGSA, as these must be known to fully understand the rest of the chapter.

3.1.1 The OGSA Data Access and Integration Facilities. The Global
Grid Forum (GGF) Data Access and Integration Working Group has a num-
ber of specifications that support data access on the Grid. The Web Services
Data Access and Integration Core SpeciJication [I], a.k.a. WS-DAI, and the
accompanying realizations [2,6,3] , provide a general mechanism for defining
data services (whose key characteristic is that it offers the possibility of updat-
ing and retrieving the data from the data resource with which it interfaces) and
specialised mechanisms for accessing specific data resources respectively.

I S ~ h e y range from interoperability and support for dynamic and heterogeneous environments and resources
to resource sharing across organizations to data access to scalability, availability and extensibility.

Ideas for the Provision of Ontology Access in Grid Environments 155

The top level WS-DAI specification provides a basic and extensible frame-
work for defining data service interfaces, messages and properties. With such a
framework, the set of port types, operations and properties - which are needed
to provide access to specific data resources - can be defined in a standard way.
However, WS-DAI does not describe the particular interactions it performs
with the data resource (in terms of, for example, query languages).

The underlying WS-DAI realizations describe the specific operations
needed to interact with specific data resources, i.e., relational databases using
SQL, XML sources using XQuery, etc. The upper level specification is irrel-
evant to the types of query that get passed through - they say nothing about
the query language, result formats etc. The interfaces, messages and properties
used must be defined in accordance with the WS-DAI framework.

Note that when building an application that interacts with a WS-DAI re-
source, it should be known beforehand which kind of resource will be used so
that the appropriate WS-DAI realization is used. WS-DAI provides the most
general properties of the data service as a grid service that the application may
need to know about, while the realization provides the specific mechanisms for
interacting with the data service.

3.2 Ontology Access through the OGSA Data Access and
Integration Facilities

In order to integrate the ontology access services within the WS-DAI frame-
work described in the previous section, several alternative approaches can be
adopted according to how the framework is used and where the new services
fit.

The approaches range from the mere use of the WS-DAI framework to the
extension of this framework to fit our purposes. Here, we also present the idea
of abstract realization, a realization which is not a plain realization of WS-
DAI but a set of guidelines that explain how to use the WS-DAI framework for
defining sets of related realizations.

In this section, we analyse each of the possible approaches and give exam-
ples that showe possible implementations of each approach; the Semantic Web
languages RDF(S) and OWL illustrate these examples.

3.2.1 Several vanilla realizations. The first and most naYve approach
consists in providing a specific access mechanism for each ontology language
that is to be used; in our case, this means supplying a WS-DAI realization to
each possible Semantic Web ontology language.

The specific realizations must adhere to the syntax guidelines given by the
WS-DAI framework for defining the access mechanism. The concrete tech-
nical aspects needed to access data sources containing ontologies developed

156 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

with each specific Semantic Web ontology language are defined in its related
realization. However, these realizations may have nothing in common, as the
semantics of each realization is conditioned by the necessities and require-
ments of the access mechanism provided for each language, as it happens in
the following example.

Here we have two basic realization designs for accessing respirces, one for
RDF(S) and other OWL, both developed independently.

The RDF(S) realization may provide access to RDF(S) by relaying on the
graph nature of the RDF model: every model is composed of a set of nodes
and links between the nodes. The nodes represent specific resources while the
links represent properties of the source node resources.

Figure I . Sample RDF(S) vanilla realization

Following this idea, the realization can provide a set of interfaces that de-
liver functionalities for dealing with models with data structures that represent
nodes (resources) and links (properties). Figure 1 represents a sample set of
interfaces (already grouped in services) and the signatures of some of the mes-
sages provided by the main interfaces.

The design of the OWL realization can follow other approach, as for in-
stance, an object-oriented one. According to this approach, the realization
would provide interfaces which deal with data structures that mimic the con-
ceptual elements defined in the OWL model: classes, properties, individuals,
restrictions, etc. Figure 2 represents a sample set of interfaces and the signa-
tures of some of the messages provided by the main interfaces.

Ideas for the Provision of Ontologi) Access in Grid Environments 157

Figure 2. Sample OWL vanilla realization

Even though both realizations offer valid mechanisms for accessing their
respective resources, we cannot ensure, according to this design approach, any
homogeneity degree between the realizations, as there are no common guide-
lines that guarantee such homogeneity:

Data model structure: nothing is said about how to structure the data
model that is to be used in the messages. In this scenario, the RDF(S) re-
alization uses a graph-based data model, while the OWL realization em-
ploys a component-like data model. Therefore, the interaction with the
ontology services needs to be adapted to the specific operational model
derived from the data model.

Naming conventions: each realization uses its own prefixes and suffixes
for denoting the names of the messages; for instance, the RDF(S) re-
alization defines the messages adding the prefixes 'get', 'add' and 're-
move' whilst the OWL realization names the messages with similar se-
mantics using the prefixes 'retrieve', 'create' and 'delete'; furthermore,
this latter realization defines messages with different semantics using a
prefix (add) that clashes with other in the RDF(S) realization. When
switching from one realization to other, the user will have to use another
data model and to learn which are the concrete semantics of each type of
message (being the type defined by the prefix and suffix combination).

Access modalities: the RDF(S) realization provides messages for cre-
ating, retrieving and deleting contents, while the OWL realization has
an additional functionality for updating the contents. Therefore, if we
switch from an ontology developed in OWL to another developed in
RDF(S), we have to simulate this extra functionality, as it is not present
in the RDF(S) realization. It might happen that missing functionalities
cannot be simulated due to the specific design of the other realization;

158 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

in that case the patterns of interaction with the ontology in the user's
application should have to be reviewed.

rn Access granularity: in the case of the RDF(S) realization, access to the
contents is provided in different granularity degrees: we can interact
directly with a model, with a set of components (nodes and links) or
with specific components. The richer the messages provided in each
level are, the better the interaction with the RDF(S) resource will be.
On the other hand, the OWL realization just provides access to specific
components of the model. Again, when switching from one realization
to other, we will have to reorganize the ontology-based business logic in
order to use the services properly.

rn Architectural organization: messages with similar semantics are defined
in different conceptual components. Whilst the creation of components
in the RDF(S) realization is carried out in the ModelAccess interface, in
the OWL realization this is delegated to the Factory interfaces associated
to each component.

According to this scenario, the same interoperability problems that arise in
the Semantic Web community appear when following this design approach:
we end up having different mechanisms for accessing ontologies represented
in RDF(S) and OWL, each one designed according to different criteria, which
provide zero interoperability. Therefore, the ontology access service client
must know beforehand the language in which the ontology is available, because
helshe will have to use one or other realization for modelling the ontology-
based business logic of the application. As it follows, switching from one
language to other might cause severe changes in the ontology-based business
logic, which is the main issue we are trying to solve.

3.2.2 Two-layer realization. The idea here is to separate the common
operations from the specific ones, following a two-layer organisation. On the
one hand, the upper layer would contain a base WS-DAI realization defining
the common specific operations that must be provided by every ontology ac-
cess mechanism. On the other hand, the lower layer would contain WS-DAI
realizations based on the base realization; each realization, which should be
related to an ontology language, would define the specific operations for ac-
cessing ontologies developed in that particular ontology language.

In terms of operations, the two-layer realization approach introduces the
idea of a common API that must be followed by each final realization (and so
by each implementation). There are several ways of creating this API, here we
present two of them:

Ideas for the Provision o f Ontology Access in Grid Environments 159

Functional approach. The API contains the operations that represent
functionalities for ontology access and management similar to those of-
fered by ontology resources. According to this approach, the definition
of the operations would be driven by the possibilities of the ontology
resources.

Functionalities can be selected in various ways, for instance, according
to the desired granularity of the operations (the finer the grain detail is,
the more functionalites will have to be provided by the API) or accord-
ing to the size of the target API: we may want to minimize the number
of functionalities provided by the API, so this becomes simple although
rigid; or to maximize the number of operations so it becomes more flex-
ible but rather complex.

Conceptual approach. The API contains operations that deal with the
conceptual elements available in the knowledge representation formal-
ism of the ontology resources. Following this approach, the definition
of the operations is driven by the necessities of the conceptual model,
nor by the way the ontology resource deals with it, i.e. managing tax-
onomies, reasoning over inherited properties, etc.

The number of operations of the API would depend on the modelling
elements chosen (the more elements, the more functionalities needed for
dealing with them) and the orthogonality of the operations desired (the
more independence between the functionalities and the operands, the
more operations to provide).

Thanks to this two-layer organisation, the basic ontology access interfaces
can be standardised, thus lowering the risks of interoperability issues in the
upper layer, that is, the one that contains the common operations. In Figure
3 we can see that the SchemaAccess interface defines common taxonomical
management operations such as retrieving the parents and siblings of a given
class, and these operations are common to both underlying realizations.

Unfortunately, no standardisation guidelines are provided for defining the
specific operations to be set up in the realizations of the lower layer, nor which
kind of operations can be defined in those interfaces. Therefore, interoperabil-
ity problems might appear in some particular features of concrete languages.

We can see in Figure 3 an example of this case. It shows that the new
operations added in the RDF(S) realization just provide extra functionalities
for dealing with the elements defined in the base realization following the same
naming convention, whereas the OWL realization provides new functionalities
for operating over specific elements of the OWL model (restrictions) with its
own naming conventions.

Regardless of the approach taken for the development of the API, enforc-
ing the fulfillment of an API poses serious disadvantages. On the one hand,

160 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 3. Sample two-layer realizations for RDF(S) and OWL

if the API that is to be fitted defines more operations than those provided by
the resources, we may have a set of operations that not usable that will weaken
the operational model defined by the API. On the other hand, if the API de-
fines fewer operations than those provided by the resources, the potential of
those resources is weakened because many of its capabilities will not be usable
through the API.

Despite these disadvantages, we gain a strong advantage when APIs are en-
forced: the standardisation of the operations that will be used hereafter, which
helps to reduce interoperability problems across realizations and implementa-
tions.

3.2.3 An extension of WS-DAI. Another approach consists in providing
an extension to WS-DAI that, using the WS-DAI framework as basis, defines
the specific structural elements needed for defining ontology access mecha-
nisms, which are not defined in the basic WS-DAI framework.

Once the extension is defined, it would be used as the basis for creating
specific realizations that would provide ad-hoc access mechanisms to access
ontologies developed with concrete knowledge representation formalisms or
languages. However, this approach has its pros and cons, as we will see in the
following example.

In our sample extension, ontology resources (an specific type of data re-
sources) are composed of components which, in their turn, may also be com-
posed of other components. For dealing with these, an extra type of interface
will be used. The interface will be named appending the suffix 'Components'
to the name of the data resource it operates with. The interface will provide

Ideas for the Provision o f Ontology Access in Grid Environments 161

BREAD functionalities 1 6 , named with preffix the type of operation and the
suffix 'Component'.

Figure 4. Implementations of the sample extension of WS-DAI

Figure 4 shows implementations of the sample extension for RDF(S) and
OWL. Thanks to the extra structural elements defined in the extension, some
kind of homogeneity is achieved, i.e. operations share a naming convention,
messages with similar semantics are grouped in the same interfaces, etc. Thus,
the interoperability problem decreases although unfortunately this effect is lim-
ited to these new structural elements.

However, in spite of the homogeneity achieved, the use of extra structural
elements makes ontology access services different from plain WS-DAI data
access services; therefore, whenever a user needs these services, helshe must
know about their specificities to use them properly.

This requirement implies interoperability problems between data services:
while a user of ontology access services would be able to understand and ex-
ploit plain WS-DAI data services, a user of plain WS-DAI data services would
not be able to utilize the ontology access services since helshe has no way of
inferring the semantics of the new structural elements used in the declaration
of the ontology access services.

3.2.4 An abstract realization. This last approach is based on the two
previous ones and is targeted at solving the problem of enforcing the fulfillment
of a common API, and at creating extra structural elements.

The idea hera is to provide a means for defining the capabilities that might
be offered via an ontology access service and the ways in which they are of-
fered, and to provide a mechanism for publishing the specific capabilities im-

I6~rowse, read, edit, add and delete.

162 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

plemented by an ontology access service, so a client can discover and exploit
them. This can be done by means of an abstract realization.

As we reviewed in section 3.1.1, the objective of the base WS-DAI core
specification is to define a base framework for defining data access services
that can be adapted to particular necessities. To achieve this, the base speci-
fication provides a set of patterns that defines messages and properties. With
these patterns, concrete realizations define the set of WS-DAI-based elements
needed for accessing a specific kind of data resource.

An abstract realization is a realization that does not define specific mes-
sages nor properties for providing a particular access mechanism; it defines a
set of WS-DAI compliant patterns for defining interfaces, messages and prop-
erties oriented to the specification of an adaptable set of related data access
mechanisms.

In our case, the abstract realization should be created for defining ontology
access mechanisms. Later realizations of this abstract realization can choose
which capabilities to implement and then define them with the patterns found
in the base abstract realization. Let's see in the following example how this
could be achieved.

The first step consists in selecting the elements of the data model that is
to be supported. In the case of the RDF(S) and OWL languages, these ele-
ments are well-known and defined. Therefore, we could say that the ontol-
ogy access mechanism must be able to operate over the union of both mod-
els: classes, properties, restrictions, individuals, etc. Specific realizations will
choose which elements to support. In order to shorten the example, we can
think that the valid elements are just classes, properties and restrictions, and
that classes and restrictions are linked to properties (and viceversa).

Then, we have to select which kind of operations we want to provide in
order to operate over the supported data model. In our example we show basic
CRUD operations: create, retrieve, update and delete. The create operation
provides an id for the element created, and that id is used in the rest of the
operations for referring to that concrete element.

Once we have defined the data model and the way we can operate with
it, we have to define the patterns that will drive the definition of the related
infrastructure:

Interface creation patterns:

PATTERN I1 : A description interface named 'element 'Description
will be created for each element of the model.

PATTERN 12: An access interface named 'element'Access will be
created for each element of the model.

Ideas for the Provision of Ontology Access in Grid Environments 163

PATTERN 13: If an element is linked to any other element, a fac-
tory interface named 'element 'Factory will be created for that el-
ement.

rn Messages creation patterns:

PATTERN M1: A message named 'operation "element' will be cre-
ated in the appropriate access interface for each 'element' that
supports the operation 'operation ' I7.

PATTERN M2: If an element ei is linked to another element ej, a
message named retrieve 'ej 'Factory will be created in the factory
interface of the element ei.

rn Properties creation patterns:

PATTERN P I : A property named 'IinkedTo ' will be defined in each
description interface. If an element ei is linked to any other ele-
ment e j the value of the property will be the list of elements e j to
which ei is linked. Otherwise, the property will be nil.

PATTERN P2: A property named 'operationsSupported' will be de-
fined in each description interface. If an element ei supports an
operation opj, the value of the property will be the list of opera-
tions opj supported by the element ei.

With all of these patterns we can then produce our RDF(S) and OWL real-
izations (see Figure 5). As we can see, in the case of classes and properties, the
names of the interfaces and messages are shared in both RDF(S) and OWL, so
switching from one realization to other (when dealing with classes and proper-
ties) would not require changes in the ontology-based business logic.

Following this approach, each realization can choose the capabilities re-
quired, and by means of the patterns defined in the abstract realization, the
interfaces, messages and properties are defined in an homogeneous and stan-
dard way.

3.3 Conclusions
The OGSA specification defines a set of requirements that must be fulfilled

by any implementation of the specification; it also defines a set of capabilities
(services) that might be offered via implementations to fulfil these require-
ments.

According to these requirements and capabilities, the data access and inte-
gration facilities defined by OGSA constitute the most sensible niche for fitting

I7opj is one of 'create', 'retrieve', 'update', 'delete'

164 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 5. Sample RDF(S) and OWL realizations using the abstract realization approach

the ontology access services inside the OGSA architecture. The data access
and integration facilities are governed by the WS-DAI specification, which is
still under development inside of the GGF.

In the previous subsections, we have presented several approaches that pro-
vide ontology access using the WS-DAI specification as a basis; these ap-
proaches range from the realizations to the extensions.

The first approach clearly requires complete new implementations for any
additional language introduced, as nothing is reused from other realizations.
The second approach, on the contrary, provides some reuse by means of de-
signing a two-layer mechanism that proposes a set of common functionalities.
The cost of such reuse is the issue of factoring out a sensible subset of func-
tionalities valid for any possible ontology language, which may end up posing
interoperability problems between the services and the ontology resources.

The third approach consists in creating an extension to WS-DAI. This alter-
native suggests that there are characteristics and properties which distinguish
ontology access services from vanilla data access services. Nevertheless, ex-
ploiting these differences by means of extra structural features may imply inter-
operability problems between plain data services and ontology access services.

Finally, the fourth approach suggests that there might be characteristics that
distinguish ontology access services from plain data services, but also, that
there are subtle differences between ontology resources that must be also taken
into consideration. The fourth approach proposes a way for defining operations
in a common format (taking into account these differences between ontology
resources), so that some kind of standardisation is introduced in the underlying
realizations.

Therefore, and bearing in mind the objectives of reducing the amount of
different ontology access mechanisms and of facilitating the interoperability
between them, the best design approach is the abstract realization one.

Ideas for the Provision o f Ontology Access in Grid Environments

4. WS-DAIOnt: a Proposal of an Ontology Access
Mechanism in the Grid

The WS-DAIOnt specification [9], which is the short term for "Web Ser-
vices Data Access and Integration: The Ontology Realization", and the ac-
companying realizations (WS-DAIOnt-RDF(S), . . .) define the data access
infrastructure needed for dealing with ontologies in grid environments.

WS-DAIOnt is based on the WS-DAI specification and provides a frame-
work for defining ontology access service interfaces by means of the WS-
DAI vocabulary, and for enhacing it with the patterns and properties needed to
provide specific ontology access mechanisms. Specific ontology data sources
are then addressable according to concrete WS-DAIOnt realizations, i.e. WS-
DAIOnt-RDF(S).

In the following subsections, both the foundations of WS-DAIOnt and the
components of WS-DAIOnt will be described.

4.1 WS-DAIOnt Foundations
The WS-DAIOnt specification is being designed following the abstract real-

ization approach described in Section 3.2.4. The foundational pillars that drive
the design of the specification are the following:

Unified basic terminology. Currently, knowledge representation for-
malisms use their own terminology for naming the knowledge mod-
elling components (ontology elements) they use. Thus, frames-based
formalisms use the name 'class' for referring to what it is named 'con-
cept' in description logics.

Whereas humans are able to match the names as synonyms and use both
of them indistinctly, software agents are not able to do so. Therefore,
interoperability problems might appear because of this terminology tan-
gle.

WS-DAIOnt defines a neutral vocabulary for naming the ontology ele-
ments to be used when dealing with ontologies in grid environments, tak-
ing into account the specific modeling components of different knowl-
edge representation formalisms (frames, semantic networks, description
logics . . .)
This common and standard vocabulary avoids the use of multiple differ-
ent vocabularies that would hamper the understanding of the provided
data components and functionalities.

Ontology components relationshipspatterns. Each knowledge represen-
tation formalism defines a set of modeling elements and the way they
are related to each other. For instance, in the frames formalism slots are

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

defined locally (in frames), whereas in description logics properties are
defined globally (and can then be restricted to specific classes).

WS-DAIOnt defines how to specify the concrete ways in which ontol-
ogy components can be related, and which is the expected semantics of
these relationships, so clients can deduce how to conceptually use them
properly.

Ontology components usage patterns. WS-DAIOnt defines how the in-
terfaces, messages and properties must be specified in terms of WS-DAI
patterns, in order to provide functionalities in a standard way. Therefore,
clients can deduce how expected functionalities have to be exploited.

Ontology access sewices behaviours. WS-DAIOnt defines the expected
behaviour of the predefined common components and functionalities,
so that every concrete implementation must adhere to these behaviours.
Therefore, clients may expect some kind of homogeneous behaviour
across realizations and implementations.

WS-DAIOnt Components
The two main components of WS-DAIOnt are the WS-DAIOnt Data Model

and the WS-DAIOnt Port Types.
The WS-DAIOnt Data Model defines how the data managed by the specified

interfaces is virtually structured. The data model works as a metamodel from
and to which other knowledge representation formalisms may be mapped - by
means of these mappings the interfaces provide a common way for accessing
heterogeneous ontologies.

The data model defines the unified terminology to be used in WS-DAIOnt
regarding the data components and also defines the possible relationships pat-
terns among them.

The organization of the data model has two dimensions:

Layered structure. The components are divided in two layers, the core
layer and the extended layer. On the one hand, the core layer contains
the common modeling components found in most of the representative
knowledge representation formalisms. On the other hand, the extended
layer will contain those modeling elements not considered for the core
layer because of their specificity or because they are yet to appear.

Model and data separation. The components are also divided with re-
gard to their concerns: those used for the conceptualization are grouped
together in the model part, and those used for dealing with individuals
are grouped in the data part.

Ideas for the Provision of Ontology Access in Grid Environments 167

The WS-DAIOnt Port Types proposes a hierarchy of port types (interfaces),
providing different granularity levels of access to the data model components
for the sake of usability.

The upper levels of the hierarchy are general purpose interfaces that are
fixed in the WS-DAIOnt specification and are mandatory for every underlying
realization. The lower levels of the hierarchy are realization-dependent. In
order to create the port types in a standard way, WS-DAIOnt defines a set of
message design and organization criteria based on the components of the WS-
DAIOnt data model usage and relationships patterns.

