Fakelnf: Selective Deep Neural Network Inference for Latency
and Energy-Aware Model Serving Pipelines

Demetris Trihinas
Computer Science

Moysis Symeonides
Computer Science

Nicolae Cleju

Technical University of lasi

University of Nicosia University of Cyprus Iasi, Romania
Nicosia, Cyprus Nicosia, Cyprus ncleju@etti.tuiasi.ro
trihinas.d@unic.ac.cy msymeo03@ucy.ac.cy
George Pallis Marios Dikaiakos
Computer Science Computer Science
University of Cyprus University of Cyprus
Nicosia, Cyprus Nicosia, Cyprus
pallis@ucy.ac.cy mdd@ucy.ac.cy

Abstract

Recent advances in 5G networks and edge computing are enabling
low-latency and Al-powered services in close proximity to end
users. However, the growing complexity of Deep Learning (DL)
models is threatening the vision of EdgeAl, where real-time infer-
ence demands substantial computational power, excessive usage of
energy, and imposes heavy model-update traffic that overwhelm
resource-constrained multi-access edge computing (MECs) nodes.
In this paper, we present Fakelnf, a framework that supports EdgeAl
applications delivering DL-based video stream inference. FakeInf
adds a lightweight decision module to DL model-serving pipelines
that tracks data volatility and, using probabilistic reasoning, de-
cides for streamed input whether to run the full model or “fake
it” by relying on low-cost statistical estimations. This selective ex-
ecution reduces network traffic, latency, and energy usage while
maintaining Quality-of-Service (QoS) within user-defined limits. To
demonstrate the efficacy of Fakelnf, we integrate it with a real-world
smart traffic system hosted on a MEC. Fakelnf reduces application
latency by 59%, network traffic by 71%, computational overhead by
66%, and energy by 72% while incurring only a modest reduction of
4-6% in the accuracy of the analytic insights emitted. FakeInf also
allowed the pipeline to process 2x more video streams compared to
the baseline without creating inference bottlenecks.

CCS Concepts

« Computer systems organization — Cloud computing; - Net-
works — In-network processing; » Computing methodologies —
Machine learning.

Keywords
Edge Computing, Deep Learning, B5G networks

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.

UCC 25, France, France

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2285-1/25/12

https://doi.org/10.1145/3773274.3774270

ACM Reference Format:

Demetris Trihinas, Moysis Symeonides, Nicolae Cleju, George Pallis, and Mar-
ios Dikaiakos. 2025. Fakelnf: Selective Deep Neural Network Inference for
Latency and Energy-Aware Model Serving Pipelines. In 2025 IEEE/ACM
18th International Conference on Utility and Cloud Computing (UCC °25),
December 01-04, 2025, France, France. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3773274.3774270

1 Introduction

The advent of 6G networks promises to build on the ultra-low-
latency, high-throughput, and pervasive connectivity of 5G by em-
bedding Al capabilities as native network functions [11]. Deploying
Al such as Deep Learning (DL) models, on multi-access edge com-
puting nodes (MECs) is advancing the vision of edge intelligence,
or simply EdgeAl. Through this paradigm, users gain in situ and
impromptu access to network-hosted Al services, while simultane-
ously offloading data from backhaul links that connect MEC nodes
to central cloud resources [28]. The intersection of these techno-
logical advances is already addressing pressing socioeconomical
challenges, including resilience and sustainability, as the network
traffic attributed to EdgeAl is expected to scale 3x by 2029 [1].
Examples of new and emerging use-cases driving EdgeAl in-
clude intelligent traffic control [5], immersive navigation with aug-
mented reality [8], and digital twin assisted surgical procedures [2].
However, the demand for such sophisticated Al services is forc-
ing DL models to expand rapidly in parameter count, as well as
layer depth and width [18]. This increasing complexity, exempli-
fied by billion-parameter transformers and multimodal networks,
overwhelms the limited compute, memory, and energy resources of
MEC nodes [23][31]. More surprisingly, the energy consumption
of state-of-the-art DL models is doubling at an annual rate [7][13].
As a result, the vision towards delivering low-latency and energy-
efficient inference at the network edge is coming under strain.
These risks are particularly evident in smart city applications that
require continuous inference on live data streams, such as object
detection running on multiple video feeds from geo-distributed
IP cameras for crowd monitoring and vehicle traffic management.
This directly impacts the real-time processing of high-volume video
streams on computationally constrained MEC infrastructures [20].
In such cases, the underlying 5G/B5G network may be able to handle

https://orcid.org/0000-0002-9540-7342
https://orcid.org/0009-0007-2711-1949
https://orcid.org/0000-0002-9861-0872
https://orcid.org/0000-0003-1815-5468
https://orcid.org/0000-0002-4350-6058
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3773274.3774270
https://doi.org/10.1145/3773274.3774270

UCC ’25, December 01-04, 2025, France, France

HD video streams due to its high-bandwidth connections, but the
DL inference process itself often becomes a bottleneck, limiting the
scalability and sustainability of MEC deployments [29].