5. Conclusions

Ontology access provisioning is crucial if we want to enrich the Grid with
semantic technologies. Furthermore, due to the increasing number of existing
ontology languages and tools, an effective mechanism that guarantees inter-
operability between ontology access mechanisms must be developed. Up to
date no protocols nor mechanisms are available in the OGSA architecture for
dealing with ontologies in an effective manner.

By extending WS-DAI with WS-DAIOnt and the accompanying realiza-
tions, we provide the current grid architecture with a standard way of supply-
ing ontology access and management capabilities, making ontologies available
in grid environments like other specialized data resources usable across virtual
organizations, thus enabling the future integration of semantic technologies in
the grid architecture.

WS-DAIOnt, and the accompanying realizations, are still under develop-
ment as part of the OntoGrid project.

Acknowledgments

We would like to thank all of those who have helped us anyhow: Sean Bech-
hofer, 0scar Corcho, Rosario Plaza and MI del Carmen Suirez de Figueroa.

This work is supported by the OntoGrid project (FP6-5 1 15 13) and by a
U.P.M. pre-doctoral grant.

References

[I] M. Antonioletti, M. Atkinson, A. Krause, S. Malaika, S. Laws, N. W. Paton D. Pearson,
and G. Riccardi. Web Services Data Access and Integration - The Core (WS-DAI) Spec-
ification, Version 1 .O. GWD-R, Global Grid Forum, DAIS Working Group, Jun 2006.

[2] M. Antonioletti, B. Collins, A. Krause, S. Laws, J. Magowan, S. Malaika, and N.W. Pa-
ton. Web Services Data Access and Integration - The Relational Realisation (WS-DAIR)
Specification, Version 1 .O. GWD-R, Global Grid Forum, DAIS Working Group, Jun
2006.

[3] M. Antonioletti, S. Hastings, A. Krause, S. Langella, S. Laws, S. Malaika, and N.W.
Paton. Web Services Data Access and Integration - The XML Realization (WS-DAIX)

168 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Specification, Version 1.0. GWD-R, Global Grid Forum, DAIS Working Group, Jun
2006.

[4] S. Bechhofer. The DIG Description Logic Interface: DIG11 . I . Specification, DL Imple-
mentation Group (DIG), Feb 2003.

[5] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In I. Horrocks and J. Hendler, editors, The
Semantic Web - ISWC 2002: First International Semantic Web Conference, number 2342
in Lecture Notes in Computer Science, pages 54-68. Springer, May 2002.

[6] B. Collins. Web Services Data Access and Integration -The File Realization (WS-DAIF).
Informational recommendation, Global Grid Forum, DAIS Working Group, Oct 2004.

[7] D. De Roure, N. R. Jennings, and N. R. Shadbolt. The Semantic Grid: Past, Present and
Future. Proceedings of the IEEE, 93(3):669-68 1, Mar 2005.

[8] I. Foster (Ed), D. Berry, A. Djaoui, A. Grimshaw, H. Kishimoto (Ed) B. Horn, F. Maciel,
A. Sawa (Ed), F. Siebenlist, R. Subramaniam, J. Treadwell, and J. Von Reich. The Open
Grid Services Architecture, Version 1.5. GWD-I, Global Grid Forum, OGSA Working
Group, Mar 2006.

[9] M. Esteban GutiCrrez (Ed), S. Bechhofer, 0 . Corcho, M. Fernndez-Lpez, A. G6mez-
PCrez, Z. Kaoudi, I. Kotsiopulos, M. Koubarakis, M1 C. Suirez-Figueroa, and V. Tamma.
Specification and Design of Ontology Grid Compliant and Grid Aware Services. Deliv-
erable D3.1, OntoGrid Consortium, Apr 2005.

[lo] Asuncih G6mez-PCrez, 0scar Corcho, and Mariano Fernindez-Lbpez. Ontological En-
gineering : with examples from the areas of Knowledge Management, e-Commerce and
the Semantic Web. Advanced Information and Knowledge Processing. Springer, first edi-
tion, Jul 2004.

[l l] V. Haarslev and R. Moeller. Racer: A core inference engine for the Semantic Web. In
D. Fensel, K. P. Sycara, and J. Mylopoulos, editors, The Semantic Web - ISWC 2003, Sec-
ond International Semantic Web Conference, number 2870 in Lecture Notes in Computer
Science. Springer, Oct 2003.

[12] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A
Declarative Query Language for RDF. In I lth International World Wide Web Conference.
ACM, May 2002.

[13] E. Prud'hommeaux and A. Seaborne. SPARQL Query Language for RDF. Working
draft, W3C, Feb 2006.

[14] A. Seaborne. RDQL - A Query Language for RDF. Member Submission, W3C, Jan
2004.

[15] Rudi Studer, V, Richard Benjamins, and Dieter Fensel. Knowledge engineering: Princi-
ples and methods. Data & Knowledge Engineering, 25(1-2):161-197, Mar 1998.

SEMANTIC SUPPORT FOR
META-SCHEDULING IN GRIDS

Paolo Missier
School of Computer Science
The University of Manchester
United Kingdom

pmissier@cs.man.ac.uk

Philipp Wieder
Grid Computing and Distributed Systems Group
Research Centre Julich
52425 Julich, Germany

Wolfgang Ziegler
Fraunhofer Institute SCAI
Department of Bioinformatics
53 754 Sankt Augustin, Germany

wolfgang.ziegler@scai.fraunhofer.de

Abstract Co-ordinated usage of resources in a Grid environment is a challenging task
impeded by the nature of resource usage and provision: Resources reside in dif-
ferent geographic locations, are managed by different organisations, and are by
no means accessible via standardised interfaces, protocols or commands. These
prerequisites have to be taken into account in order to provide solutions in the
area of Grid scheduling and resource management.

In this document we propose the employment of a semantic model for Grid
scheduling. The Grid Scheduling Ontology describes the capabilities and state
of a scheduler, providing a machine-processable and interoperable model for the
integration of local schedulers into Grid resource management. Along with the
model we present a meta-scheduling architecture based on the VIOLA Meta-
Scheduling Service that uses ontology modelling and reasoning capabilities of
OWL to provide semantic support for meta-scheduling in Grids.

Keywords: resource management, advance reservation, meta-scheduling, semantic model,
Grid Scheduling Ontology.

170 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction
The resources needed to execute workflows in a Grid environment are com-

monly highly distributed, heterogeneous, and managed by different organisa-
tions. One of the main challenges in the development of Grid infrastructure ser-
vices is the effective management of those resources in such a way that much
of the heterogeneity is hidden from the end-user. This requires the ability to or-
chestrate the use of various resources of different types. In this work we focus
on the co-allocation of resources to assemble a virtual machine that enables the
execution of distributed workflows consisting of many parallel tasks.

1.1 Previous Work
Recent research [I91 has shown how a meta-scheduler can be employed

to schedule workflows by co-allocating resources on multiple Grid nodes. A
meta-scheduler is a Grid service that interfaces with multiple local schedulers
or other meta-schedulers to negotiate with them advance reservation of re-
sources based on user requirements such as time or QoS constraints. The goal
of this negotiation is to determine feasible time slots in which all required
resources are available for the requested start time to execute the distributed
workflow.

In order to be able to participate in negotiation, local schedulers should be
capable and willing to accommodate specific meta-scheduler requests:

Advance reservation of resources by offering job execution start and stop
times.

At least partial access to local schedules, e.g. by providing information
about available time slots.

Some control over existing reservations, e.g. to cancel or extend a reser-
vation.

Currently only a few local scheduling systems such as CCS [9], PBS Profes-
sional [14], or LSF [I I] offer these capabilities; however, more are expected
to appear as it is in the interest of resource owners to advertise their resources
with guarantees for QoS to the Grid.

The main functions of a meta-scheduler include (i) allocation of a single
resource for a single application for a fixed period of time, (ii) co-allocation
of multiple resources for the same fixed period of time for single or multiple
applications, (iii) allocation of multiple resources for multiple applications for
different fixed periods of time, and (iv) allocation of dedicated resources for
either of the cases above.

The prototype Meta-Scheduling Sewice described in 1191 currently realizes
functions (i) and (ii). The scheduling algorithm is based on a multi-step ne-

Semantic Support for Meta-Scheduling in Grids 171

gotiation process, involving the pre-selection of suitable local schedulers, the
acquisition of feasible start times from them, selecting resources, and a confir-
mation of the available start times from each of the schedulers involved.

The Meta-Scheduling Service interfaces with local schedulers through ded-
icated adapters (as depicted in Figure 1) that hide the heterogeneity of the
schedulers' native interfaces. These adapters offer a uniform set of abstract
operations to the meta-scheduler which include requesting available start time
slots for jobs, submitting scheduling requests for a specific time slot, and
requesting the state of the current reservation. Meta-scheduling requests
are communicated by client applications using WS-Agreement [l] while the
adapters forward local requests using proprietary commands. This architec-
ture allows an easy integration of meta-scheduling capabilities into existing
Grid environments.

(Q) WS-~greemen Meta-
4 Scheduling

Service H
A d a p t e r

I
Adapter -

Workflow Submission Negotiation I

Grid
Middleware

Submission,
Monitoring

Figure 1. High-level meta-scheduling architecture

1.2 Motivation to Employ Semantic Models
One shortcoming of the current architecture is that, while the adapters pro-

vide uniform operations, no shared data model is available to describe a sched-
uler's set of capabilities and current schedule state. For example, there is no
explicit and shared definition of scheduling concepts like time slot or schedule
queue, or of capabilities like time slot reservation change. Instead, these con-
cepts are left implicit in the implementation of the adapters, which expose a
set of generic scheduling operations.

Although the adapter in its current form fulfils the initial use case require-
ments as presented in Section 1.1, this approach still holds potential to increase
the flexibility of the meta-scheduler. Assuming that a modified version of the
scheduling algorithm is needed to query the schedulers' ability to modify the

172 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

time slot allocation after the initial reservation (a feature that was previously
not needed). At present, the only option available would be to accommodate
the new feature to upgrade the adapters (all of them) in order to support the
new query.

In this paper we introduce a novel approach to extensible meta-scheduling,
based on the definition of a shared, explicit and extensible vocabulary to de-
scribe a scheduler state as well as its capabilities. We show how such a shared
information model for scheduling concepts supports the negotiation process in
a more flexible and adaptable way than it is currently possible.

Our approach is inspired by a number of recent initiatives towards the de-
sign of semantic models for describing Grid resources [15], mainly for in-
teroperability purposes [4, 3, 51. Common to all these efforts is the explicit
representation of knowledge regarding available resources, encoded in such a
way as to make it machine-processable.

Following the same principles, but on a more limited scope, we have de-
veloped a lightweight semantic model, called the Grid Scheduling Ontology
(GSO), to describe the capabilities and state of Grid schedulers. The ontology
definition process has recently been described in [20] and is based partially on
the Grid Scheduling Dictionary of Terms and Keywords [I 61.

Along with the model we also present an enhanced meta-scheduling archi-
tecture and show how it can improve support for meta-scheduling algorithms
and negotiation processes. The ontology modelling and reasoning framework
offered by the OWL semantic modelling language [12] provides the necessary
functions. Specifically the GSO includes a collection of scheduler classes,
where each class is defined in terms of a set of underlying capabilities, for in-
stance the ability to expose the current schedule, to accommodate changes in a
reservation, and so forth.

Using a OWL DL reasoner [2], individual schedulers whose capabilities can
be expressed using the terms in the ontology can then be automatically classi-
fied as belonging to one or more of the scheduler classes. This classification is
then exploited by the meta-scheduler, as described in detail in Section 3.

1.3 Organisation of the Paper
The remainder of the paper is organised as follows. In Section 2 we present

the requirements and use cases that provide basis for the knowledge modelling
activity. The semantic model itself is described in Section 3, followed by the
proposed implementation in Section 4. An overview of further developments
for this work concludes the paper.

Semantic Support for Meta-Scheduling in Grids 173

2. Requirements for the Scheduling Domain Knowledge
Model

The introductory section already listed three general requirements that de-
fine the meta-scheduling environment our work is based on. The fulfilment
of these requirements is currently realised through adapters which provide an
abstraction level between local schedulers and the Meta-Scheduling Service.
With respect to the flexibility of this approach we discovered a certain po-
tential for improvement, as reported in Section 1.2, and, to achieve this, we
suggest the definition of a scheduling domain vocabulary. Since such a vocab-
ulary makes a thorough knowledge acquisition process necessary, we re-visit
and examine the original meta-scheduling use cases in this section.

2.1 The Resource Pre-selection Use Case
Many Grid resource management and scheduling scenarios include a re-

source pre-selection phase where resources are selected as candidates for the
actual scheduling process based on static properties [17]. "Static" in this case
refers to properties which do not change from the time the resource request
is submitted until the work is finished. Such properties are e.g. the operating
system of a compute resource or the maximum bandwidth of a network con-
nection, but also the capability of a resource management system to support
meta-scheduling.

According to [19] a local scheduler/resource manager has to provide the
following two functions to support meta-scheduling:

I Schedule a reservation at a fixed date and time for a well-defined period
of time (Advance resewation).

2 Provide an aggregated overview of the usage of the managed resource
between now and a well-defined date and time in future (Usagepreview).

The first functionality is a prerequisite: a local scheduler that cannot per-
form advance reservation will not be able to participate in the meta-scheduler
process. The second functionality is not as essential, but it has implications on
the scheduling algorithm: ideally the meta-scheduler receives all information
from the local schedulers it needs to execute a co-ordinated schedule for all
resources involved. But even if a local scheduler does not provide any infor-
mation about the future usage of the managed resource, the meta-scheduler (or
the entity that pre-selects resources) may decide to include it into the schedul-
ing process given that first requirement is fulfilled.

The vocabulary should therefore provide answers to the following questions:

Does the local scheduler support advance reservation?

174 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

w Does the information provided by the local scheduler with respect to the
hture usage of the resource fblfils the second requirement?

2.2 The Schedule Enquiry Use Case

This use case extends the second requirement of the previous use case.
Once the resource pre-selection is finished the local schedulers involved in

the meta-scheduling process are queried for a resource usage preview (pro-
vided that they deliver this kind of information). With the current adapter in
place it is no problem for the meta-scheduler to retrieve the usage preview in
the required format since the adapter converts the preview information into
the format needed by the meta-scheduler. Assuming that we want to make
the design of the adapter generic and independent of the local scheduler, it is
necessary to provide metadata to convert the local scheduler's parameters to
the format consumed by the meta-scheduler. One of the local schedulers that
have already been integrated into the meta-scheduling environment presented
earlier is the EASY scheduler [18]. It provides commands to, inter alia, return
the current queue (pq), reserve e.g. 10 nodes for 5 minutes for an interactive
job (psubmi t -n 10 - i - t 5), show an estimation when the jobs in the
current queue will be executed (pwhen), or give a preview of the free nodes
(p r e v l i s t) .

The vocabulary representing the scheduling domain should therefore help
to answer questions like:

What is the total estimated run time of all jobs under the control of the
local scheduler?

w What is the status of a certain queue?

w What is the first possible date and time a certain job can be scheduled on
the managed resource?

2.3 Alter Reservation Use Case

A third and final use case involves altering an existing reservation, i.e., ex-
tending its lifetime or cancelling it. Our semantic model does support this use
case by including the description of the possible reservation states, while the
current implementation of the adapter already allows for the cancellation of an
existing workflow. Full support for this use case, however, is beyond the scope
of our current work and will be undertaken in a later stage.

3. A Semantic Model for Grid Scheduling

As outlined in the introduction, a meta-scheduler is able to negotiate re-
source allocation with local schedulers that are capable of providing advance

Semantic Support for Meta-Scheduling in Grids 175

reservation of resources (requirement I), and that optionally allow at least par-
tial access to the local schedules (requirement 2), and allow some control over
existing reservations (requirement 3). In this section we describe the seman-
tic model called Grid Scheduling Ontology which we use in our new meta-
scheduling architecture to fully support the first two functionalities and to lay
the foundations to support the third.

The negotiation process relies on a registry of available local schedulers, in
which each scheduler is described according to the common semantic model.
The meta-scheduler uses the registry to pre-select schedulers, as well as to
query their state throughout the reservation and resource allocation process.

The model is defined using the semantic web language OWL DL [I 21. OWL
DL allows the definition of classes, relationships among the classes (called
object properties) as well as individuals.' Classes can be organised into hi-
erarchies, and a class can have any number of parents. Individuals may be
instances of multiple classes. We write x E C to indicate that individual x is a
member of class C.

Figure 2. Fragment of the capability hierarchy (some nodes are not expanded)

At first we introduce a hierarchy of classes to model resource management
capabilities, as shown in Figure 2. The capability of ferReservation corre-
sponds to the first of our requirements: a scheduler not providing it cannot take
part in the advance reservation negotiation. Additionally, we model the ability
to query the current scheduler as a tree with multiple levels of precision, and
the ability to alter reservations that have already been made (this node is not
expanded in Figure 2). Other branches of the hierarchy, which describe for in-

'Additional features of the language will be introduced when needed as part of this description.

176 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

stance the access control mechanisms enforced by schedulers, are not shown.
Note that some of the classes are defined in terms of other classes using OWL
class construction operators. For example, limited-disclosure is defined by
composition, as the capability to request the job names, the job types and the
submission times from a schedule.

fully-capable-

scheduler

Figure 3. A classification of schedulers

As a next step we introduce a classification for local schedulers, rooted at the
top-level scheduler class. The property scheduler-has-capability allows
us to define various subclasses of schedulers in terms of capability sets.

Consider the schedulers classification hierarchy shown in Figure 3. Each
of the classes in this hierarchy is defined in terms of other classes and proper-
ties in the ontology, using OWL DL'S class definition operators. For instance,
schedule-disclosing-scheduler is the class of all schedulers whose set of
capabilities includes at least the ability to query the current schedule. Note
that the type of query that is allowed (i.e., queryJob, queryTime) is not spec-
ified. Therefore, any scheduler whose capability includes at least the generic
query-current-scheduler class, is a schedule-disclosing-scheduler.
Using these operators, it is easy to define classes that correspond exactly to
the set of schedulers which are eligible for negotiation in the context of meta-
scheduling.

In general, OWL DL allows classes to be defined as a set of necessary and
sufficient conditions, as in the example above.2 An AR-capable-scheduler,
for example, is any scheduler that, among other capabilities, offers advance
reservation, and for this reason satisfies our requirement 1 property.

The next example of a scheduler class highlights an important feature of-
fered by the OWL DL language. The capable-and-disclosing-scheduler
class represents all schedulers whose capabilities include both
off erReservation and query-current -schedule. In Figure 3 this

'~ormal notation is avoided in this paper for the sake of readability

Semantic Support for Meta-Scheduling in Grids 177

scheduler-has-capability
I

mstance-of

instance-of Instance-of Rrtance-of

scheduler-

capab~llty

Figure 4. A scheduler profile

Figure 5. A scheduler with a profile

class appears as a subclass of both AR-capable-scheduler and
schedule- d isc los ing- scheduler, although these is-a relationships are
not part of the definition. The OWL DL operators are defined in such a way
that it is possible to perform specific types of reasoning on the definitions
of classes and individuals. In particular, an OWL DL reasoner [2] computes
the set of most specific is-a relationships for a collection of classes defined
using necessary and sufficient conditions as shown above. Thus, the hierarchy
shown in Figure 3 is an example of inferred classification that has been
computed from the class definitions just given.

Let us now return to the definition of scheduler classes for meta-scheduling.
A schedulerprojile is any individual pl, which is an instance of one or more
capability classes, for instance offerReservation, queryJob, Or queryName
(see Figure 4). If we introduce an instance Isl of scheduler, and assert that
Isl has capability profile p l (Figure 5), we can leverage the OWL DL rea-
soning capabilities again, this time to infer the most specijic classes of which
the individuals of the ontology are instances. In other words, can we say
that Isl must be a member of some specific subclass of scheduler, given
that it has capabilities p l , and that scheduler's subclasses are indeed de-
fined in terms of sets of capabilities? In this case, the reasoner is indeed
able to infer that Isl E capable-and-disclosing-scheduler, because pl in-
cludes both of ferReservation (necessary for any AR-capable-scheduler)
as well as two schedule querying capabilities that are more specific than the
required generic resource management capability query-current-scheduler
(Figure 6).

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 6. Classified scheduler

In practice, using this model and the associated reasoning features, we are
able to obtain a classification of schedulers on the grounds of capability pro-
files. This automatic classification enables a meta-scheduler to retrieve all the
schedulers of interest with minimal effort, simply by querying the model for
all instances of one or more specific classes. As a more complete example,

pi E off erReservation n queryJob n queryName

p2 E query~imenal ter - f rom-booked C alterReservation

p3 E of ferReservation

Isl has capabilities p l ;

Is2 has capabilities pa;

1 s3 has capabilities p3;

I s4 has capabilities p2 and p3.

With these definitions, the reason er computes the schedul ers' cl assifi

consider the following assertions for a set of capabilities and schedulers:

cati on
shown in Figure 7. A query for all AR-capable schedulers would now return
{Is3, Is1, Is4), while the alterable-reservation schedulers are {Is2, Is4).

4. Environment for Semantic Exploitation
An architecture for providing Web and Grid services with a semantic de-

scription in order to facilitate their semantic discovery, called S-OGSA, has
been proposed recently [6]. S-OGSA identifies key Grid services that enable
the collection and exploitation of semantics within a Grid architecture, and
prescribes patterns of interaction among these services. The realisation of the
environment described here follows the S-OGSA architectural patterns.

Semantic Support for Meta-Scheduling in Grids

Figure 7. An automatic classification of schedulers

4.1 S-OGSA-based Architecture
An instantiation of an S-OGSA architecture for the meta-scheduling usage

scenario is presented, at a high level, in Figure 8.
Two types of knowledge characterise local schedulers:

Their capabilities with respect to reservation management, as discussed
earlier. This knowledge is expected to be fairly stable in time, and inde-
pendent of the current scheduling activity.

A representation of the current scheduling activity which includes the
current advance reservations that have been accepted and their states.
The meta-scheduler must consider that such dynamic information may
not be available, as not all schedulers will be configured to provide it.
If available, however, it allows a meta-scheduler to pre-select resources
based for example on the current scheduler workload.

All this knowledge is encoded using the RDF format [lo], a W3C standard
for describing semantic annotations, and stored in a Metadata Service. The
meta-scheduler may query the metadata service using an S-OGSA-compliant
Web Service interface, in order to obtain the capability profiles and current
state of registered schedulers. An Ontology Management Service can be used
to obtain the latest version of the Grid Scheduling Ontology in a location-
transparent way. At this point, the meta-scheduler holds both the individuals
(in RDF format) and the class definitions (in OWL) required to carry out the
inferencing process described in Section 3, using a separate Reasoning Service
as shown in Figure 8.

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

I Ontology Management I
I Service I

WS-DAIOnt
interface

metadata
reasoner

Metadata Service interface

Scheduling Reasoning

Service scheduler
classification

requests

metadata advance

upload
interface

scheduler state

Figure 8. Architecture for exploitation of semantics by the Meta-Scheduling Service

4.2 Evolution of the current Architecture
The transition from the current VIOLA meta-scheduling architecture, pre-

sented in Section 1.1 (shown in Figure l), to an architecture which integrates
the semantic model (as shown in Figure 8) can be done in several steps without
breaking the overall architecture. To achieve this, four components have to be
added:

1 The Metadata Service (MS) with a query interface for the Meta-
Scheduling Service (MSS) and a metadata upload interface for the Lo-
cal Scheduler' Semantic Adapter (LSSA). The MS also implements the
RDF repository that contains the RDF representation of state and capa-
bilities of the different local schedulers.

2 The LSSA which converts the scheduler state and capabilities, trans-
forms them into an RDF representation and uploads them to the RDF
repository. The LSSA is needed for those local schedulers - currently all
- which are not able to provide the metadata. Future schedulers may have
this capability and will then be able to upload their metadata directly to
the RDF repository.

3 The Ontology Management Service (OMS) based on WS-DAIOnt [8] as
defined by the OntoGrid project [13]. The OMS stores the GSO and pro-
vides a WS-DAIOnt interface towards the MSS for accessing the GSO.

Semantic Support,for Meta-Scheduling in Grids 181

4 The Reasoning Service (RS) with an interface to the MSS allowing to
receive scheduler classification requests and to submit the classifications
needed for the pre-selection back to the MSS

Once these new components are available the transition to the new architecture
can be performed by adding the following to the MSS:

The metadata query interface between MSS and MS,

the WS-DAIOnt interface to access the GSO,

the interface to the RS, and

logic that allows to pre-select appropriate local schedulers based on their
capabilities and actual state, and to use the metadata to negotiate the
advance reservation with the pre-selected local schedulers.

Finally the current adapters may be removed as they are obsolete in the new
MSS framework.

5. Future Perspectives

Once implemented we will evaluate the GSO-based architecture and com-
pare it to the solution presented in Section 1.1. Since the current implemen-
tation of the VIOLA Meta-Scheduling Service is already used to co-allocate
MPI workflows it seems feasible to set up a testbed combining "semantically-
enriched" and "classical" adapters. It will then be possible to compare the
functional range of both solutions. It is envisaged that this evaluation will lead
to another iteration of the ontology building process.

In this context it will also be necessary to review the model by means of
usage scenarios that include arbitrary resource types. Although the use cases
described in Section 2 reflect mostly general Grid scheduling requirements,
the query-current - schedule capability is modelled according to the require-
ments of queue-based local resource managers. The integration of network re-
source managers into the VIOLA meta-scheduling environment will allow us
to do this review.

In addition we will examine the a1 ter- reservat ion resource management
capability and negotiation-related issues linked to the negotiation protocol ac-
tivities of the GRAAP Working Group at GGF [7] .

Acknowledgments
This paper includes work carried out jointly within the CoreGRID Network

of Excellence founded by the European Commission's IST programme under
grant #004265. This paper also includes work funded by the German Federal
Ministry of Education and Research through the VIOLA project under grant
#01AK605F.

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

References

[l] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agree-
ment Specification (WS-Agreement) Version 2005109, September 2005. 12
Mar. 2006 <https:Nforge.gridforum.org/projects/graap-wg/document~S-
AgreementSpecificationDraft.doc/en/24>.

[2] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, andApplications. Cambridge
University Press, 2003.

[3] J. Brooke, D. Fellows, K. Ganvood, and C. Goble. Semantic matching of Grid Resource
Descriptions. In Proc. of the 2nd European Across Grids Conference, Nicosia, Cyprus,
January 28-30,2004.

[4] J. Brooke, D. Fellows, and J. MacLaren. Interoperability of Resource Description Across
Grid Domain Boundaries. In Proc, of the European Congress on Computational Methods
in Applied Science and Engineering (ECCOMAS 2004), Jyvaskyla, Finland, July 24-28,
2004.

[5] J. Brooke, K. Garwood, and C. Goble. Interoperability of Grid Resource Descriptions:
A Semantic Approach. In Proc. of the 1st GGF Semantic Grid Workshop in conjunction
with GGF 9, Chicago, USA, October 5,2003.

[6] 0. Corcho, P. Alper, I. Kotsiopoulos, P. Missier, S. Bechhofer, D. Kuo, and C. Goble.
An Overview of S-OGSA: A Reference Semantic Grid Architecture. Journal of Web
Semantics, n.d. To appear.

[7] Grid Resource Allocation Agreement Protocol (GRAAP-WG), 2006. 13 Mar. 2006
<https://forge.gridforum.orglprojects/graap-wgl>.

[S] M. E. Gutirrez, A. Gmez-Prez, 0. M. Garca, and B. V. Terrazas. Ontology Ac-
cess in Grids with WS-DAIOnt and the RDF(S) Realization. In Proc. of the 3rd
GGF Semantic Grid Workshop in conjunction with GGF 16, Athens, Greece, Febru-
ary 15,2006. 12 Mar. 2006 < http://www.semanticgrid.org/GGF/ggfl6/papers/OntoGrid-
GGF 16-SemGrid-Wrkshp.pdf>.

[9] A. Keller and A. Reinefeld. Anatomy of a Resource Management System for HPC Clus-
ters. In Y. C. Kwong, editor, Annual Review of Scalable Computing, volume 3 of Series
on Scalable Computing, pages 1-31. Singapore University Press and World Scientific
Publishing, 2001.

[lo] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and Ab-
stract Syntax. W3C Recommendation, World Wide Web Consortium (W3C), Febru-
ary 10,2004. 12 Mar. 2006 <http://www.w3.org/TR/rdf-concepts/>.

[l 11 Platform LSF, 2006. 12 Mar. 2006 <http://www.platform.com/Products/Platform.LSF.-
Family/Platform.LSF/>.

[12] D. L. McGuinness and F. v. Harmelen. OWL Web Ontology Language Overview. W3C
Recommendation, World Wide Web Consortium (W3C), February 10, 2004. 12 Mar.
2006 <http:Nwww.w3.orglTR/owl-features/>.

[13] OntoGrid Project, 2006. 12 Mar. 2006 <http://www.ontogrid.net/ontogrid/home.jsp>.

[14] PBS Professional, 2006. 12 Mar. 2006 <http://www.altair.com/software/pbspro.htm>.

[15] S. Quirolgico, P. Assis, A. Westerinen, M. Baskey, and E. Stokes. Toward a Formal Com-
mon Information Model Ontology. In International Workshop on Intelligent Networked

Semantic Support for Meta-Scheduling in Grids 183

and Mobile Systems, Web Information Systems Engineering (WISE 2004), volume 3307
of Lecture Notes in Computer Science, pages 1 1-2 1. Springer, 2004.

[16] M. Roehrig, W. Ziegler, and Ph. Wieder. Grid Scheduling Dictionary of Terms and Key-
words. Grid Forum Document GFD. 1 I , Global Grid Forum, 2003.

[17] J. Schopf. Ten Actions When Grid Scheduling - The User as a Grid Scheduler. In
J. Nabrzyski, J. Schopf, and J. Weglarz, editors, Grid Resource Management - State of
the Art and Future Trends, pages 15-23. Kluwer Academic Publishers, 2004.

[18] J. Skovira, W. Chan, H. Zhou, and D. Lifia. The EASY - LoadLeveler API Project.
In D. G. Feitelson and L. Rudolph, editors, Proc. of 2nd Workshop on Job Scheduling
Strategies for Parallel Processing, volume 1162 of Lecture Notes in Computer Science,
pages 41-47. Springer, 1996.

[19] 0. Waldrich, Ph.Wieder, and W. Ziegler. A Meta-scheduling Service for Co-allocating
Arbitrary Types of Resources. In Proc. of the Second Grid Resource Management Work-
shop (GRMWS'OS) in conjunction with the Sixth International Conference on Parallel
Processing and Applied Mathematics (PPAM 2005), Poznan, Poland, September 1 1-14,
2006. To appear.

[20] Ph. Wieder and W. Ziegler. Bringing Knowledge to Middleware - Grid Scheduling On-
tology. In V. Getov, D. Laforenza, and A. Reinefeld, editors, Future Generation Grids,
Proceedings of the Workshop on Future Generation Grids, pages 47-59, Dagstuhl, Ger-
many, November 1-5,2004. Springer. ISBN: 0-387-27935-0.

SEMANTIC GRID RESOURCE DISCOVERY
IN ATLAS*

Zoi Kaoudi, Iris Miliaraki, Matoula Magiridou
Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens, Greece

{zoi, iris, matoula) @di.uoa.gr

Erietta Liarou
Dept. of Electronic and Computer Engineering
Technical University of Crete, Greece
erietta@intelligence.tuc.gr

Stratos Idreos
CWI
Amsterdam, The Netherlands
S.ldreos@cwi.nl

Manolis Koubarakis
Dept. of Informatics and Telecommunications
National and Kapodistrian University of Athens, Greece

koubarak@di.uoa.gr

Abstract We study the problem of resource discovery in the Semantic Grid. We show
how to solve this problem by utilizing Atlas, a P2P system for the distributed
storage and retrieval of RDF(S) data. Atlas is currently under development in
project OntoGrid funded by FP6. Atlas is built on top of the distributed hash
table Bamboo and supports pull and push querying scenarios. It inherits all
the nice features of Bamboo (openness, scalability, fault-tolerance, resistance
to high churn rates) and extends Bamboo's protocols for storing and querying
RDF(S) data. Atlas is being used currently to realize the metadata service of
S-OGSA in a fully distributed and scalable way. In this paper, we concentrate
on the main features of Atlas and demonstrate its use for Semantic Grid resource
discovery in an OntoGrid use case scenario.

Keywords: peer-to-peer networks, DHT, RDF, query processing, Semantic Web.

*This work is partially funded by FP6lIST project OntoGrid.

186 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction

For the Semantic Grid vision [15] to become a reality, high quality of ser-
vice must be offered to users and applications at all levels of the Grid fabric.
In this paper, we concentrate on high quality of service in the provision of
resource discovery services in Semantic Grids. Resource discovery is an im-
portant problem in Grids in general, and Semantic Grids in particular. We
discuss how to achieve high-performance, scalability, resilience to failures,
robustness and adaptivity in the provision of resource discovery services in
Semantic Grids, and especially in OntoKit, the Semantic Grid toolkit currently
under development in project OntoGrid [24].

OntoGrid (h t t p : //www . o n t o g r i d . n e t) is a Semantic Grid project
funded by the Grid Technologies unit of the European Commission under the
strategic objective "Grid-based systems for Complex Problem Solving" of the
Information Society Technologies programme of FP6.

Our basic assumption in this paper is that Semantic Grid resources (e.g., ma-
chines, services or ontologies) will be annotated by RDF(S) metadata. Meta-
data pervades the Semantic Grid and is used to describe Grid resources, the
environment, provenance and trust information etc. [15]. The Resource De-
scription Framework (RDF) and RDF Schema (RDFS) are frameworks for rep-
resenting information about Web resources. RDF(S) consists of W3C recom-
mendations that enable the encoding, exchange and reuse of structured meta-
data, providing the means for publishing both human-readable and machine-
processable information and vocabularies for semantically describing things
on the Web. Although RDF(S) was originally proposed in the context of the
Semantic Web, it is also a very natural framework for representing information
about Grid resources. As a result, it is used heavily in various Semantic Grid
projects e.g., mYGrid (h t t p : //www . m y g r i d . o r g . uk) or OntoGrid.

We propose to view resource discovery in Semantic Grids as distributed
RDF query answering on top of a P2P network of Grid resource providers and
requesters. Our proposal complements well-known Grid information services
such as MDS4 of GT4 in two ways:

We offer service providers and service requesters expressive semantics-
based data models and query languages (i.e., RDF(S) and RQL instead
of XML and XPath).

We implement resource discovery using techniques from P2P systems.
This allows us to achieve full distribution, high-performance, scalability,
resilience to failures, robustness and adaptivity. Related experimental
work is presented in [26, 28,271.

Semantic Grid Resource Discovery in Atlas 187

In the context of OntoGrid, our proposal is realized with the implementation
of Atlas, a P2P system for the distributed storage and querying of RDF(S)
metadata describing Semantic Grid resources.

The rest of the paper is organized as follows. Section 6 briefly discusses
related work at the crossroads of Grid and P2P computing research. Section
3 gives a short description of the various components and protocols of Atlas.
Section 4 shows how to use Atlas for service discovery in OntoKit. Finally,
Section 5 concludes the paper.

2. Related Work
Our research can be understood to lie at the intersection of P2P and Grid

computing. Although these computing paradigms have different origins and
have been developed largely independently, there has been a lot of interesting
work lately at the crossroads of these paradigms [13, 34, 111.

Previous papers that explore connections among Grids and P2P networks
can be distinguished in the following categories:

1 General papers that discuss the similarities and differences of P2P and
Grid systems pointing out important areas where more work is needed
[13,34, 111.

2 Papers where ideas from P2P computing are used in Grid systems. Here,
we can further differentiate as follows:

(a) Works where Grid computing problems are given as a primary mo-
tivation, but the contributions are essentially in the P2P domain
and can also be applied elsewhere. For example, [4, 23, 71 con-
sider attribute-value data models that can be used to describe Grid
resources (e.g., by specifying the CPU power, disk space capac-
ity, operating system and location of a computer) and show how to
evaluate queries in these models on top of DHTs (e.g., I am looking
for an idle PC that runs Linux and has CPU > 3GHz).

(b) Works where P2P techniques are used to improve functionality in
existing Grid systems e.g., resource discovery [20, 18, 191 and
replica location management in Globus [8] or flocking in Condor
[61.

(c) Service-oriented application development frameworks that en-
hance existing frameworks for Web or Grid service computing [I ,
161 with P2P protocols.

3 Papers where ideas from Grid computing are used in P2P systems. For
example, [lo] shows how to implement a P2P data integration frame-
work using OGSA-DAI [2].

188 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Our work should be classified in categories 2(b) and 2(c) above. Work with
goals similar to ours that uses description logics instead of RDF(S) is reported
in [17].

3. The P2P System Atlas

In Atlas, we use state of the art distributed hash table (DHT) technology
[5] to implement a distributed system that will be able to scale to hundreds of
thousands of nodes and to large amounts of RDF(S) data and queries. Nodes in
an Atlas network are organized under the Bamboo DHT protocol [3 11. Bam-
boo is a DHT based on Pastry [32] from where it takes the circular identifier
space and the routing algorithms. Bamboo improves on Pastry by being able to
withstand very dynamic changes in network membership i.e., it is resilient to
churn [3 11. Like most implementations of DHTs, Bamboo offers a very sim-
ple interface consisting of two operations: put (ID, it em) and get (I D) .
The put operation inserts an item with key I D and value item in the DHT.
The get operation returns a pointer to the DHT node responsible for key I D .
Our operations for storing data and querying Atlas, described below, are based
on these simple operations offered by Bamboo.

Atlas nodes can enter RDF(S) data into the network and pose RQL queries.
Two kinds of querying functionality are supported by Atlas: one-time querying
andpublish/subscribe. Each time a node poses a one-time query, the network
nodes cooperate to find RDF(S) data that form the answer to the query. In the
publish/subscribe scenario, a node can subscribe with a continuous query. A
continuous query is indexed somewhere in the network and each time matching
RDF(S) data is published, nodes cooperate to notlfi the subscriber.

The current implementation of Atlas (Atlas v0.6) supports a subset of the
query language RQL [22] as we explain in Section 3.4 below. The query
processing algorithm we use for one-time queries is an extension of the algo-
rithm proposed in [9] for a smaller class of queries based on triple patterns
[9]. Publishlsubscribe scenarios in Atlas are handled using the algorithms in
[28,27] that are briefly discussed in Section 3.3 below but have not been fully
implemented in Atlas v0.6. In the future, Atlas will also support the recently
proposed RDF update language RUL for inserting, deleting and updating RDF
metadata [30].

Atlas is used in OntoKit for realizing a fully distributed metadata service.
A high level view of Atlas and the metadata service of OntoKit is shown in
Figure 1.

3.1 RDF Documents and Queries in Atlas

Atlas nodes provide their data in the form of RDF documents [25]. These
documents are decomposed into RDF triples that are indexed in various nodes

Semantic Grid Resource Discovery in Atlas 189

L
Bamboo networlc layer

\ /
QueryMetadata(R0LQuery) UpdateMetadata(RUL0peranon)

-.. -. ---..- -. -. --. -. -.

Metadata Service

Figure I . Atlas and the metadata service

of the network. A triple represents a statement about a domain and has the
form (subject, predicate, object) where subject and predicate are URIs and
object is a URI or a literal. We adopt the triple indexing algorithm presented in
[9], where each triple is indexed on the DHT three times, once for its subject,
once for its predicate and once for its object. For each of these storage opera-
tions we make use of the put operation provided by the Bamboo DHT using
as key the subject, predicate or object value respectively. The key is hashed to
create the identifier that leads to the appropriate node where the triple is stored.

Atlas supports internally the query language TPQL (triple-pattern query
language) which allows the expression ofpositive (i.e., without negation) con-
junctive queries where each conjunct is a triple pattern.

A conjunctive query q is a formula of the form

where s l , . . . , s,, pl, . . . , p, are variables or URIs, 0 1 , . . . , om are vari-
ables, URIs or literals, ? X I , . . . ,?xk are variables and {?x l , . . . , ? xk) C
i s 1 , . . . , Sm,pl , . . . ,p,, 0 1 , . . . ,om). Variables will always start with the '?'
character. The triple patterns (s l , pl , o l) , . . . , (s,, p,, 0,) are the subqueries
of q. A query will be called atomic if it consists of a single conjunct.

The class of conjunctive queries can be used to express many interesting
requests in P2P applications using RDF. For example, assume that a service

190 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

requester wants to discover a Web service for arranging the repair of a car.
This request can be expressed as a conjunctive query as follows:

?x, ?y : (?x, hasServiceKeyword, "Cars") A

3.2 One-Time Query Processing in Atlas

In this section, we describe the algorithm for one-time query processing
in Atlas using terminology from relational databases. Each triple can be un-
derstood to be a tuple in a relation T R I P L E (S , P, 0) with attributes S for
subject, P for predicate and 0 for object. Then, conjunctive queries are
select-project-join queries over the database that consists simply of the rela-
tion T R I P L E . The exact query processing algorithm of Atlas is as follows.

Let n l be a node that wants to pose a conjunctive query q of the form intro-
duced in Section 3.1. Node n l creates a message

partialResult, variables, returnAddress)

and sends it to the node with identifier id using the underlying Bamboo infras-
tructure. In this message, tr iplepattern is the triple pattern of q which node
n l chooses to be evaluated first', id is the identifier obtained by hashing one of
the constants in triple pattern triplepattern, restTriplePatterns is the list
of remaining triple patterns of q, partialResult is a relation for partial results
(see below) which is initially empty, variables is the list of answer variables
of q, and returnAddress is the IP address of node n l .

When another node n2 receives the above message queryRequest, it does
the following. It first computes the bindings of the variables included in
the given triple pattern by finding the triples in its local database that match
tr iplepattern. These bindings form a new relation R with attributes the
variables in question. If partialResult is empty, then node n2 assigns
R to partialResult. Otherwise, n2 computes the natural join of R and
partialResult (i.e., partialResult M R) and assigns it to partialResultt.
Then, n2 creates a new message

partial Result', variables, returnAddress)

 his choice is crucial depending on the metric one wants to optimize; in Atlas v0.6, we simply pick the
first triple pattedconjunct.