To address this challenge, different techniques have been pro-
posed. A traditional approach is the horizontal scaling of MECs.
However, MEC scaling is not as simple as elastically adjusting
virtual offerings in the cloud, facing challenges related to adding
physical infrastructure in the mobile network [9]. Focusing on more
cost-effective solutions at the DL model level, others suggest ap-
plying pruning or quantization (e.g., reduce number and precision
of model parameters) [10]. Unfortunately, these come with a fixed
cost that can rapidly reduce accuracy during inference, even in
cases where MEC nodes face no duress. To overcome this limita-
tion, a more versatile technique is model-swapping, in which a
repository of pretrained model variants is available and based on
the computational capacity of the edge node, a variant is selected
to ensure the latency requirements set by the service operators are
maintained [24]. Still, a key challenge is that the number of model
variants preloaded in (GPU) memory is limited in practice.

To ensure latency and energy requirements during task infer-
ence for DL model-serving pipelines hosted on MEC nodes, we
introduce Fakelnf!. Specifically, the FakeInf framework instantiates
a decision-making module within the DL model-serving pipeline
that embeds a lightweight algorithmic mechanism designed to au-
tonomously adapt the temporal intensity of the runtime inference
process. To do so, Fakelnf uses low-cost statistical estimators that
adopt probabilistic reasoning to monitor the runtime volatility of
the analytical insights produced by the DL model (e.g., object de-
tection counts) and determine how often DL inference should be
applied to the video stream. When video stream analytics exhibit
low volatility phases, the estimator identifies this condition and
the Fakelnf algorithmic mechanism recommends a time frame of X
video frames during which inference is not triggered, using instead
the estimator’s output. By introducing the FakeInf decision-making
module, the volume of data emitted over the mobile network is
significantly reduced. This also provides valuable “breathing space”
to the computational units (e.g., GPU/CPU) of the underlying MEC
node and reduces the node’s energy footprint.

To show the efficacy and efficiency of the Fakelnf framework,
we conducted a series of field trials integrating FakeInf with a real-
world smart traffic service hosted on a B5G MEC node provided
by Orange, Romania. The smart traffic service entails monitoring a
road intersection in Iasi with IP cameras. The video feed is streamed
to a DL model-serving pipeline for object detection using a vision
model and subsequent post-processing to emit, among other ana-
lytic insights, vehicle and pedestrian counts. The results show that
Fakelnf reduces application latency by 59%, network traffic by 71%,
GPU usage by 66%, and energy by 72% with only a modest reduction
of 4-6% in accuracy of the analytics emitted. FakeInf also allowed
the pipeline to process 2x more video streams compared to the
baseline before the MEC node becomes a computational bottleneck
and cannot serve in-time and accurate analytic insights.

The rest of this paper is structured as follows: Section 2 provides
a background and motivation overview. Section 3 describes the al-
gorithmic mechanisms behind Fakelnf, while Section 4 introduces

! https://github.com/unic-ailab/FakeInf

Trihinas et al.

DL Model Serving
20 o)
User AP Pre Process Inference Post Process) Dispatch
REST Featurize Validation JSON i
OO0 wc |—| = —P@—) Anaiyics [—>[xuL — ? "H"
Streaming Data . . .
(e.g., video feed)
stoon 0os ® ® = ® ®
Model
Registry
T Trained Model
PRIO) =t
-“Sem'ce Operator
Figure 1: Abstract View of a DL Model-Serving Pipeline
RAN 5G 56
N&lwam DL Model Serving Backhaul
Z

Real-Time In
% Streaming Decoders &
D>\’0 —>|| Protocol |—|Pre-Processing
(RTSP)

4

Task
ference Network
Encoders & Dispatch to
—> | Post-Processing| —>| Cloud —_—
proem KR

Iz YoLOvGx
odol

Registry

Cloud Server

Figure 2: Example of EdgeAlI Smart Traffic Analytics Service

implementation and integration aspects. Section 5 provides a com-
prehensive evaluation study. Section 6 an overview of related work,
while Section 7 concludes the paper and outlines future work.