Semantic Grid Resource Discovery in Atlas 19 1

When this message is received by another node ns, the same procedure is
followed. These nodes join the relation R of the bindings they retrieve locally
with the relation partialResult and send a message to the next node. This pro-
cedure terminates in two possible ways. Either, the list restTriplePatterns
becomes empty or the relation partialResult becomes empty. The latter
means that the current triple pattern does not match with any triples stored
locally, and thus relation R becomes empty and the join operation results in an
empty relation. In both cases, a response with the results should be returned
to node n l which issued the query. The field returnAddress is used for this
purpose; it remains unchanged throughout the whole procedure and refers to
the IP address of node n l .

The node n, that determines that the query evaluation procedure is fin-
ished computes the bindings of the answer variables ?xl,. . . , ?xk. In or-
der to do that, n, computes the projection of relation partialResult on the
variables included in the list variables and inserts the results in the relation
variableBindings i.e.,

Then, n, sends a response message queryResponse(variab1eBindings) to
node n l , where variableBindings is a relation with the answer to the query.

The key idea in the algorithm we described above is that we split a conjunc-
tive query to the triple patterns that is consists of and evaluate each one at a
different node of the network. In this way, we try to distribute the responsi-
bility of answering a query to several nodes. Intermediate results flow through
these nodes and finally the last one delivers the results back to the node that
submitted the query. Notice that in order to determine which node will evaluate
a triple pattern the algorithm uses one of the constants contained in it. Finally,
the distributed query plan is created once, i.e., at the time that the query is
submitted.

In [26] , we propose an improved algorithm for the evaluation of conjunctive
RDF queries on top of DHTs. In this algorithm, the distributed query plan is
created dynamically by exploiting the values of matching triples found while
processing the query incrementally. This time we use combination of constants
in a triple pattern to determine which will be the node to evaluate it. By enrich-
ing the triple patterns with new values we have more combinations to use. In
this way, this algorithm distributes the responsibility of evaluating a query to
more nodes than the previous one. Our initial experiments show a significant
improvement on load distribution but, on the other hand, there is an overhead
in network traffic.

192 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

3.3 Publish/Subscribe in Atlas

In [28, 271, we propose two distributed algorithms for publishhbscribe on
top of DHTs when publications are RDF triples and subscriptions are conjunc-
tive multi-predicate queries.

In our algorithms, when a continuous query is submitted, it is indexed some-
where in the network and waits for triples to satisfy it. Each time a new triple is
inserted, the network nodes cooperate to determine what queries are satisfied,
compute their answers and create notifications for the subscribers. The case
of conjunctive queries is an interesting one, since a single triple may satisfj, a
query q onlypartially by satisfying a subquery of q. In other words, more than
one triples may be needed to answer a query. Moreover, since the appropriate
triples do not necessarily arrive in the network at the same time, the network
should "remember" the queries that have been partially satisfied in the past
(e.g., by keeping intermediate results) and create notifications only when all
subqueries of a given query are satisfied.

We could index queries to a globally known node or set of nodes, but this
would eventually overload these nodes. In a P2P environment, we want as
many nodes as possible to contribute some of their resources (storage, cpu,
bandwidth, etc.) for achieving the overall network functionality. The resource
contribution of each node will obviously depend on its capabilities, its gains
from participating in the network, etc. In our work, we make the simplifying
assumption that all nodes are altruistic, with equivalent capabilities, and, thus,
can contribute to query evaluation in identical ways.

Let us now discuss the issues involved in publishhbscribe with conjunctive
queries. We first consider an atomic query q = (?sl, p l , ?ol). We can simply
assign q to the successor node x of Hash(p1) by using the constant part p l of
the query. Triples that have predicate value equal to p l will be indexed to x
too, where they will meet q. Assume now the atomic query q' = (?s2, pa, 02).
We can index q' either to node x l = Successor(Hash(p2)) or to node
x2 = Successor(Hash(02)). We prefer the second option since intuitively
there will be more object values than predicate values in an instance of a given
schema, which will allow us to distribute queries to a greater number of nodes.
Another solution is to index q' to the node 23 = Successor(Hash(p2 + 02)).
We use the operator + to denote the concatenation of string values. This is the
best option because the possible combinations of predicate and object values
will be greater than the number of object values alone, so this will lead to an
even better distribution of queries.

The difficulty with arbitrary conjunctive queries is that they demand more
than one conditions to be satisfied before the whole query can be satisfied.
As an example, consider the query q = ql A q2 A q3. Our approach is to
split the query to the subqueries that it consists of, and to index each subquery

Semantic Grid Resource Discovery in Atlas 193

separately. Then, three usually different nodes will be responsible for query
processing regarding q. Each one will be responsible for a single subquery of
q, e.g., nodes r l , r 2 and r3 will be responsible for ql, 92 and q3 respectively.
These nodes will form the query chain of q, denoted by chain(q). Each one
of these nodes will monitor the satisfaction of only the subquery that it is re-
sponsible for. To determine the satisfaction of q, we have to allow some kind
of communication between these three nodes. In this way, as triples arrive and
satisfy a subquery e.g., in node r l , rl will forward partial results of q to r2.
Node r 2 will forward partial results that also satisfy the second subquery to r3

and r3 will realize that the whole query is satisfied and create a notification.
The first algorithm that we present in [28] creates a single query chain for

each conjunctive query while the second one creates multiple query chains
for a single query to achieve a better query processing load distribution. The
first algorithm of [28] is essentially identical to the one-time query processing
algorithm discussed in Section 3.2 except that, in the publish/subscribe case,
it is executed in a reactive manner as matching triples arrive in the network.
In [28], the two algorithms presented are experimentally evaluated for con-
junctive multi-predicate queries (i.e., queries where the subject of all the triple
patterns is the same variable ?s and predicates p l , . . . , p, are all constant).
However, the general idea of these algorithms is easily extensible to support
the full class of conjuctive queries as we show in the forthcoming paper [27].

3.4 The RQL-to-TPQL Translator

Atlas offers to users the ability to write queries in TPQL or in the well-
known RDF query language RQL. RQL [22], which stands for RDF Query
Language, is a declarative language which relies on a formal graph model that
captures the RDF modelling primitives. The novelty of RQL lies in its ability to
combine schema and data querying smoothly while exploiting the taxonomies
of labels and multiple classification of resources. The syntax of RQL includes
a set of basic queries (e.g. Resource, SubClassOf () etc.) as well as
SQL-like select - f rom-where queries to iterate over RDF collections and
introduce variables2.

Consider the schema of Figure 2 which describes information about Web
services in RDFS. This example is part of the core services data model used
in project , y ~ r i d ~ . Suppose we want to find a Web service for arranging the
repair of the car. What follows is an appropriate RQL query:

SELECT X
FROM {~}ns:has~ervice~escription{~}

'RQL is implemented in ICS-FORTH's Suite h t t p : //139.91.183.30: YOYO/RDF/ ' http://www.mygrid.org.uk

1 9 4 K N O W L E D G E A N D DATA M A N A G E M E N T I N G R I D S

haslnpuVOulpul

ns:hltp://www,mygrid.org,uWontology#

hasServiceName ~ h asOpe'r@ti_on I

gWSDL-opetalion

~ ~ ' i \ ~ " / ~ -- - --- ~ hasServiceName \,

& RepairCar-serviee

"Car Repair Servicer

Figure 2.

< _ i > o,a,,
Literal

RDFS schema for Web Services

• Resource

i~ Property

. ~ InstanceOf

WHERE Y like "*car*"
USING NAMESPACE ns=&http ://www. mygrid, org. uk/#ontology

In order to support RQL queries in Atlas, we have introduced a module
responsible for mapping a query expressed in RQL to a query in TPQL, which
is the query language supported internally by Atlas and described in Section
3.1. In Atlas v0.6, we do not support the full functionality of RQL but only
data queries with filtering conditions.

Recall the RQL query presented earlier, about the discovery of service for
arranging the repair of the car. The equivalent conjunctive query is the follow-
ing:

?x : (?x, http ://www.mygrid.org.uk/ontology~hasServiceDescription, ?y)

A ?y l ike " * car * "

To design the RQL-to-TPQL translator we have followed the RQL Inter-
preter architecture developed by ICS-FORTH [14] (see Figure 3). Our imple-
mentation has been done in Java using the Java Compiler Compiler (JavaCC)
[3] parser generator.

The syntax analyser module receives as input a string, representing an RQL
query, and returns the corresponding CNF syntax tree (if the query is valid).
The syntax tree is passed to the graph constructor module, which creates a
graph corresponding to the semantic representation of the query. These two
modules are based on the code of RQL Interpreter. The translator module
takes as input the syntax tree and graph of an RQL query and returns the

Semantic Grid Resource Discovery in Atlas

Mapping
iuncfions

ROL

4
Tr

equivalent expression in TPQL, as a list of triple patterns and constraints. It
consists of a list of mapping functions, which implement the mapping rules
between RQL and TPQL presented in [2 11. The main module contains either a
JNI-client and a standalone application for the management of the RQL query
translator or directly creates the triple patterns data structures to be passed to
the rest of the Atlas modules for query processing.

4. Atlas in Operation: Service Discovery in OntoKit

(1)

In this section, we show how Atlas can be used in OntoKit during service
annotation and discovery [24]. The whole scenario is depicted in Figure 4.

OntoGrid is developing annotation technology for Grid services 1331; this
technology is deployed as the annotation service of OntoKit. For the purposes
of this section, it is also important to mention another service of OntoKit, the
ontology service [12]. The current version of the ontology service provides
a Grid interface to an RDFS store where RDFS ontologies are stored (e.g.,
service ontologies or domain ontologies etc.).

An ontology for services and various domain ontologies are needed in or-
der to create a service annotation. Let us suppose that the annotation service
chooses to search for an ontology about cars in order to annotate a car-repair
service (the example comes from a car insurance use case studied in OntoGrid).
The annotation service can pose an RQL query to the metadata service and get

Query

Lexical
Synfacticai

analysis

Synlacl cal Tree

CNF algorithm

I

Oue%
(string)

ples
Pdttern

(2) Syntactical tree under CNF

(3) 4

Main lunclion

A

Evaluation 01
dependencies and

I
Semantical Representation (query graph)

Graph conslrucfion
lacforirafion +-D

(6)

(5) C

Triples Pattern

Translalion

I

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. l want a

about cars

Metadata Service
FROM (X)ns:harSewiceDeocriptbnM
WHERE Y like "can'
USING NAMESPACE m - 8h~Jh.mypl.org.IWontoloevI

Figure 4. Using Atlas for Service Annotation and Discovery

information about such ontologies e.g., the location and description of a par-
ticular ontology - let us call it car - r e p a i r - o n t o l o g y . After discovering
information about car - r e p a i r - o n t o l o g y , the annotation service can re-
trieve it from the ontology service.

If the annotation service does not know the ontology for annotating services,
it has to search for such an ontology as well. An example ontology describing
services that could be found in this case is the mYGrid service ontology [29].
We should mention here that this step may be unnecessary if a specific service
ontology has been selected for annotating services in OntoKit.

Using these ontologies, the annotation service can complete the service an-
notation process. The result of the annotation process will be stored in Atlas
by calling the UpdateMe tadata operation (see Figure 4). The ontology
used for describing the service should have been stored previously in Atlas by
calling the S t o r e o n t 01 o g y operation.

Let us suppose now that an OntoKit user wants to discover a service for
repairing cars. This is accomplished by submitting RQL queries using appro-
priate service and domain ontologies (see Figure 4).

Finally, notice that after an annotation is stored, it might be necessary to be
able to update it. An appropriate update operation can be expressed in RUL
and executed in Atlas.

Semantic Grid Resource Discovery in Atlas

5. Conclusions
We have argued that resource discovery services for Semantic Grids can

be made scalable, fault-tolerant, robust and adaptive, by exploiting distributed
RDF query processing algorithms implemented on top of DHTs. We have
discussed the implementation of our ideas in the system Atlas and its role in
the Semantic Grid toolkit OntoKit. The implementation of Atlas was started at
the Technical University of Crete and is currently continued at the National and
Kapodistrian University of Athens. More information on the current version
of Atlas is available in [21]. Although we have stressed performance issues,
we have not provided any measurements or experimental results in this paper.
Experimental results based on simulations can be found in [28] and more
experimentation is underway [27, 261. Finally, we expect to be able to analyse
the performance of Atlas soon on real-world wide-area networks using the
PlanetLab infrastructure.

References

[I] jxta. http://www.sun.com/software/jxta/.

[2] Open Grid Services Architecture Data Integration (OGSA-DAI).
http://www.ogsadai.org.uW.

[3] Java Compiler Compiler(JavaCC). https://javacc.dev.java.net/, 2004.

[4] A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries for Grid Information
Services. In the second IEEE International Conference on Peer-to-Peer Computing
(P2P2002), Linkoping, Sweden, 5-7 September 2002.

[5] H. Balakrishnan, M. Frans Kaashoek, D. R. Karger, R. Morris, and I. Stoica. Looking up
data in P2P systems. Communications of the ACM, 46(2):43-48,2003.

[6] A. Raza Butt, R. Zhang, and Y. Charlie Hu. A Self-organizing Flock of Condors. In
Proceedings of Supercomputing Conference (SC), Phoenix, Arizona, November 2003.

[7] M. Cai, M. Frank, and P. Szekely. MAAN: A Multi-Attribute Addressable Network for
Grid Information Services. In Pmceedings of the 4th International Workshop on Grid
Computing (Grid2003), 2003.

[8] M. Cai, A. Chervenak, and M. Frank. A Peer-to-Peer Replica Location Service Based
on A Distributed Hash Table. In the 2004 ACMIEEE Conference on Supercomputing
(SC2004), Pittsburgh, November 2004.

[9] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor. A Subscribable Peer-to-Peer RDF
Repository for Distributed Metadata Management. Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, 2(2): 109-1 30, December 2004.

[lo] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, and G. Vetere. Hyper: A Frame-
work for Peer-to-Peer Data Integration on Grids. In Proceedings of the International
Conference on Semantics of a Networked World: Semantics for Grid Databases (ICSNW
2004), pages 144-157,2004.

[I 11 J. Crowcroft, T. Moreton, I. Pratt, and A. Twigg. The GRID2: Blueprint for a New Com-
puting Infrastructure, chapter Peer-to-Peer Technologies. 2004.

198 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

[12] M. Esteban Gutirez (ed), S. Bechhofer, 0. Corcho, M. Ferndez-Lez, A. Gez-Perez,
Z. Kaoudi, I. Kotsiopoulos, M. Koubarakis, M C. Suez-Figueroa, and V. Tamma. Speci-
fication and Design of Ontology Grid Compliant and Grid Aware Services. Deliverable
3.1 OntoGrid project.

[I31 I. Foster and A. Iamnitchi. On Death, Taxes, and the Convergence of Peer-to-Peer and
Grid Computing. In 2nd International Workshop on Peer-to-Peer Systems (IPTPS'03),
Berkeley, CA, February 2003.

[I41 G. Karvounarakis. RQL. http:N139.91.183.30:9090/RDFiRQLl, 2003.

[15] C. A. Goble and D. De Roure. The Semantic Grid: Myth Busting and Bridge Building.
In Proceedings of ECAI, pages 1129-1 135,2004.

[16] A. Harrison and I. Taylor. Dynamic Web Service Deployment Using WSPeer. In Pro-
ceedings of 13th Annual Mardi Gras Conference - Frontiers of Grid Applications and
Technologies, pages 1 1-16. Louisiana State University, February 2005.

[17] F. Heine, M. Hovestadt, and 0. Kao. Towards Ontology-Driven P2P Grid Resource Dis-
covery. In 5th International Workshop on Grid Computing (GRID 2004), pages 76-83,
Pittsburgh, PA, USA, November 2004.

[18] A. Iamnitchi, I. Foster, and D. C. Nurmi. A Peer-to-Peer Approach to Resource Location
in Grid Environments. In Proceedings of the 11th Symposium on High Performance
Distributed Computing, Edinburgh, UK, August 2002.

[19] A. Iamnitchi, I. Foster, and D.C. Nurmi. A Peer-to-Peer Approach to Resource Discovery
in Grid Environments. Technical Report TR-2002-06, University of Chicago, 2002.

[20] A. Iamnitchi and I. Foster. On Fully Decentralized Resource Discovery in Grid Environ-
ments. In International Workshop on Grid Computing, Denver, Colorado, 2001. IEEE.

[21] Z. Kaoudi, I. Miliaraki, M. Magiridou, A. Papadakis-Pesaresi, E. Liarou, S. Idreos,
S. Skiadopoulos, and M. Koubarakis. Deployment of Ontology Services and Seman-
tic Grid Services on top of Self-organized P2P Networks. Deliverable D4.2, Ontogrid
project, February 2006.

[22] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A
Declarative Query Language for RDF. In Proceedings of the I lth International World
Wde Web Conference, May 2002.

[23] A. Kothari, D. Agrawal, A. Gupta, and S. Suri. Range Addressable Network: A P2P
Cache Architecture for Data Ranges. In Proceedins of the 3rd International Conference
on Peer-to-Peer Computing (P2P'03), Linkoping, Sweden, 2003.

[24] I. Kotsiopoulos, S. Bechhofer, P. Alper, P. Missier, 0 . Corcho, D. Kuo, and C. Goble.
Specification of a Semantic Grid Architecture. Deliverable 1.2, OntoGrid project.

[25] 0 . Lassila and R. R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. Technical report, W3C Recommendation, 1999.

[26] E. Liarou, S. Idreos, and M. Koubarakis. Evaluating Conjunctive Triple Pattern Queries
over Large Structured Overlay Networks. Submitted.

[27] E. Liarou, S. Idreos, and M. Koubarakis. Evaluating Continuous Conjunctive RDF
Queries over Large Structured Overlay Networks. Manuscript in preparation.

[28] E. Liarou, S. Idreos, and M. Koubarakis. Publish-Subscribe with RDF Data over Large
Structured Overlay Networks. In Proceedings of the 3rd International Workshop on
Databases, Information Systems and Peer-to-Peer Computing (DBISP2P 2005), Trond-
heim, Norway, 28-29 August.

Semantic Grid Resource Discovery in Atlas 199

[29] P. Lord, P. Alper, C. Wroe, and C. Goble. Feta: A light-weight architecture for user
oriented semantic service discovery. In Proceedings of the 2nd European Semantic Web
Conference (ESWC 2005), Heraklion, Crete.

[30] M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis. RUL: A Declara-
tive Update Language for RDF. In Proceedings of the 4rth International Semantic Web
Conferece (ISWC2005), 2005.

[3 I] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. In USENIX
Annual Technical Conference, 2004.

[32] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and Routing
for Large-Scale- Peer-to-Peer Storage Utility. In Proceedings of the 18th IFIP/ACM In-
ternational Conference on Distributed Systems Paltforms (Middleware 2001), November
2001.

[33] J. 0 . Segura, R. Benjamins, J. M. G6mez Ptrez, J. Contreras, R. Salla, 0 . Corcho,
R. Gonzilez, G. Aguado de Cea, I. ~ l v a r e z de Mon y Rego, A. Pareja Lora, and R. Plaza
Arteche. Specification and Design of Annotation Services. Deliverable D5.1, Ontogrid
project, March 2005.

[34] D. Talia and P. Trunfio. Toward a Synergy Between P2P and Grids. IEEE Internet
Computing, 7(4):94-96,2003.

IV

DISTRIBUTED DATA MINING

WSRF-BASED SERVICES FOR DISTRIBUTED
DATA MINING

Antonio Congiusta, Domenico Talia, and Paolo Trunfio
DEIS, University of Calabria
Via P Bucci 41C. 87036 Rende (CS)
Italy
acongiusta@deis.unical.it

talia@deis.unical.it

trunfio@deis.unical.it

Abstract Computational Grids can be effectively used as an infrastructure for distributed
data mining and knowledge discovery in large data sets. To utilize Grids for
high-performance knowledge discovery, software tools and mechanisms are
needed. To this purpose we designed a system called Knowledge Grid and we
are implementing its services as WSRF-compliant Grid Services. This chapter
describes the composition of distributed knowledge discovery services, accord-
ing to the service oriented architecture model, by using the Knowledge Grid en-
vironment. We discuss Grid Services for searching Grid resources, composing
software and data elements, and executing the resulting data mining application
on the Knowledge Grid. The chapter focuses in particular on the application
modeling. Applications are designed using a UML model, which is translated
into a BPEL representation, in turn processed by the Knowledge Grid services
for its execution.

Keywords: distributed data mining, Knowledge Grid, WSRF, UML, BPEL.

204 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction
Today huge amounts of data are produced, stored, and moved within Grid

systems as a result of data acquisitions from remote instruments, or scientific
experiments, simulations, and so forth. Handling and mining large volumes of
data is still the most critical issue currently affecting scientists and companies
attempting to make a profitable use of their data. One of the most important
challenges of the Grid is thus making the production and ownership of such
data competitive and useful by allowing effective and efficient extraction of
valuable knowledge from it. To this end, knowledge discovery and data min-
ing services are needed to analyze the very large amount of data that today is
distributed over computational Grids.

The Knowledge Grid [I] is a framework for implementing distributed
knowledge discovery tasks and applications in Grids. The Knowledge Grid
offers to the users a set of services by which it is possible to integrate Grid re-
sources to support all the phases of the knowledge discovery process, as well as
single tasks such as data management, data mining, and knowledge represen-
tation. Previous research activities on the Knowledge Grid have been focused
on the development of a system prototype by using early Grid middleware, as
well as the design and evaluation of distributed knowledge discovery applica-
tions [24].

Currently, the Open Grid Services Architecture (OGSA) paradigm and the
emerging Web Services Resource Framework (WSRF) family of standards are
being adopted for re-implementing the Knowledge Grid services [5] . These
services will permit the design and orchestration of distributed data mining
applications running on large-scale, OGSA-based Grids composed of data and
compute services available all over the world.

This chapter describes the development of the Knowledge Grid services by
using OGSA and WSRF. After discussing design aspects and execution mecha-
nisms, the chapter focuses on application modeling. It discusses how the appli-
cation models are represented and supported by the different Grid services for
their execution over the Knowledge Grid. Applications are modeled through
UML and translated in BPEL, then they are processed by the Knowledge Grid
services for their execution on the Grid.

The remainder of the chapter is organized as follows. Section 2 discusses the
service-oriented approach and its relationships with Grid computing. Section 3
describes the implementation of the Knowledge Grid in terms of the OGSA
and WSRF models. Section 4 discusses application modeling and execution
plan representation. Section 5 gives some performance data about WSRF ser-
vice execution. Section 6 briefly discusses related work. Finally, Section 7
concludes the chapter.

WSRF-based Sewicesfor Distributed Data Mining

2. SOA and the WS-Resource Framework
The Service Oriented Architecture (SOA) is a programming model for build-

ing flexible, modular, and interoperable software applications. Concepts be-
hind SOA are mostly derived from component-based software and the object-
oriented programming. SOA enables the assembly of applications through
parts regardless of their implementation details, deployment location, and ini-
tial objective of their development.

A service is a software building block capable of fulfilling a given task or
business function. It does so by adhering to a well defined interface that defines
required parameters and the nature of the result. Once defined and deployed,
services operate independently of the state of any other service defined within
the system, that is they are like "black boxes." Nonetheless, services indepen-
dence does not prohibit to have services cooperating with each other to achieve
a common goal. In fact, the final objective of SOA is to provide for an applica-
tion architecture within which all functions are defined as independent services
with well-defined interfaces, which can be called in defined sequences to form
business processes [6].

The most important implementation of SOA is represented by Web Services.
The popularity of Web Services is mainly due to the adoption of universally ac-
cepted technologies such as XML, SOAP, and HTTP. The Web is not the only
area that has been attracted by the SOA paradigm. Also the Grid can provide
a framework whereby a great number of services can be dynamically located,
balanced, and managed, so that applications are always guaranteed to be se-
curely executed, according to the principles of on-demand computing. The
trend of the latest years proved that not only the Grid is a fmitful environ-
ment for developing SOA-based applications, but also that the challenges and
requirement posed by the Grid environment can contribute to further develop-
ments and improvements of the SOA model.

The Grid community has adopted the Open Grid Services Architecture
(OGSA) as an implementation of the SOA model within the Grid context. In
OGSA every resource is represented as a Web Service that conforms to a set of
conventions and supports standard interfaces. OGSA provides a well-defined
set of Web Service interfaces for the development of interoperable Grid sys-
tems and applications [7] . Recently the WS-Resource Framework (WSRF) has
been adopted as an evolution of early OGSA implementations [8]. WSRF de-
fines a family of technical specifications for accessing and managing stateful
resources using Web Services. The composition of a Web Service and a state-
ful resource is called WS-Resource.

The possibility to define a "state" associated to a service is the most impor-
tant difference between WSRF-compliant Web Services, and pre-WSRF ones.
This is a key feature in designing Grid applications, since WS-Resources pro-

206 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

vide a way to represent, advertise, and access properties related to both com-
putational resources and applications. Besides, the WS-NotiJication specifica-
tion [9] defines apublish-subscribe notification model for Web Services, which
is exploited to notify interested clients andlor services about changes that occur
to the status of a WS-Resource.

The combination of statefbl resources and the notification pattern can be
exploited to build distributed, long-lived Grid applications in which the com-
putation status is managed across multiple nodes, and services cooperate in a
highly-decentralized way.

3. WSRF-based Data Mining Services
The design of the WSRF-based version of the Knowledge Grid benefitted

from the service-oriented approach used in the original design of the sys-
tem [I]. That design approach conceived the Knowledge Grid architecture
and functionality as a set of basic and high-level services that did not pose any
constraints on the implementation strategy. This choice facilitated re-designing
the system and implementing the new WSRF-version by maintaining the same
architecture and exposing the same fimctionalities as Web Services.

Figure 1 shows the Knowledge Grid architecture, in which each Knowledge
Grid service (K-Grid service) is exposed as a Web Service that exports one or
more operations, by using WSRF conventions and mechanisms.

. - , --. -. -.

EPMS RPS

High-level K-Grld Servlces

Figure 1. The Knowledge Grid architecture.

The Knowledge Grid services are organized in two hierarchical levels: the
Core K-Grid layer and the High-level K-Grid layer. The High-level K-Grid
layer includes services to compose, validate, and execute a distributed knowl-

WSRF-based Services for Distributed Data Mining 207

edge discovery computation. The main services of the High-level K-Grid layer
are:

The Data Access Service (DAS) manages the publication and search of
data to be mined (data sources), as well as the search of inferred models
(mining results). This service exports two operations: publ ishData,
invoked for publishing a newly available dataset, and searchData,
invoked for locating data to be used in a data mining computation.

8 The Tools and Algorithms Access Service (TAAS) is responsible for
publishing and searching extraction tools, data mining tools, and vi-
sualization tools. It exports two operations: publ i shTool s and
searchTools. The first operation is used to publish metadata about a
data mining tool. As a result of the publishing, a new data mining ser-
vice is made available for utilization in data mining computations. The
second operation is similar to the DAS searchData operation except
that it is targeted to data mining tools.

The Execution Plan Management Service (EPMS). An execution plan
is represented by a workflow describing interactions and data flows be-
tween data sources, extraction tools, data mining tools, and visualization
tools. The EPMS allows for defining the structure of an application by
building the corresponding execution plan and adding a set of constraints
about resources. The execution plan generated by this service is referred
to as abstract execution plan, because it may include both well identified
resources and abstract resources, i.e., resources that are defined through
constraints about their features, but are not known a priori. The EPMS
exports its functionality through the submit KApp 1 i cat i on opera-
tion, which receives a conceptual model of the application to be executed
and generates the corresponding abstract execution plan, which is in turn
submitted to the RAEMS service (see below) for its execution.

The Results Presentation Service (RPS) offers facilities for presenting
and visualizing the extracted knowledge models (e.g., association rules,
clustering models, classifications). It exports the getResults oper-
ation, which retrieves results of a performed data mining computation
and presents them to the user.

The Core K-Grid layer offers basic services for the management of metadata
describing features of hosts, data sources, data mining tools, and visualization
tools. This layer also coordinates the application execution by attempting to
klfill the application requirements with respect to available Grid resources.
The Core K-Grid layer comprises two main services:

208 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

The Knowledge Directory Service (KDS) handles metadata describing
Knowledge Grid resources. Such resources include hosts, data reposito-
ries, tools and algorithms used to extract, analyze, and manipulate data,
distributed knowledge discovery execution plans, and knowledge mod-
els obtained as result of mining processes. The metadata information is
represented by XML documents stored in a Knowledge Metadata Repos-
itory (KMR). The KDS exports two operations: p u b l i s h R e s o u r c e ,
invoked by the DAS or TAAS services for publishing data or tools in the
KMR, and s earchRe s o u r c e , which is the core-level operation for
searching data or tools.

The Resource Allocation and Execution Management Service (RAEMS)
is used to find a suitable mapping between an abstract execution plan
and available resources, with the goal of satisfying the constraints (e.g.,
CPU, storage, memory, database, and network bandwidth requirements)
imposed by the execution plan. The output of this process is an instanti-
ated execution plan, which defines the resource requests for each data
mining process. Generated execution plans are stored in the Knowl-
edge Execution Plan Repository (KEPR). After the execution plan ac-
tivation, this service manages the application execution and the storing
of results in the Knowledge Base Repository (KBR). This service exports
the manageKExecu t ion operation, which receives the abstract exe-
cution plan of an application. The RAEMS generates an instantiated
execution plan and manages its execution.

The operations exported by High-level K-Grid services (DAS, TAAS,
EPMS, and RPS) are designed to be invoked by user-level applications,
whereas operations provided by Core K-Grid services (KDS and RAEMS) are
thought to be invoked both by High-level and Core K-Grid services.

As shown in Figure I , users can access the Knowledge Grid functionalities
by using a client interface located on their machine. The client interface is
an integrated visual environment that allows for performing basic tasks (e.g.,
searching of data and software, data transfers, simple job executions), as well
as defining distributed data mining applications described by arbitrarily com-
plex execution plans. The client interface performs its tasks by invoking the
appropriate operations provided by the different High-level K-Grid services.
Those services may be generally executed on a different Grid node; therefore
the interactions between the client interface and High-level K-Grid services are
possibly remote.

Besides their specific operations (described above), all K-Grid services
export three mandatory operations: creat e R e s o u r c e , s u b s c r i b e and
destroy. The c r e a t e R e s o u r c e operation is used to create a stateful
resource, which is then used to maintain the state (e.g., results) of the com-

WSRF-based Services for Distributed Data Mining 209

putations performed by the service-specific operations. The subscribe op-
eration is used to subscribe for notifications about computation results. The
d e s t r o y operation removes a resource.

• Local interaction

. • Possibly remote interaction

Figure 2. K-Grid service design

The implementation of a K-Grid service follows the WS-Resourcefactory
pattern (see Figure 2). In this pattern, a factory service is in charge of creating
the resources and an instance service is used to operate on them. Thus the
createResource mandatory operation introduced above is provided by the
factory service, while the other operations are exported by the instance service.
To create a resource the client contacts the factory service, which creates a
new resource and assigns to it a unique key. The factory service will return an
endpoint reference that includes the resource id and is used to directly access
the resource through the instance service.

3.1 Execution Management

Figure 3 describes the interactions that occur when an invocation of the
EPMS service is performed. In particular, the figure outlines the sequence of
invocations to others services, and the interchanges with them when a KDD ap-
plication is submitted for allocation and execution. To this purpose, the EPMS
exposes the submitKAppl i cat ion operation, through which it receives a
conceptual model of the application to be executed (step 1). The conceptual
model is a high-level description of the KDD application more targeted to dis-
tributed knowledge discovery aspects rather than to Grid-related issues.

The basic role of the EPMS is to transform the conceptual model into an
abstract execution plan for subsequent processing by the RAEMS. It is worth
recalling here that an abstract execution plan is a more formal representation of
the structure of the application. Generally, it does not contain information on
the physical Grid resources to be used, but rather constraints and other criteria
about them.

210 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

- Loul lntersctlon

------• Posalbly remote interaction

Figure 3. EPMS interactions.

The RAEMS exports the manageKExecution operation, which is in-
voked by the EPMS and receives the abstract execution plan (step 2). First
of all, the RAEMS queries the local KDS (through the searchResource
operation) to obtain information about the resources needed to instantiate the
abstract execution plan (step 3). Note that the KDS performs the searching
both accessing the local KMR and querying remote KDSs (step 4).

After the instantiated execution plan is obtained, the RAEMS coordinates
the actual execution of the overall computation. To this purpose, the RAEMS
invokes the appropriate data mining services (DM Services) and basic Grid ser-
vices (e.g., file transfer services), as specified by the instantiated execution plan
(step 5). The results of the computation are stored by the RAEMS into the KBR
(step 6), while the execution plan is stored into the KEPR (step 7). To make
available the results stored in the KBR, it is necessary to publish results meta-
data into the KMR. To this end, the RAEMS invokes the pub1 ishResource
operation of the local KDS (steps 7 and 8).

3.2 Data and Tools Access
DAS and TAAS services are concerned with the publishing and searching

of datasets and tools to be used in a KDD application. They possess the same
basic structure and perform their main tasks by interacting with a local instance
of the KDS that in turn may invoke one or more other remote KDS instances.

Figure 4 describes the interactions that occur when the DAS service
is invoked; similar interactions apply also to TAAS invocations. The
publishData operation is invoked to publish information about a dataset
(step 1). The DAS passes the corresponding metadata to the local KDS, by in-

WSRF-based Services for Distributed Data Mining

-Local interaction

- - - - - -~~osslbly remote Interaction 1

Figure 4. DAS interactions.

voking the publishResource operation (step 2). The KDS, in turn, stores
that metadata into the local KMR (step 3).

The searchData operation is invoked by a client interface that needs
to locate a dataset on the basis of a given set of criteria (step 4). The
DAS submits its request to the local KDS, by invoking the corresponding
searchResource operation (step 5). As mentioned before, the KDS per-
forms the searching both accessing the local KMR, and querying remote KDSs
(step 6). This is a general rule enforced in all the interactions between a high-
level service and the KDS when a searching is requested. The local KDS is
thus responsible for dispatching the query to remote KDSs and for generating
the final answer.

The search for a dataset is performed through the searchData operation
starting from a search string passed by the client. It contains the searching cri-
teria expressed as attribute-value pairs regarding key properties through which
datasets are categorized within the system by using metadata.

The outcome of the searching is a set of URLs pointing to the metadata
of the datasets corresponding to that searching criteria. These kinds of URLs
are specifically targeted at the KDS service: it implements, in fact, a custom
protocol for locating metadata descriptions of Grid resources.

A KDS URL has the form:

and uniquely identifies a metadata file in the Knowledge Grid.

2 12 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

4. Application Modeling and Representation

Designing and executing a distributed KDD application over the Knowl-
edge Grid is a multi-step task that involves interactions and information flows
between services at the different levels of the architecture. A key aspect in
the Knowledge Grid is how applications are modeled, and how the application
models are represented and processed through the different services.

As mentioned in the previous section, applications are described at a high
level using a conceptual model, generated by the user through the design fa-
cilities provided by the client interface. In the current approach we use UML
to represent the conceptual model of an application. The conceptual model is
then passed to the EPMS, which is in charge of transforming it into an abstract
execution plan for subsequent processing by the RAEMS. The execution plan
is expressed through a BPEL document. The RAEMS is in turn responsible for
producing an instantiated execution plan and coordinating the actual execution
of the overall application.

This section describes the process through which the conceptual model is
transformed into the instantiated execution plan and how it is then executed on
the Grid. To describe how the EPMS and RAEMS components enforce such
a process and interact each other in order to manage a distributed data mining
application, a sample mining task is introduced and analyzed during the whole
design and execution phases within the Knowledge Grid environment.

The application we consider to such purpose is inspired to a real classi-
fication task that has been tested over the pre-WSRF implementation of the
Knowledge Grid, as detailed in [3]. The goal of the classification task is to
generate an intrusion detection model based on the analysis of a dataset con-
taining network monitoring data.

While the original dataset is maintained on a single node, the computation
is distributed across a suitable number of Grid nodes. To this end, a number
of independent classifiers are first computed by applying in parallel the same
learning algorithm over a set of distributed training sets, generated through a
random partitioning of the original data set. Afterwards, the best classifier is
chosen by means of a voting operation taking into account evaluation criteria
like computation time, error rate, confusion matrix, etc.

4.1 Conceptual Model Representation
The application model must specify, at some level of abstraction, the tasks

that compose the process, as well as the logic ruling their integration. Many
formalisms have been traditionally used for modelling application workflows,
such as directed acyclic graphs (DAGs), Petri Nets, and UML activity dia-
grams. Many Grid workflow systems adopt standard coordination languages
such as BPEL [lo] and WSCI [I 11, or XML-based ad-hoc solutions.

WSRF-based Services for Distributed Data Mining 213

Within the Knowledge Grid, the UML activity diagram formalism is used
to represent the conceptua! model of the application, while BPEL is used for
representing execution plans. The activity diagram represents the high-level
flow of service invocations that constitute the application logic, whereas BPEL
expresses how the various services are actually coordinated and invoked.

Figure 5 shows the activity diagram for the example described above. The
sampling activity specifies number and sizes of the testing sets that are ex-
tracted from the original dataset. The mining process is invoked in parallel on
three different nodes. Before that, each testing set is transferred to the related
node. The resulting models are then moved to the node on which the voting
activity will take place.

start

!

/

/ a p * m ~ o n : "clammilY"

• u m * n • " -

end

Figure 5. Conceptual model for the example application.

Notice that the sampling activity is followed by a fork operator, which spec-
ifies that the subsequent activity sequences are to be performed in parallel. The
fork operator is used in combination with a join operator, which prescribes that
the execution flow can proceed only when all of the incoming branches have
been performed. Therefore, the voting activity is executed only when all the
classification model have been computed and transferred on the same node.

Many details of the application (such as the data mining algorithm, invoca-
tion parameters, and so on), are hidden behind the visual notation, but they are
specified by the designer as properties of the activities. For example, Figure 5

214 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

shows some properties for a data mining activity. They represent basic char-
acteristics of the computations and are stored within the application model as
activity attributes. This approach for modeling a data mining application ab-
stracts from details of the Grid infrastructure used to execute the application.

4.2 Execution Plan Representation
As mentioned in Section 3, "abstract" and "instantiated" execution plans are

distinguished. At the abstract level, the execution plan may not refer to spe-
cific implementations of services, application components, and input data. All
these entities may be referred through logical names and, in some cases, by
means of a set of constraints about some of their properties, possibly express-
ing quality of service requirements. For example, requirements on processor
speed, amount of main memory or disk space can be used to single out Grid
nodes, while requirements on Grid software may concern input data or target
platforms.

Prior of the application execution, all of the resource constraints need to be
evaluated and resolved on a set of available Grid resources, in order to choose
the more appropriate ones w.r.t. the current status of the Grid environment. Of
course, due to the dynamic nature of the Grid, an abstract execution plan can
be instantiated into different execution plans at different times. Instantiated
execution plans include real names and locations of services, data files, etc.
According to this approach the workflow definition is decoupled from the un-
derlying Grid configuration. This brings many advantages, such as reusability
of application models in time and space, easiness of design, etc.

A Business Process Execution Language (BPEL) document is used to ex-
press the business logic of the application being modelled. This constitutes a
fundamental part of both abstract execution plans and instantiated execution
plans. The main difference among them is that in the BPEL document of the
abstract execution plan the WSDL of services are used without specifying the
service locations. On the other hand, in the instantiated execution plan the ser-
vice locations are included. In both documents services are referred through
the partnerLinkType element provided by BPEL. This element is able to
link the BPEL workflow with the WSDL description of each service included
in it.

As mentioned before, the translation of the conceptual model (represented
by the UML formalism) into the abstract execution plan (represented by a
BPEL document) is performed by the EPMS. To this end, the EPMS incor-
porates an engine which is able to map the UML operators into corresponding
BPEL notations. The BPEL notation is explicitly targeted to service invoca-
tions and thus more rich with respect to the UML one. It includes several con-
structs for interacting with services at different levels, as well as other BPEL

WSRF-based Services.for Distributed Data Mining 215

processes, and manipulating and accessing services input messages and re-
sponses (both through explicit variable manipulation operators and XPath ex-
pressions). One important feature about service invocation is the availability
of patterns reflecting the typical invocation mechanisms supported by services
(one-way, two-way, synchronous or asynchronous). Such basic patterns are
particularly useful and adaptable to the WSRF context, in which in addition
to typical Web services invocation mechanisms, the factory pattern is the main
way for WS-Resources creation, and response messages can originate not only
from the services to which the requests have been sent.

Figure 6 shows the structure of the BPEL document corresponding to the
UML diagram shown in Figure 5. The overall workflow is defined within a
p r o c e s s tag. p a r t n e r L i n k s defines the services involved in the appli-
cation. Variables used as input and output in service invocations, as well as
for other purposes (e.g., faults and internal variables) are declared within the
v a r i a b l e s section. The s e q u e n c e tag specifies the main structure of the
application, including a sampling phase, a set of parallel activities, and the fi-
nal voting. The parallel activities are specified using a f l o w operator, which
in turn includes three sequences. Each s e q u e n c e is composed by a set of
invocations that perform transfer and mining tasks.

<partnerLinks>: services declarations

<variables>: input/output messages

<sequence>: sequence of activities

< invoke>: sampling

< f low>: concurrent activities

<sequence>: mining and tranfers

<sequence>: mining and tranfers

<sequence>: mining and tranfers

< invoke>: voting

lli il LI,.,I

Figure 6. Structure of the BPEL document.

216 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 7 shows an extract of the BPEL document reporting one of the data
mining service invocations. Notice that the classification task is invoked after
the service instance creation and the results notification subscription, following
the general pattern described in Section 3.

cinvoke name="DM service creation"
partnerLink="DMFactoryServiceu
portType="DMFactoryPortType"
operation="createResourceu
inputvariable="DMCreationRequest"
outputvariable="DMCreationResponse">

</invoke>
. . .
cinvoke name="DM service subscription"

partnerLink="DMServiceInstanceM
portType="DMServicePortType"
operation="subscribe"
inputvariable="SubscribeInputMessage"
outputvariable="SubscribeOutputMessage"~

</invoke>
. . .
<invoke name="DM service classification"

partnerLink="DMServiceInstancel'
portType="DMServicePortType"
operation="classify"
inputvariable="ClassificationInputMessage">

</invoke>
. . .
<receive name="DM service notification"

partnerLink="DMServiceInstancen
portType="tns:ProcessPortTypel'
operation="deliverU
variable="NotificationMessage">

</receive>

Figure 7. An excerpt of the BPEL document.

Figure 8 shows the definition of the partnerLinkType for the data min-
ing factory. This definition has to be included in the WSDL definition of the
data mining factory service in order to allow its invocation within the BPEL
process. Similar definitions are also included in the WSDL documents of the
other services.

Figure 8. Example of partnerLinkType definition.

The BPEL and all the associated WSDL documents are passed to the
RAEMS for the instantiation process. It is important to note that the WSDL

WSRF-based Sewices.for Distributed Data Mining 217

documents received by the RAEMS may not include the actual location of the
service to be invoked, reflecting the fact that this has not been specified by
the user during the conceptual model definition. Therefore, the RAEMS at-
tempts to locate suitable service instances that match the service requirements
specified as WSDL definitions. Whenever an instantiated execution plan is ob-
tained, the RAEMS is in charge of submitting it to the workflow engine which
coordinates its execution.

5. WSRF Service Execution Performance
In the previous sections we discussed the design of the Knowledge Grid

using WSRF-compliant services and data mining application modeling in the
Knowledge Grid based on UML and BPEL. This activity has been preceded by
a performance evaluation phase in which we analyzed the execution times of
the WSRF Grid services for estimating the overhead introduced in the remote
execution of data mining tasks on a Grid.

To evaluate the efficiency of the WSRF mechanisms discussed through-
out the previous sections, we developed an experiment in which single
WSRF-compliant K-Grid services executed the different steps described above
for invoking the service, creating the resource, and accessing it. The deployed
K-Grid service exported a service-specific operation named c l u s t e r i n g ,
as well as the mandatory operations creat e R e s o u r c e , s u b s c r i b e and
d e s t r o y . In particular, the c l u s t e r i n g operation was used to perform a
data clustering analysis on a local data set using the expectation maximization
(EM) algorithm. The K-Grid service and the client program have been de-
veloped using the WSRF Java library provided by Globus Toolkit 3.9.2. The
data set on which to apply the mining process contained 17000 instances (with
a size of 5 MBytes) extracted from the census data set provided by the UCI
repository [12].

After performing 20 independent experiments the execution times of the
single steps have been measured. The experiments have been executed both
within a local area Grid scenario and within a wide area Grid. The measure-
ments showed that the data mining phase represents the 99.5% of the total
execution time if client and service reside on a local Grid, whereas the execu-
tion time on the wide area Grid took about 88.3% of total time; the latter case
included also the data-set download phase which accounted for about 10% of
the total time. In both cases, the overhead due to specific WSRF mechanisms
(resource creation, notification subscription, task submission, results notifica-
tion) was very low with respect to the overall execution time; it accounted for
an amount of time of about 0.5% and about 1.5% respectively.

In general, we can conclude that the overhead introduced by the WSRF
mechanisms is marginal when the duration of the service-specific operations is

218 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

long enough, as in typical data mining algorithms working on large data sets.
Therefore, the WS-Resource Framework is suitable to be exploited for devel-
oping high-level services and distributed knowledge discovery applications on
Grids.

6. Related work
Several Grid-based data mining systems have been proposed (see [3] for

a quick survey). Among those, two systems that exploit a service-oriented
approach for providing Grid-based KDD services are Discovery Net [13] and
Grid Miner [141.

Discovery Net allows users to integrate data analysis software and data
sources made available by third parties. The building blocks are the so-called
Knowledge Discovery Services, distinguished in Computation Services and
Data Services. Discovery Net provides services, mechanisms and tools for
specifying knowledge discovery processes.

The functionalities of Discovery Net can be accessed through an interface
exposed as an OGSA-compliant Grid service. However, Discovery Net cur-
rently uses an early implementation of OGSA - namely, the Open Grid Ser-
vices Infrastructure (OGSI) - which has been replaced by WSRF for lack of
compatibility with standard Web Services technologies.

GridMiner aims at covering the main aspects of knowledge discovery on
Grids. Key components in GridMiner are Mediation Service, Information Ser-
vice, Resource Broker, and OLAP Cube Management. These are the so called
GridMiner Base services, because they provide basic services to GridMiner
Core services. GridMiner Core services include services for data integration,
process management, data mining, and OLAP. The services themselves do not
communicate with each other. No service is aware of any other existing ser-
vice. Hence each of them is able to run completely independently. To support
the individual steps of KDD processes, the output of each service can be used
as input for the subsequent service. Like Discovery Net, also Grid Miner has
been implemented on OGSI.

It can be observed that the Discovery Net approach is similar in many as-
pects to the approach followed in the Knowledge Grid to provide a service-
based middleware for distributed data mining. On the contrary, the Grid Miner
system provides single services implementing the main steps of a KDD process
and a service composition engine to execute a multi-step data mining applica-
tion.

To the best of our knowledge, none of the existing systems makes use of
WSRF as basic technology. Therefore, the Knowledge Grid is the first sys-
tem leveraging WSRF for building a comprehensive high-level framework for

WSRF-based Services for Distributed Data Mining 219

distributed knowledge discovery in Grid environments, supporting also the in-
tegration of data mining algorithms exposed through a Web Service interface.

7. Conclusions
In this chapter we addressed the definition and composition of Grid services

for implementing distributed knowledge discovery applications on WSRF-
compliant Grids. We presented Grid services for searching Grid resources,
composing software and data elements, and managing the execution of data
mining applications on Grids. The chapter discussed the definition of data
mining Grid services in the context of the Knowledge Grid architecture. The
services and operations presented in this paper allow for data and tools pub-
lishing and searching, execution submission and resource management, and
retrieving of the produced results.

After discussing design aspects and low-level execution mechanisms, the
chapter focused on the application modeling problem; that is, how the appli-
cation models are represented and processed through the different services for
their execution over the Knowledge Grid. This work demonstrated that the use
of high-level standard formalisms that abstract from Grid architecture details,
such as UML and BPEL, in cooperation with emerging technologies such as
the WS-Resource Framework, can be effectively exploited for designing and
composing distributed data mining applications on computational Grids. Using
the service-based Knowledge Grid, the data sets and data mining components
used in knowledge discovery applications can be offered by different providers
distributed all over the world.

Acknowledgments

This research work is carried out under the FP6 Network of Excellence
CoreGRID funded by the European Commission (Contract IST-2002-004265).
This work has been also supported by the Italian MIUR FIRB Grid.it project
RBNEOlKNFP on High Performance Grid Platforms and Tools.

References

[l] M. Cannataro and D. Talia. The Knowledge Grid. CACM. 46(1):89-93,2003.

[2] M. Cannataro, A. Congiusta, D. Talia and P. Trunfio. A Data Mining Toolset for Dis-
tributed High-Performance Platforms. Int. Conference Data Mining 2002, WIT Press,
pp. 41-50,2002.

[3] M. Cannataro, A. Congiusta, A. Pugliese, D. Talia and P. Trunfio. Distributed Data Min-
ing on Grids: Services, Tools, and Applications. IEEE Transactions on Systems, Man,
and Cybernetics, Part B. 34(6):245 1-2465,2004.

[4] G. Bueti, A. Congiusta and D. Talia. Developing Distributed Data Mining Applications
in the KNOWLEDGE GRID Framework. VECPAR'04, LNCS 3402, pp. 156-169,2005.

220 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

[5] A. Congiusta, D. Talia, P. Trunfio. On Designing and Composing Grid Services for Dis-
tributed Data Mining. In: V. Getov, D. Laforenza, A. Reinefeld (Eds.), Future Generation
Grids, pp. 1 13-132, Springer-Verlag, 2006.

[6] K. Channabasavaiah, K. Holley and E. M. Tuggle. Migrating to a service-oriented archi-
tecture. 2003. http://www- 106.ibm.com/developerworks/library/ws-migatesoa.

[7] I. Foster, C. Kesselman, J. Nick and S. Tuecke. The Physiology of the Grid. In: Grid
Computing: Making the Global Infrastructure a Reality, Wiley, pp. 217-249,2003.

[8] K. Czajkowski et al. The WS-Resource Framework Version 1.0. 2004. http://www-
106.ibm.coddevelope~orks/library/ws-resource/ws-wsrf.pdf.

[9] Web Services Notification. http://www-l28.ibm.com/developerworks/library/specifica-
tiodws-notification.

[lo] BPEL for Web Services version 1.1. http://www-l28.ibm.coddeveloperworksl
library/specification/ws-bpel.

[l 11 Web Service Choreography Interface (WSCI) 1 .O. http:Nwww.w3.org/TRlwsci.

[12] The UCI Repository. http:Nwww.ics.uci.edu/~mlearn/MLRepository.html.

[13] S. A1 Sairafi et al. The Design of Discovery Net: Towards Open Grid Services for Knowl-
edge Discovery. Int. Journal of High Performance Computing Applications. 17(3):297-
3 15,2003.

[14] P. Brezany, J. Hofer, A. M. Tjoa and A. Woehrer. GridMiner: An Infrastructure for Data
Mining on Computational Grids. APAC'03,2003.

MINING FREQUENT CLOSED ITEMSETS FROM
DISTRIBUTED REPOSITORIES

Claudio Lucchese, Salvatore Orlando
Dept. of Computer Science
Ca' Foscari University of Venice, Italy
{ clucches, orlando) @dsi.unive.it

Raffaele Perego
HPC Laboratory
ISTI-CNR of Pisa, Italy

perego@isti.cnr.it

Claudio Silvestri
Dept. of Computer Science
Ca' Foscari University of Venice, Italy
silvestri@dsi.unive.it

Abstract In this paper we address the problem of mining frequent closed itemsets in a
highly distributed setting like a Grid. The extraction of frequent (closed) item-
sets is a very expensive phase needed to extract from a transactional database
a reduced set of meaningful association rules. We figure out an environment
where different datasets are stored in different sites. We assume that, due to the
huge size of datasets and privacy concerns, dataset partitions cannot be moved to
a centralized site where to materialize the whole dataset and perform the mining
task. Thus it becomes mandatory to perform separate mining at each site, and
then merge local results for deriving global knowledge.

This paper shows how frequent closed itemsets, mined independently at each
site, can be merged in order to derive globally frequent closed itemsets. Un-
fortunately, such merging might produce a superset of all the frequent closed
itemsets, while the associated supports could be smaller than the exact ones be-
cause some globally frequent closed itemsets might be not locally frequent in
some partitions. To avoid an expensive post-processing phase, needed to com-
pute exact global results, we use a method to approximate the supports of closed
itemsets. The approximation is only needed for those globally (closed) frequent
itemsets which are locally infrequent on some dataset partitions, and thus are not
returned at all from the corresponding sites.

Keywords: frequent itemsets, closed itemsets, Knowledge Grid, distributed data mining.

222 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction.
Data Mining is the process of extracting knowledge hidden in huge amounts

of data. The kind of knowledge we are interested in, together with the orga-
nization of input data and the criteria used to discriminate among useful and
useless information, contributes to characterize a specific data mining prob-
lem and its possible algorithmic solutions. Common data mining tasks are the
classification of new objects according to a scheme learned from examples,
the partitioning of a set of objects into homogeneous subsets, the extraction
of rules from a database. Association Rule Mining (ARM) is one of the most
popular Data Mining topic, and consists in the discovery of rules concerning
the co-occurrence of items in a collection of set of items. The result of this task
is a set of rules similar to "a set containing item B and item D will also contain
item G with a 60%probability ". ARM has been successfully exploited in sev-
eral fields. A widely known application is the analysis of customer behavior.
In this case the items are objects sold in a shop, the input sets represents ob-
jects sold in the same transactions and the expected result is a set of rules about
items frequently bought in the same transaction. Analyst can use such rules for
direct marketing, or to reorganize the shop shelves and help the customer in
the search of commonly associated items, e.g., by placing the barbecue spices
close to the refrigerator containing meat.

In this paper we are interested in the most computationally expensive phase
of ARM, i.e the Frequent Itemset Mining (FIM) one, during which the set of all
the frequent itemsets are extracted from a transactional database. Informally,
the FIM problem can be stated as follows: given a transactional database,
where each transaction is a set of items, extract all the set of items that oc-
cur frequently in the database. The FIM problem has been extensively studied
in the last years. The first proposed algorithm is Apriori [2], but many dif-
ferent approaches have been investigated such as DIC [3], FP-GROWTH [5],
ECLAT [24] and many others [1, 15,20,7, 101. One of the main issues emerg-
ing from these studies regards the size of the collection of frequent itemsets
3 . This makes the task of the analyst hard, since he has to extract useful
knowledge from a huge amount of patterns. Consider that the size of .F may
be comparable with the size of the dataset, when using very low minimum
support thresholds.

Closed itemsets are a solution to this problem. For any given collection
of frequent itemsets 3 , there exist a collection of closed itemsets C, which
is a concise and lossless representation of 3. It is concise because ICI may
be orders of magnitude smaller than 131. This allows to extract additional
potentially interesting patterns by using lower minimum support thresholds,
which are intractable when extracting all the frequent itemsets. It is lossless,
because from C it is possible to derive the identity and the support of every

Mining Frequent Closed Ztemsets from Distributed Repositories 223

frequent itemset in 3. Moreover, the extraction of association rules directly
from closed itemsets has been shown to be more meaninghl for analysts [21,
231, since C does not include many redundancies that are present in 3. Many
efficient Frequent Closed Itemsets Mining (FCIM) algorithms have been re-
cently proposed, such as A-CLOSE [14], CHARM [25], CLOSET+ [16] and
DCI-CLOSED [8].

In this paper we address the problem of mining frequent closed itemsets in
a highly distributed settings [12, 61, such as a Data Grid. While many papers
address the problem of parallelldistributed FIM (e.g. PARTITION [17]), to our
best knowledge, no proposal for distributed closed itemset mining exists. We
figure out a distributed framework where there are many data sources of in-
terest, and where we want to extract knowledge from a virtual transactional
dataset made by joining all those data sources together. We assume that, due to
the huge size of every single datasets and due to privacy concerns, the original
datasets cannot be moved to a centralized site where to materialize the whole
dataset and perform the mining task. Thus it becomes mandatory to apply a
loosely coupled distributed mining approach, according to which we perform
separate mining on each site, and then merge the local results to derive the
global knowledge.

The main contributions of this paper are the theoretical basis for the dis-
tributed computation of closed itemsets based on a collect and merge approach.
In particular, the theorems we have introduced allow to extend previous algo-
rithms for frequent itemsets (Partition [17] and AP [I 81) to the closed itemsets
case.

The rest of the paper is organized as follows. Section 2 presents the FIM
problem and the concept of closed itemsets. Section 3 discusses the issues for
realizing a loosely-coupled distributed algorithm, inspired by Partition, for ex-
tracting all the frequent itemset from an horizontally partitioned transactional
dataset. Section 4 analyzes the additional challenges that a frequent closed
itemset mining algorithm has to face, and proposes methods for coping with
them. These methods are the building blocks of the APClosed algorithm we
propose. Finally, Section 5 draw our conclusions.

2. Frequent and Closed Itemsets
The problem of mining all frequent itemsets from a transactional dataset can

be stated as follows. Let Z = { a l , . .. , a M) be a finite set of items or singletons,
and let D = I t l , . . . , t N) be a dataset containing a finite set of transactions,
where each transaction t is a subset of Z. We call k-itemset a set of k items
I = { i l , . . . , ik I i j E Z). Given a k-itemset I , let o (I) be its support, defined
as the number of transactions in D that include I. Mining all the frequent
itemsets from D requires to discover all the itemsets having support at least

224 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

-
a = m i n s u p p . [Dl, where 0 < m i n s u p p 5 1 is a given minimum support
threshold. We denote with F the collection of frequent itemsets, which is
indeed a subset of the huge search space given by the power set of Z.

As we discussed before, we are going to focus on a significant subset of
3, composed of only those frequent itemsets that are also closed. To define
the property of an itemset of being closed, we first introduce two auxiliary
functions. Given T and I , with T C 2) and I c Z, we define the two following
functions f and g:

tET

g(I) = {t E D I I C t } .

Function f returns the set of items appearing in all the transactions of T , while
function g returns the set of transactions supporting a given itemset I .

DEFINITION 1 An itemset I is said to be closed ifand only i f

where the composite function c = f o g is called Galois operator or closure
operator.

I TID 11 items

Figure 1. (a) The input transactional dataset, represented in its horizontal form. (b) Lattice
of all the frequent itemsets (F = I), with closed itemsets and equivalence classes.

The closure operator defines a set of equivalence classes over the lattice of
frequent itemsets: two itemsets belong to the same equivalence class iff they
have the same closure, i.e. they are supported by the same set of transactions.

Mining Frequent Closed Itemsets from Distributed Repositories 225

We can also show that an itemset I is closed iff no supersets of I with the same
support exist. Therefore mining the maximal elements of all the equivalence
classes corresponds to the extraction of all the closed itemsets.

Fig. l(b) shows the lattice of frequent itemsets derived from the simple
dataset reported in Fig. 1 (a), mined with ZY = 1. We can see that all the itemsets
with the same closure are grouped in the same equivalence class. Each equiv-
alence class contains elements sharing the same supporting transactions, and
closed itemsets are their maximal elements. Note that closed itemsets (six) are
remarkably less than frequent itemsets (sixteen). For example, only the closed
itemset {ACD) is returned, among the 5 frequent itemsets that are supported
by the same set of transactions.

Note that, given the above definition, it is clear that the property of an item-
set of being closed does depend on the whole dataset. This is because we need
to apply the closure operator c = f o g to understand whether an itemset is
closed or not.

In the following we introduce two important lemmas that are going to be
useful in the next sections.

LEMMA 2 Given an itemset X and an item i E 27, g (X) C g(i) H i E c (X) .

PROOF 2.1 Proof.
h (X) C g(i) * i E c(X)) :

Since g (X u i) = g (X) n g(i) , g (X) c g(i) * g(X U i) = g (X) . Therefore,
i f g (X u i) = g (X) then f (g (X u i)) = f (g (X)) + c (X u i) = c (X) * i E

c (X) .

(i E c (X) =+ g (X) c g(i)):
Ifi E c (X) , then g (X) = g(X U i). Since g (X U i) = g (X) II g(i), g (X) fl
g(i) = g (X) holds too. Thus, we can deduce that g (X) g(i).

LEMMA 3 I f Y is a closed itemset, and X C Y , then c (X) C Y .

PROOF 3.1 Note that g (Y) S g (X) because X C Y . Moreovec Lemma 2
states that i f j E c (X) , then g (X) E g(j) . Thus, since g (Y) C g (X) , then
g (Y) C_ g (j) holds too, and from Lemma 2 it also follows that j E c (Y) . So, if
j &I Y held, Y would not be a closed itemset because j E c (Y) , and this is in
contradiction with the hypothesis.

3. Distributed Frequent Itemsets
In a distributed setting, the data are partitioned among several nodes, con-

nected by networks which possibly have limited bandwidth and high latency.
In such a context, gathering all data to a central node, in order to apply an high
performance algorithm, is often impossible, due to either the amount of data
or privacy reasons. Hence, Distributed Data Mining algorithms typically work

226 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

by producing a local model per site. Unfortunately, even if local models are
coherent and accurate with respect to local site repository, inferring a global
model by aggregating the local models may be very complex.

In the distributed frequent itemsets case, we have several data sources Dj,
and our goal is to extract the frequent itemsets in the virtual dataset 2) = U Dj.
We denote with Fj the collection of frequent itemsets extracted from Dj, i.e.
having a local support aj at least minsupp . IDj 1.

It is easy to show that the union of locally frequent itemsets contains the
global solution. In fact, if D j is mined using the same relative support threshold
minsupp, each globally frequent pattern I (a(I) 2 minsupp . /Dl) must be
locally frequent in at least one partition (ai(I) 2 minsupp . IDj I. However, an
itemset in U .Fj may be infrequent in one or more Dj, so that its local support
aj is unknown. If this is the case, we cannot decide whether the itemset is
globally frequent or not, since we cannot calculate its support C aj.

A trivial solution to this problem is to mine every locally occurring pat-
tern, but clearly this would cause a combinatorial explosion. A more viable
alternative consists in a two phase computation, as proposed by the Partition
algorithm [17], which can be easily implemented in distributed settings using
a masterlslave paradigm [9], where each slave is responsible for managing and
mining a distinct Di. After collecting and merging the local solutions, the mas-
ter gathers from the slaves the support count of each global candidate itemset
I E U j .Fj where I resulted infrequent. We call this straightforward distributed
version of the algorithm Distributed Partition.

While the Distributed Partition algorithm is able to return the exact support
values, it has pros and cons with respect to other distributed algorithms. The
pros are related to the number of communications and synchronizations. Other
methods as count-distribution [4,22] require much more communications and
synchronizations, while the Distributed Partition algorithm only requires two
communications from the slaves to the master, and a single one from the mas-
ter to the slaves. The cons are the volume of messages exchanged, and the ad-
ditional computation performed by the slaves during the first phase. Consider
that, when low absolute minimum supports are used, it is likely to produce a lot
of candidate itemsets, i.e. locally frequent itemsets, due to data skew present
in the various dataset partitions [13]. This has a large impact on the cost of the
second phase of the algorithm too: most of the slaves will participate in count-
ing the local supports of these candidates, thus wasting a lot of time. A way
to work around this problem consists in stopping Distributed Partition after
the first-pass. We name this naive algorithm Distributed One-pass Partition.
So in Distributed One-pass Partition each slave independently computes lo-
cally frequent patterns and sends them to the master which sum-reduces the
support for each pattern and returns only patterns having the sum of the known
supports greater than (or equal to) a.

Mining Frequent Closed Ztemsets from Distributed Repositories 227

Distributed One-pass Partition has obvious performance advantages vs
Distributed Partition. On the other hand it yields an approximate result. Since
aj maybe unknown from some data source, the global support a can be under-
estimated. This not only introduces an approximation in the itemsets support,
but it may produce a support below a also for globally frequent itemsets.

In [18-191 we have tried to overcome some of the problems encountered
by Distributed One-pass Partition and Distributed Partition. We have pro-
posed the APInterp (Approximate Partition) algorithm that exploits an interpo-
lation method to infer the unknown support counts, and does not require the
additional communication and computation cost of a second scan of each Vj
as in Distributed Partition.

When APInter, needs to know the support ai(x) of a pattern x in Vi, the
master of our distributed algorithm infers an approximate value ai(x)interp b Y
reasoning on the knowledge of

the exact support of each single item in all Vj, and

rn an interpolation factors r(x), used to infer the unknown support counts
ai (x) . r (x) is computed on the basis of the exact knowledge of aj (x)
for all Dj where x has been recognized as a frequent pattern.

For example, given two itemsets x and x', x' c x, if the exact value of
aj (x) is known, while ai (x) is unknown, the interpolated value upterp (x) is
approximated on the basis of the following proportion:

so that
- x) - aj (x) - r (x)

0. (X I) where r (x) = a. Note that also a, (x') might be an approximate value

previously interpolated. Indeed, the actual interpolation factor r (x) must be
computed by considering all the known aj(x), for all V j from which x has
been returned as a frequent pattern.

Table 1 resumes the characteristics of the above algorithms, in particular
their phases and the approximation of the result.

4. Distributed Frequent Closed Itemsets
In this section we discuss how we can exploit the same approach shown in

Section 3, in order to mine frequent closed itemsets in a distributed setting.
We need to show that it is possible to perform independent computations

on each data source Dj, and then join the local result by using an appropriate
merging operator 63 in order to obtain the global results. From each partition
we will first mine collections of locally frequent and locally closed itemsets,

228 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Table 1. Comparison of the algorithms for Distributed Frequent Itemset Mining presented in
subsection 3

Algorithm Phases Results

Distributed First phase: compute local solutions. Sec- Exact.
Partition ond phase: merge local solutions to build

the global candidates. Third phase: check
the global support of candidates.

Distributed First phase: compute local solutions. Sec- Approximate: support values
One-pass ond phase: merge local solutions to build are underestimated.
Partition the global solution. The support of a pattern

is the sum of local known support values.

AP First phase: compute local solutions. Sec- Approximate: support values
ond phase: merge local solutions to build obtained using interpolation.
the global solution. The support of a pat- Results similar to the exact
tern is interpolated from the known support ones [18].
values.

and then we will use such information in order to identify globally closed and
globally frequent itemsets.

Hereinafter, we will use the following notation to discriminate between the
virtual global dataset and local datasets. We define the closure operator over a
single partition j as the composite function cj (I) = f o gj(I) , where

g j (I) = {t € D j 1 I c t} .

Finally, we denote with Cj the set of closed itemsets in D j and with C the
closed itemsets in D.

For the sake of simplicity, we limit the following discussion to a setting with
only two data sources Dl and D2. However, it is trivial to generalize our results
to an arbitrary number of partitions.

In the following we will deal separately with the two tasks of the @ opera-
tor, i.e. reconstructing identities of global closed itemsets and reconstructing
supports of global closed itemsets.

4.1 Identities of frequent closed itemsets.

In this section, since we are only dealing with identities of frequent itemsets
and not with their supports, we will refer to Cj and C to indicate the result of
a mining task with a minimum support threshold of = 1. We denote with
rl the mining function which returns the collection of frequent closed itemsets
having support at least 1, i.e. appearing at least once in D.

Mining Frequent Closed Ztemsets from Distributed Repositories 229

In order to define @ we will first solve the simpler problem of having only
two datasets, where one of them only contains a single transaction.

THEOREM 4 Given a datasets Dl, and another dataset D2 that contains a
single transaction t , it holds that:

PROOF 4.1 First we prove that r l (D 1 U { t)) G r l (D 1) U t U

(u m PI) I f l t) . Let X E rl (Dl U { t)) be a closed itemset. I f X = t then
the theorem trivially holds. I f X is not a subset o f t then t $ g (X) , and there-
fore X = f (g (X)) = f (g l (X)) = c1 (X) , which means that X € rl (Dl) . I f
X c t, then X = f (g (X)) = f (g l (X) U t) = f (g l (X)) f l t = cl (X) r l t =
I n t, where I E r1 (Dl) .

Last we prove that rl (Dl U { t)) 2 rl (D l) U t U (u ~ , - ~ ~ (~ ~) I n t) .

Note that an itemset I is closed ifand only if there is no item i $ I such that
g (1) = g(I U i) , otherwise we would have that I # f (g (I)) .

t is trivially closed, since no other item can be added to t without decreasing
d t) .

Similarly, each closed itemset in I E Dl is closed in {Dl U t) , since by
definition gl (I U i) # gl (I) , and therefore g (I U i) # g (I) .

Lastly, given I n t where I is a closed itemset in Dl, we must consider two
cases too see whether there exists an item i $ { I n t) such that i E c(I n t) .
Thefirst is when i $ t , which means that g(I f l t) # g(I f l t U i) and I n t
must be closed. The second is when i E t (i $ I), in which case, i f 1 n t was
not closed we would have that gl (I n t) = gl (I n t U i) which, by Lemma 3
implies that i E cl (I) , i.e. i E I which is a contradiction.

Let us introduce a new operator n , namedpower-set-intersection:

where P (S) is the power set of S, i.e. the set of all possible subsets of S . The
power-set-intersection n S corresponds to the union of all the intersections
among the elements of every possible subset of S but the empty set. For ex-
ample, let S = { s l , s2, s3) , we have that n S = { { s l) , i s 2) , I s3) , { s l n
4, (81 n ~ 3 1 , is2 n ~ 3) , { ~ l n S2 n ~ 3)) .

Now, we can show another theorem giving a new and interesting insight in
the problem of frequent closed itemset mining.

230 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

THEOREM 5 Mining all the frequent closed itemsets from D when = 1 is
equivalent to applying the power-set-intersection operator to 2):

PROOF 5.1 We prove the theorem by induction on the number of transactions
n of D.

Case n = 1. It is obvious that when the minimum support threshold is 1, the
only closed itemset in a dataset with a single transaction is the transaction
itselj Thus:

r,(n = i t)) = t = n v
Case n = 2. It is clear that the only closed itemsets are the two transactions
themselves along with their intersection. Thus:

Inductive step. Let us assume that the hypothesis holds for all datasets with a
number of transaction 5 N . Given a dataset D with N + 1 transactions, let
D = D* U t*, weprove the inductive step:

Theorem 5 formally states the equivalence of two different exploration tech-
niques of the search space. The first one is known as item enumeration, where
the exploration traverses every possible combination of items, i.e. P(Z) . The
second one, which is suggested by the equivalence of rl and n , is known as
row enumeration, where the exploration takes place by traversing every possi-
ble intersection of rows of the dataset, i.e. intersections of elements in P (V) .
The first is the most commonly used, since the number of transactions is usu-
ally orders of magnitude larger then the number of items. Nonetheless, in some

Mining Frequent Closed Itemsets from Distributed Repositories 23 1

biomedical dataset we find the opposite setting and, additionally, the only use-
ful minimum support threshold is 1, and therefore the second approach has
been shown to be the only feasible [l 11.

Theorems 4 and 5 allow us to come back to the problem of mining frequent
closed itemsets in a distributed setting.

THEOREM 6 Given two datasets Dl and D2, the closed itemsets C in D =
{Dl U 232) can be extracted using only the closed itemsets C1 and C2 that have
been independently mined from the two datasets, by applying an appropriate
merging operator @:

Theorem 6 gives us a way for mining all the frequent closed itemsets in a
distributed setting, i.e., for extracting r l(Dl U D2). First we can mine sep-
arately the closed itemsets C1 and C2 from the two partitions. Then we can
merge these local results by performing an additional mining on the collection
of locally closed itemsets, and this could be done by applying the power-set-
intersection operator.

It is really interesting that we can apply the mining operator rl to a col-
lection of closed itemsets, or that, in other words, by mining our previous
knowledge we can obtain further knowledge. This result can be generalized to
the case of P partitions of 2) by the following Theorem, which can be easily
shown by induction.

232 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

THEOREM 7 Given the sets of closed itemsets C1, . . . , Cp mined respectively
from P direrent data sources Dl, . . . , Dp, we have that:

4.2 Support of frequent closed itemsets
Unfortunately this merging function, when used to combine all locally fre-

quent closed itemsets extracted from local repositories, i.e., C1, . . . , C,, may
generate similar problems as those discussed in Section 3 for frequent itemsets.
A possible solution is to adopt an expensive method like the one suggested by
the Distributed Partition algorithm, which requires a second global scan of
each Di to check whether locally frequent itemsets (or closed ones) are also
globally frequent. In order to avoid this second scan, similarly to APInterp, we
propose reconstructing the unknown support counts by using an interpolation
based on known counts. We call this distributed algorithm to extract closed
itemsets APClosed.

A further issue that APClosed has to deal with is the final result of the merge
operator @, which can identify further closed itemsets besides the ones in-
cluded in C1 U C2 U . . . U Cp. For example, let x be one of these new closed
itemset x, such that x 6 Ci. However, if there exists y, where y E Ci and
x c y, we can conclude that x is surely frequent on Di. Unfortunately, in
order to know ai(x), we have to to infer it from the known support counts of
their supersets in Di. In particular, it is easy to show that ai(x) is the same as
the support count of the smallest superset of x belonging to Ci.

5. Conclusion
We have addressed the problem of mining frequent closed itemsets in a dis-

tributed environment. In the distributed mining of frequent itemsets, a three
steps algorithm is sufficient in order to get exact results. First, independent
mining tasks are performed on each partition, then the results are merged to
form a big candidate set, and, finally, an additional check is needed for each
candidate to retrieve its actual support in the partitions where it was found to
be infrequent.

In this paper we investigate the merging step in the case of closed itemset
mining. We have shown that in this case the merging step is completely differ-
ent and surely more complex. The theorems that we have introduced, however,
show how to extend the collect and merge approach to the distributed discovery
of closed itemsets.

References

[l] Proc. of the 1st Workshop on Frequent Itemset Mining Implementations (FIMI'03). 2003.

Mining Frequent Closed Itemsets from Distributed Repositories 233

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. VLDB
'94, pages 487499, September 1994.

[3] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic itemset
counting and implication rules for market basket data. In Joan Peckham, editor, SIGMOD
1997, Proceedings ACM SIGMOD International Conference on Management of Data,
May 13-15, 1997, Tucson, Arizona, USA, pages 255-264. ACM Press, 05 1997.

[4] E-H. S. Han, G.Karypis, and V.Kumar. Scalable parallel data mining for association
rules. In IEEE Transaction on Knowledge and Data Engineering, 2000.

[5] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate gener-
ation. In Proc. SIGMOD '00, pages 1-12,2000.

[6] H. Kargupta and P. Chan (Eds.). Advances in Distributed and Parallel Knowledge Dis-
covery. AAAI PressIThe MIT Press, 2004.

[7] J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projec-
tion. In Proc. 2002 Int. Con$ on Knowledge Discovery in Databases (KDD'02), Edmon-
ton, Canada, 2002.

[8] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. Fast and memory efficient
mining of frequent closed itemsets. IEEE Transactions on Knowledge and Data Engi-
neering, l8(l):2 1-36, January 2006.

[9] A. Mueller. Fast sequential and parallel algorithms for association rules mining: A com-
parison. Technical Report CS-TR-35 15, Univ. of Maryland, 1995.

[lo] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resource-aware mining
of frequent sets. In Proc. The 2002 IEEE International Conference on Data Mining
(ICDM '02), pages 338-345,2002.

[l l] Feng Pan, Gao Cong, Anthony K. H. Tung, Jiong Yang, and Mohammed Javeed Zaki.
Carpenter: finding closed patterns in long biological datasets. In KDD, pages 637-642,
2003.

[12] B. Park and H. Kargupta. Distributed Data Mining: Algorithms, Systems, and Applica-
tions. In Data Mining Handbook, pages 341-358. IEA, 2002.

[I31 Srinivasan Parthasarathy. Efficient progressive sampling for association rules. In Pro-
ceedings of the 2002 IEEE International Conference on Data Mining (ICDM'02), page
354. IEEE Computer Society, 2002.

[I41 Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining of asso-
ciation rules using closed itemset lattices. Information Systems, 24(1):2546, 1999.

[15] J. Pei, J. Han, H. Lu, S. Nishio, and D. Tang, S. amd Yang. H-Mine: Hyper-Structure
Mining of Frequent Patterns in Large Databases. In Proc. The 2001 IEEE International
Conference on Data Mining (ICDM'OI), San Jose, CA, USA, 2000.

[16] Jian Pei, Jiawei Han, and Jianyong Wang. Closet+: Searching for the best strategies for
mining frequent closed itemsets. In SIGKDD '03, August 2003.

[17] Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient algorithm
for mining association rules in large databases. In VLDB'95, Proceedings of 21th In-
ternational Conference on Very Large Data Bases, pages 432444. Morgan Kaufmann,
September 1995.

1181 C. Silvestri and S. Orlando. Distributed Approximate Mining of Frequent Patterns. In
Proc. of the 2005 ACM Symposium on Applied Computing, SAC 2005, special track on
Data Mining, pages 529-536,2005.

234 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

[I91 C. Silvestri and S. Orlando. Approximate mining of frequent patterns on streams. Intel-
ligent Data Analysis, 2006. To appear.

[20] Rafik Taouil, Nicolas Pasquier, Yves Bastide, Lotfi Lajhal, and Gerd Stumme. Mining
freqent patterns with counting inference. SIGKDD Explorations, 2(2):66-75, December
2000.

[21] Rafik Taouil, Nicolas Pasquier, Yves Bastide, and Lotfi Lakhal. Mining bases for associ-
ation rules using closed sets. In ICDE, 2000.

[22] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge
and Data Engineering, 12:372-390, MayIJune 2000.

[23] Mohammed J. Zaki. Mining non-redundant association rules. Data Min. Knowl. Discov.,
9(3):223-248,2004.

[24] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diffsets. In Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 326-335. ACM Press, 2003.

[25] Mohammed J. Zaki and Ching-Jui Hsiao. Charm: An efficient algorithm for closed item-
sets mining. In 2nd SIAM International Conference on Data Mining, April 2002.

DISTRIBUTED DATA MINING
AND KNOWLEDGE MANAGEMENT
WITH NETWORKS OF SENSOR ARRAYS

Maurice Dixon
Computing, Communications Technology and Mathematics,
London Metropolitan University, 31 Jewry Street, London, EC3N2EZ: UK

Simon C. Lambert and Julian R. Gallop
e-Science, CCLRC Rutherford Appleton Laboratory,
Chilton, Didcot, Oxon, OX11 OQX; UK
S.C.Lambert@rl.ac.uk

J.R.Gallop@rl.ac.uk

Abstract Environmental pollution control relies heavily on human expert judgment sup-
ported by historical data and scientific models. Telemonitoring, by networks of
heterogeneous sensor arrays, provides the opportunity for data mining models
to be constructed from the historical data to supplement human expertise. This
paper reports some progress made in the TELEMAC project by data mining.
TELEMAC is concerned with enhancing the efficacy of anaerobic digestion in
potentially unstable digesters. In the laboratory using full instrumentation it is
possible to derive a good description of the digester state. With data mining it
is possible to identify some constraints on sensor choice. This paper examines
this data mining work from the perspective of a three layer Grid architecture
to see what implications and requirements arise that could benefit the exercise
of expert judgment. After placing the specific TELEMAC situation in a generic
Grids context, we present a classification approach to attributes for metadata and
indicate some examples of model resource discovery.

Keywords: anaerobic digestion, data mining, telemonitoring and control, wastewater treat-
ment.

236 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

1. Introduction
Networks of sensor arrays, measuring properties of multiple instances of

some physical process, raise some important issues in the context of Grids.
An example is provided by the TELEMAC project [I], a European Union
funded project on anaerobic wastewater treatment, in which individual treat-
ment plants are equipped with a variety of sensors. The aim of TELEMAC is
to improve the monitoring and control of digesters from a central telemonitor-
ing and control centre, TCC [2]. The control of these plants could benefit from
data mining and the leveraging of knowledge through the TCC.

Although the TELEMAC project was not conceived as a Grids project,
nonetheless there is clear potential for applying Grid technologies. The focus
is on three levels of grids: knowledge, information, and data rather than com-
putation. Issues that arise include: 1) data heterogeneity, 2) the data mining
methods themselves, 3) timebased issues, such as the updating of data mining
models, 4) the role of human expertise.

In TELEMAC a user interacts with a heterogeneous environment of
databases and data collection sensors. Grid technology could provide a stan-
dard framework for the interoperation of the distributed sites. In some views of
Grids, metadata, agents, and brokers are key architectural components. Para-
phrased here are observations from Jeffery [3] relevant to TELEMAC: "Meta-
data: Most examples of metadata in use today are neither structured formally
nor specified formally so tend to be of limited use for automated interopera-
tions and consequently require human interpretation. AgentdBrokers: Agents
use metadata to take action; they can provide a monitoring function. Brokers
act as go-betweens for agents."

This paper uses the experience of TELEMAC for illuminating some de-
sign issues for this class of application in a Grids environment. The paper is
structured as follows. Section 2 considers the industrial context and associated
biochemical processes. Data mining in TELEMAC is discussed in Section 3;
the issues of sensor arrays, the role of sensor ranking, and diversity of sen-
sors are addressed in a data mining context. Examples of data mining results
are presented. In Section 4 we consider TELEMAC from the perspective of
the three layer architecture Knowledge, Information, and ComputationIData
Grids. It is here we address the issue of leveraging knowledge and grid re-
sources. The role of human expertise in providing knowledge management in
the plant monitoring and control cycle is presented and this shows the way the
three Grids interact in this type of environment. In Section 5 we identify some
specific attributes that are useful in the metadata for our data mining models
and resources. A short summary of our conclusions finishes the section.

Distributed Data Mining and Knowledge Management

2. Industrial context

Anaerobic wastewater treatment is an important technology for the disposal
of certain kinds of waste, in particular the by-products from alcohol produc-
tion in wineries and distilleries [4]. It has great advantages such as efficiency,
low production of sludge, and the possibility of energy recovery through co-
generation. However it is an unstable process which is difficult to monitor and
control with the consequence that plant is operated at low efficiency. Expert
knowledge is required for efficient operation of the plant but that expertise is
unlikely to be locally available at small, possibly remotely located, individ-
ual plants. Therefore the role of the TCC is crucial here in supporting ex-
pert human knowledge by a range of analysis and prediction techniques. The
anaerobic digester plants operate on a range of engineering principles such
as upflow sludge blankets, lagoons, upflow fixed-beds and continuous stirred
tanks, CSTRs. Within TELEMAC there is a preponderance of CSTRs at the
industrial level with typical volumes of 500 to 5000m3. The chemical oxy-
gen demand, COD, of the wastewater is one measure of the outflow quality;
organic loading rates within the digesters vary between 2kg and 20kg COD
m-3d-1. Measurement of COD is generally not available on-line [2] .

Fast VFA Organic -+ ' low CH4
Carbon +

In hibition

Figure 1. The biological process for anaerobic waste water treatment.

The biological process has two main steps; these are shown in Figure 1. In
the first step a set of acidogenic bacteria generate volatile fatty acids and carbon
dioxide. This conversion proceeds at a fast rate. Volatile fatty acids themselves
are acetates and acetic acid or similar. The second step is a slow conversion of
the volatile fatty acids to methane and more carbon dioxide by methanogenic
bacteria. The problem is that a build up in the concentration of volatile fatty
acids inhibits the methanogenic bacteria. This can lead to suppression of the
second stage and ultimately to irreversible destabilisation of the digester; then
it could take a period of several weeks or even several months to recover. A
converse problem occurs if the digester is hydraulically overloaded and the
biomass is washed out.

238 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

3. Data mining in TELEMAC

3.1 Introduction
The biological and chemical processes involved in anaerobic digestion are

complex but there is good qualitative understanding of the main features. Al-
though analytical models have been developed [5] , there is still much scope
for data mining of sensor data to complement them. Data mining helps to an-
swer both static and dynamic questions, such as which sensors form the mini-
mum set required for accurate estimation of key variables like concentration of
volatile fatty acids, or what is the likely future value of such a variable given
the current state of the digester plant [6] .

3.2 Sensor ranking and diversity
A wide range of sensors are commercially available for use with anaerobic

digesters. Characteristics of these and research sensors are summarized below.

3.2.1 Sensor types. 1) Classical plant instruments such as gas and liq-
uid flow meters, pressure and temperature gauges, 2) Titrimeter to measure
acid and base concentrations (up to 4 variables), 3) Infra-Red spectrometer
(up to 5 variables), 4) TOCmeter to measure total organic content, 5) Thermal
conductivity sensor for C02.

3.2.2 Sensor modes. 1) Online sensors return a value at measurement
time, 2) Offline chemical analysis returns a measurement significantly later and
may be different in value than from an online measurement.

3.2.3 Sensor problems. 1) Sensor reliability - failure due to lack of pre-
cision, saturation, lag in recovery of measuring capacity, foaming in digester,
and contamination, 2) Sensor accuracy - calibration, standard setting.

In Figure 2 tempdig is the temperature, gin is the influent liquid flow rate,
phdig is the pH, qgas is the biogas flow rate, co2gas is the percentage of carbon
dioxide in the biogas, vfadig is the concentration of volatile fatty acids, tocdig
is the concentration of total organic content, and coddig is the concentration of
chemical oxygen demand. With a full set of sensors it is possible to get a fairly
complete chemical description of the current digester state. The figure shows
expert judgement of the ranking of sensors by expected availabilitylreliability,
with the simplest and most robust in the inner ring. These four levels of sensor
are relevant when dealing with operational industrial systems which would
lack such full instrumentation.

Distributed Data Mining and Knowledge Management

Figure 2. Venn diagram showing sensor ranking. The sensors are defined with their Level.
Suffix dig indicates measurement of the digester content.

3.3 Data mining techniques used
3.3.1 Classification and Sequencing. A key aspect in assisting the di-
gester expert to form a judgement is to characterise the data to form a set of
digester states. This was done using cluster analysis. Although it is possible
for a cluster analysis algorithm to select the number of clusters, the decision is
in general hard to justify to the expert. Therefore some analysis using a range
of cluster numbers was undertaken. It was found that with these datasets, a pro-
gression from small but numerous clusters to larger and fewer gave a relatively
stable cluster assignment. This gave some confidence that the assignment to
clusters is not arbitrary for these datasets. Having obtained some clusters, an
analysis of time-based cluster sequences was also undertaken which gave a set
of transition frequencies [7] .

3.3.2 Regression models. Regression models have been used for sev-
eral purposes: 1) Models for predicting data values for missinglfaulting sen-
sors were constructed with associated predictions of confidence intervals. This
has allowed both current prediction and short term forecasting of the concen-
tration of dissolved and suspended organics during sensor failure. 2) Highly
accurate short term forecasting is feasible using multivariate autoregression;
with reliable sensors this could be used for plant control. 3) Predictions from
auto-regression are of little use over extended time on occasions of sensor(s)
faulting, a frequent occurrence, because the models depend on known target
values at previous times. Non linear multivariate regression performs satisfac-
torily for current and imminent states.

The models need to be evaluated against an independent test set of data to
ensure that the model training does not result in over-fitting to errors in the
training data. Statistical tests for quality of fit need applying. Such tests in-

240 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

clude residuals, mean squared and mean errors, squared Pearson correlation
function (R2), and paired sample t-tests for means. A range of models needs
to be deployed. Linear models can provide good starting pointers. In some cir-
cumstances they can be sufficient in themselves E.g. for the most extensively
instrumented digesters. In other cases artificial neural net models provide a
markedly superior model judged by out-of-sample test set estimates. Unit root
tests aid a decision on whether to model in differences or levels.

3.4 Examples of work done
Data mining has shown that 1) It is feasible to determine the ranking of sen-

sors; E.g. in order to estimate a Level4 variable (Levels as in Figure 2) it is
considerably better to have at least one Level3 sensor dataset (coddig requires
either Level3 vfadig or Level4 tocdig). 2) Features between variables can mean
that a second sensor adds little to the improvement of a model. E.g. strong co-
linearity means that if tocdig data is available then vfadig adds little additional
modelling power.

ElapseTime l days

Figure 3. Forward prediction of coddig for 0.25days. Prefix or suffix of NNR or LR indicates
neural net or linear regression respectively; res denotes residual.

Figure 3 shows a forward prediction of O Z d for an INRA validated dataset
using the sensor variables from Levell, Level2, and Level3 inputs to predict
a Level4 variable, the concentration of coddig in gllitre. It compares the in-
dependent test set experimental data with the prediction of a neural net model
and also shows the residuals on the left hand scale. The model had 8 logistic
fimctions in two hidden layers (as 5+3) with tempdig eliminated; R2=0.945,

Distributed Data Mining and Knowledge Management 24 1

t-pair=1.3, mean residual error = 0.031, predicted mean square error=0.332.
The residuals for a corresponding linear regression are shown on the right hand
side scale. ~ ~ = 0 . 9 3 0 (in sample ~ ~ = 0 . 9 2 8) , t-pair=0.21, mean residual error
= 0.014. Figure 4 compares the independent test set experimental data with the
prediction of a neural net model. 97% of the actual experimental data points
fall within the 95% prediction confidence band.

Figure 4. 95% prediction confidence bands [6] from forward prediction of 0.25days for a
validated dataset for the concentration of coddig in gllitre.

3.5 Some issues of heterogeneity
In addition to the usual problems of heterogeneity associated with data and

their schema such as consistency of names, scaling, units, and applicability
range there are some heterogeneities which affect data mining models from
arrays of sensors. Data heterogeneity arises at two levels, from the diversity
of sensors installed on what are essentially different instances of the same pro-
cess, and from intrinsic differences between processes. For the first of these,
unavoidable heterogeneities arise from the following: 1) different types of sen-
sors measuring a given physical quantity by a different process, 2) different
initialisation calibrations of the same sensor types, 3) complete failure of a
sensor, 4) partial failure of the sensor through contamination, saturation, or
drift, 5) different sampling frequencies and process time-constants.

Also the anaerobic digesters themselves operate on different principles and
are of different sizes. There are practical heterogeneities that arise from scaling
variables; sometimes a key dimension is unknown or changing. However, these
issues of heterogeneity have not been fully explored in TELEMAC.

242 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

4. The Grids context

4.1 Telemonitoring and control: the TELEMAC concept

Figure 5 shows how the TELEMAC project represents an important ad-
vance in remote monitoring and control of wastewater treatment plants. Pro-
file 1 shows the traditional practice on an isolated plant. Profile 2 shows how
TELEMAC laboratory prototypes evolved. Profile 3 shows the full TELEMAC
solution to sharing expertise while maintaining local control. The Database,
Telemonitoring system and Expert are based at or accessible to the Telemon-
itoring and Control Centre (TCC) and are remote from the local user. Other
components in Profile 3 are local to individual plants. The icons for the local
user show the transition from puzzled in Profile 1 to enlightened in Profile 3.

Telemonitoring and
control

, - - . - user

Figure 5. The evolution of monitoring and control of wastewater treatment plants.

Profile 3 introduces the monitoring and control of multiple plants from a
single remote centre, the TCC. This is a step towards a full Grids-based sys-
tem, though there is as yet no concept of identifying and combining resources
according to specific needs: the system components and linkages are prede-
fined and inflexible. It is possible to abstract the essential components of the
above model so as to prepare for a Grids-based solution.

Distributed Data Mining and Knowledge Management 243

The Local user needs to be able to operate the plant in normal mode and
receive warning of possible excursions. Users will seek and receive advice
from a Remote Expert.

The Remote expert needs to monitor each individual plant, compare with
reference models, issue advice and alerts to local operatorslusers. The remote
experts service a TCC.

The Local plants can differ. Different plants have different arrays of sen-
sors, have different volumes and operating principles. Each plant has its own
data validation and consistency check for fault detection and isolation, FDI.
Individual variables and combinations of variables are validated. In laboratory
prototypes, multiple sensor consistency for the same variable can be used for
calibration. Outputs of the FDI are used to provide robust control guidance.
Each plant is serviced by a TCC; of course a single TCC may service multiple
plants.

The Telemonitoring and Control Centre receives and stores validated data
from local plants. It provides advice from monitored data in response to en-
quiries. It pools models to generalise expertise. It revises models as new situa-
tions are recognised. The TCC is responsible for holding the models and data
for its plants. There are mathematical analytical and simulation models as well
as data mining models.

4.2 Knowledge, information, computationldata Grids
A general architecture has been proposed for structuring knowledge, infor-

mation, and datalcomputation in a Grids context [8]. This architecture, shown
in Figure 6, represents the conversion of data to knowledge and then using
the knowledge to exercise control. Explicitly the control is over the data and
its processing but ultimately it is concerned with changing the data in the real
world. Homogeneous access to heterogeneous distributed data occurs in the
information layer. As well as including data mining technology the knowl-
edge layer encompasses human experts and decision makers. This model is
therefore compatible with the approach taken in TELEMAC.

4.3 The Grids perspective for leveraging knowledge
Figure 7 shows the mining of historical data to produce reference knowledge

and models that can be applied to current behaviour of the digester plant. The
cycle is closed by the observation of the resulting behaviours leading to a need
for remining if there are deviations from what was expected. The ovals with
broken lines indicate opportunities for leveraging knowledge obtained from
elsewhere. For example, reference knowledge obtained about the behaviour
of a digester in a state of hydraulic overload might be generalisable to other
digesters of the same class, and usable in managing such states in future.

244 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 6. The Knowledge, Information, ComputationIData Grids [8]

Historical I he knowledge management cycle

d Scope for leveraging
knowledge from
elsewhere

Figure 7. The knowledge management cycle.

Large companies are likely to opt for an intra-company TCC while the many
small wineries might collaborate through geographically local TCCs. In either
case there is scope for leveraging knowledge that has been derived about a par-
ticular situation by applying it in other circumstances, typically to a different
plant. This leveraging should be done in a transparent way. It is therefore
anticipated that a Grids infrastructure will provide the appropriate user trans-

Distributed Data Mining and Knowledge Management 245

parency for this to proceed because it provides access to resources. Now it is
not necessary for the Remote Experts to be located at every TCC.

4.4 Grid resources

With reference to Figure 7, it is possible to identify a number of classes of
resource that can enable the leveraging of knowledge. These are:

Data mining tools. A selection of tools and methods such as those men-
tioned in Section 3.3 may be available at the TCC. Not every TCC will have
the same set, so there is potential for offering the tools themselves for use as a
resource.

Datasets. Datasets from sensor data are steadily accumulated at the TCC
and constitute the raw material for data mining that is a valuable resource in its
own right. An ontology for resolving heterogeneities needs to be included.

Mined data. The results of the data mining, in the form of neural nets,
rules, and clustering parameters are obviously of potential value in dealing
with situations on other plants. This is the classic example of transferring
knowledge from one plant to another.

Human expertise. It is important not to forget that the expertise of the
remote experts is itself a kind of resource that can benefit the operation of
multiple plants in a Grid.

5. Grids based approach to TELEMAC

5.1 Generalising the problem

From a Grids perspective we can consider each network to consist of a set
of nodes (in TELEMAC each of these is the local computer associated with a
digester) and a set of decision support centre nodes (in TELEMAC a TCC).
Figure 8 shows a network of sensor arrays. The sensors are labelled for re-
porting variables A,B,C,D,E etc. Al , A2 are two different sensors reporting
on variable A. The plants local computer acts as the node, validating the data
for that plant, and passing it to the TCC. In some circumstances control action
may be passed from the TCC to a node for action on the plant controls. In
Figure 9 the decision support centre node comprises the remote experts, the
validated data and models, and the data mining and knowledge investigation
tools (DMKI).

5.2 Metadata

Metadata is required in a Grids system to represent properties of the Grid
resources and allow reasoning over them to locate and deploy resources.
The terms applicability, transformability, and reliability emerged as important

246 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Figure 8. A network of sensor arrays.

TCCl
- -__ TCC3 ----.._

Remote experts exoertise
Remote experts

Figure 9. A network of data, information and knowledge sharing.

metadata attributes for reworking TELEMAC in a Grids architecture. These
terms are discussed in relation to the data mining models and resources.

Distributed Data Mining and Knowledge Management 247

5.2.1 Data mining models. Applicability: this class of metadata iden-
tifies circumstances under which the model can be deployed with confidence
on the basis of the model generation E.g. the type of process, and the range of
sensors available. It would normally be based on expert knowledge.

Transformability: this metadata identifies expert judgement about
whether the models estimates can be used in (gu)estimating different regimes.

Reliability: this metadata identifies the confidence in the derivation of the
model viz: the goodness of the model assessed using training and testing data,
and any constraints that need to be considered.

Applicability
Absolute characteristic
Variable characteristics

t Characterised by range of sensor values themselves
Characterlsed by qualltat've states (e g "hydraulic overload)

Transformability
Non-scaling quantity (e.g, temperature, pH)
Scaleable by fixed physical dlmenslons (e.g volume)
Scaieable by varlable pmpertles (e.g, flow rate)

Reliability
Direct assessment (e.g. prediction intervals) t lndlrect assessment

Amount of data on which based
LValidation data

Figure 10. Metadata about datasets archived and available for data mining

5.2.2 Data mining datasets. Figure 10 shows the metadata relating to
datasets available as a Grid resource.

Applicability:
Absolute characteristic: this is a fixed feature of the system that never

changes e.g. digester process type but not a potentially varying characteris-
tic such as internal volume.

Variable characteristics: Generally each variable series is characterised by
statistical summary data such as stationarity or variance. The series from the
sensors are considered individually to determine the span of the variable and
missing values. Qualitatively different behaviours of the digesters are charac-
terised as states bound by ranges on subsets of the variables. Using these states
an expert would be able to assess a priori whether they were not suitable for
modelling other states e.g. data relating to hydraulic overload would not give
a good indication of the behaviour of organically overloaded states.

Transformability :
Direct instrument readings sometimes need transforming to a consistent

scale.

248 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

Non-scaling: these are quantities that typically have a direct scientific role
such as temperature and pH.

Scalable by $xed physical dimensions: typically converts extensive to in-
tensive e.g. using volume to scale biogas flow rates to m-3d-1 or to convert
between time and frequency. Within this category we include time scale syn-
chronisation where a variable is mapped to a different interval.

Scalable by a variable: maps to a new variable of interest E.g. using differ-
ences to remove a trend in a variable or produce a derived variable E.g. HRT is
Volume/iinflow-ratei which is the length of time taken to feed into the digester
the volume of liquid equal to the digesters volume.

Reliability:
Direct assessment: These are methods where the prediction on the target

data generates an estimate of the error. E.g. Prediction intervals can be ob-
tained directly from neural net models of the unseen targets. Bootstrapping
is widely used as an alternative approach for non-heteroskedastic data; it pro-
duces multiple models each on a variant of the training data.

Indirect assessment: These are methods where an estimate of the error is
based on the quality of the model fit to its training and validation data. e.g.
information criteria and characteristics of residuals in linear regression.

5.3 Resource discovery
Having established a collection of resources with associated metadata, re-

source discovery proceeds by locating resources that satisfy the current needs
of the user (at a TCC). Urgency and novelty of the digester state are factors
that need to be taken into account when identifying potential resources such
as data mining models that can be deployed. If a digester is in an alarming
state which the Remote Experts have never seen before, then the experts would
cast the net wider to look for resources that might help with the situation - ac-
cepting data mining models that are less reliable, for example, because at least
they might offer some information of value. The broker would seek resources
using such criteria [3]. Firstly it would need to match digester type and sensor
set available in the archive; it would perform measurement unit conversion as
appropriate. Then a suitable set of models would be selected with appropriate
guidance. The system may even provide the Remote Expert with functionality
that will advise on the urgency of the problem and whether it is novel.

5.4 Conclusions

TELEMAC is representative of a class of systems: networks of sensor arrays
with significant heterogeneity and varying reliability. The sensors respond and
report at different frequencies. Over time models need to be updated episodi-
cally as new data changes the characteristics being monitored. Expert knowl-

Distributed Data Mining and Knowledge Management 249

edge can be deployed in different ways from advisory to automatic control.
The knowledge base is used to infer behaviour of systems with different char-
acteristics. The Grids architecture provides a knowledge, information and data
architecture that enables a structured approach to developing this class of sys-
tem.

Acknowledgments
This paper refers to work carried out under the IST project TELEMAC

(Telemonitoring and Advanced Telecontrol of High-Yield Wastewater Treat-
ment Plants). Especial thanks are due to J.P. Steyer (INRA), L. Lardon (INRA),
0. Bernard (INRIA) and B. Le Dantec (ERCIM). The relation of TELEMAC to
Grids has been studied in the scope of the CoreGRID Network of Excellence.

References
[l] TELEMAC: Telemonitoring and advanced telecontrol of high yield wastewater treatment

plants, IST project no. IST-2000-28 156 http://www.ercim.org/telemac. 2000.

[2] 0. Bernard et al. An integrated system to remote monitor and control anaerobic wastew-
ater treatment plants through the internet.. Water Science and Technology 52(1-2): 457-
464,2005.

[3] K.G. Jeffery. Next generation GRIDS for Environmental Science. Environmental Mod-
elling and SofhYare . 2005, in press.

[4] H. Macarie. Overview of the application of anaerobic treatment to chemical and petro-
chemical wastewaters. Water Science and Technology. 42(5-6):201-2 13,2000.

[5] 0. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi, and J.P. Steyer. Dynamical model
development and parameter identification for anaerobic wastewater treatment process.
Biotech. Bioengin. 75(4):424-439,2001.

[6] M. Dixon, J.R. Gallop, S.C. Lambert, and J.V.Healy. Experience with data mining for the
anaerobic wastewater treatment process. Environmental Modelling and Software. 2005,
accepted.

[7] M. Dixon, J.R. Gallop, S.C. Lambert, L. Lardon, J.V. Healy, and J.P. Steyer. Data Min-
ing to Support Anaerobic WWTP MonitoringJFAC Workshop on Modelling and Con-
trol for Participatory Planning and Managing Water Systems, Proceedings CD. Venice
http://epubs.cclrc.ac.uWwork-details?w=30122. 2004.

[8] K.G. Jeffery. CRIS and Open Access. Proc. World Library and Information Congress:
IFLA 71, Oslo, Norway. http://epubs.cclrc.ac.uWwork-details?w=34228. 2005.

Index

advance reservation, 169
Alper Pinar, 1 19
anaerobic digestion, 235
Antonioletti Mario, 3
architectural patterns, 119
Atkinson Malcolm, 3
Bechhofer Sean, 119
Bilas Angelos, xii, 67, 83
biodiversity, 35
biodiversity informatics, 35
bioinformatics, 35
block-level 110, 83
BPEL, 203
browsing, 135
Chue Hong Neil P., 3
closed itemsets, 221
Comito Carmela, 19
Congiusta Antonio, 203
Corcho Oscar, 1 19
CoreGRID, viii
Crompton Shirley, 35
data access, 3,35
data curation, 135
data integration, 19,35, 135
data management, 3,99
data mining, 235
data safety, 99
databases, 3
DHT, 185
Dikaiakos Marios, xii
distributed data mining, 203, 22 1
distributed query processing, 5 1
distributed storage architecture, 67
Dixon Maurice, 235
e-Science, 135
fault-tolerance, 5 1, 99
Flouris Michail D., 67, 83
frequent itemsets, 221
G6mez-PCrez Asunci6n. 15 1
Gallop Julian R., 235
Goble Carole, 1 19
Gounaris Anastasios, 19
Gray Alex, 35
Grid Scheduling Ontology, 169

Grid services, 1 19
GRMS, 99
Gutiirrez Miguel Esteban, 151
Idreos Stratos, 185
Jones Andrew, 35
Kaoudi Zoi, 185
Karasavvas Konstantinos A,, 3
Karczewski Konrad, 99
Knowledge Grid, 203,221
Kotsiopoulos Ioannis, 1 I9
Koubarakis Manolis, 185
Kuczynski Lukasz, 99
Lachaize Renaud, 67,83
Lambert Simon C., 235
Liarou Erietta, 185
Lucchese Claudio, 22 1
Magiridou Matoula, 185
Matthews Brian, 35, 135
meta-scheduling, 169
metadata, 135
Miliaraki Iris, 185
Missier Paolo, 1 19, 169
multi-layered storage, 83
NCmeth Zsolt, 67
OGSA-DAI, 3.35
OGSA-DQP, 19
OGSA, 151
ontologies, 15 1
Orlando Salvatore, 22 1
parallel query processing, 5 1
peer-to-peer networks, 185
Perego Raffaele, 22 1
Priol Thieny, viii
query processing, 185
RDF, 185
replication, 99
resource management, 169
rollback-recovery, 5 1
rule based management, 67
Sakellariou Rizos, 19
search, 135
Semantic Grid, 119, 151
semantic model, 169
semantic technologies, 15 1

Semantic Web, 185
service choreography, 19
Silvestri Claudio, 221
Smith Jim, 5 1
storage virtualization, 83
Sufi Shoaib, 135
Talia Domenico, xii, 19,203
telemonitoring and control, 235
Trunfio Paolo, 203
UML, 203

KNOWLEDGE AND DATA MANAGEMENT IN GRIDS

virtualization, 67
wastewater treatment, 235
Watson Paul, 5 1
White Richard, 35
Wieder Philipp, 169
WS-DAI, 151
WS-DAIOnt, 15 1
WSRF, 203
XMAP, 19
Ziegler Wolfgang, 169

Printed in the United States