2 Background and Motivation
2.1 Model Serving

DL model-serving refers to the offering of a software stack enabling
developers to deploy binary artifacts of trained neural networks
in production-level environments. Models are exposed through
APIs for users to submit inference requests that deliver prediction
or classification responses based on given input data [3]. Popular
frameworks such as TensorFlow-Serving?, and Nvidia DeepStream?
ease model lifecycle management (e.g., versioning) and notably,
during inference handle request scheduling so that downstream
applications can consume model outputs without embedding model
logic. Moreover, tools such as Clipper [6] and Nexus [19] introduce
multi-client request serving and support the definition of app-level
SLOs for inference execution.

The workflow of a typical DL model-serving platform is as fol-
lows (Fig. 1): Initially, Service Operators register a (new) model
version to the platform’s repository (0). Clients then submit infer-
ence requests via public APIs (e.g., REST, gRPC) (D, supplying the
input data and, if desired, specifying SLOs, such as an end-to-end
latency below 20ms (2). Once the platform receives a request, it
initiates pre-processing (3), which can include feature extraction,
retrieval-augmented generation (RAG) to gather supplementary
external data, and other transformations such as resolution down-
scaling. Next, the feature vector of the encoded and preprocessed
input is fed to the DNN model to emit the inferred output (@. Subse-
quently, the system performs post-processing (5) to update analytic
metrics (for example, object counts) and carry out any necessary
validation. Finally, a dispatcher delivers the results for downstream
consumption according to the user’s requirements (6).

2.2 Edge-Al Traffic Management Use-Case

Let us highlight an EdgeAlI application that motivates our work: a
smart traffic-management system deployed on a B5G MEC node
operated by Orange, Romania. In this setup, high-definition IP

2 https://www.tensorflow.org/tfx/guide/serving
3 https://developer.nvidia.com/deepstream-sdk

https://www.tensorflow.org/tfx/guide/serving
https://developer.nvidia.com/deepstream-sdk

Fakelnf: Selective Deep Neural Network Inference for Latency and Energy-Aware Model Serving Pipelines

200
Default

—— Fakelnf

O 100

.~ 1600 1800 2000 2200 2400 -
~ Frames

o :_ 2000 1 4000 6000 8000 10000 12000 14000
Frames

Figure 3: Example Car-Count Metric for Respective Use Case

cameras are mounted at a busy road intersection in Iasi, with these
streaming video to a Nvidia DeepStream model-serving pipeline
that performs real-time object detection using the largest YOLO-
v8 model variant. The pipeline continuously updates vehicle and
pedestrian counts that traffic operators visualize on a cloud-hosted
dashboard to monitor traffic congestion and receive incident alerts.
Figure 2 provides a high-level overview of the use-case pipeline.
More details about the use-case implementation and operation are
introduced in Section 4.

Figure 3 presents an exemplary visualization of the car-count
metric. Specifically, it shows a 10-minute timeline of a video feed,
including a 40-second zoomed-in segment at a random time interval
(top plot). The frame rate is set to 25 frames per second, with the
gray line highlighting the car-count values captured by the default
execution of the EdgeAl service. At this fps, the system achieves
its highest accuracy using YOLOv8-X (~90% precision). However,
achieving this level of performance with YOLOv8-X (68.2M params)
significantly stresses the GPU of the MEC node, increasing utiliza-
tion (257B flops) and energy consumption (61 W/s) of the edge
node. Moreover, examining the car-count trend in Fig. 3, raises an
important consideration: if the count varies only slightly over time,
the benefit of continuously running the video feed through the DNN,
diminishes. This observation raises an important question: can we
maintain acceptable accuracy while reducing unnecessary computa-
tion by selectively skipping or approximating inferences? Addressing
this question leads us to propose faking inference, a technique that
adaptively controls the inference execution based on the emitted
analytic insights and the stream variability.

2.3 The “Fake Inference” Approach

DL model-serving must balance competing objectives. For example,
users expect low-latency and high-accuracy, whereas Service Oper-
ators want to reduce operational expenditure. Energy consumption
is a principal contributor to these costs directly associated with the
computational power (GPU/CPU) employed during inference [16].
Approximation methods, such as model pruning or fixed frame
sampling, can reduce energy usage and shorten inference latency,
thereby benefiting both service operators and users. However, ap-
plying a fixed approximation often degrades accuracy to an unac-
ceptable extent, even in cases where perhaps no latency reduction is
required or requested. Consequently, the platform must adaptively
decide when and for how long the approximation is employed.
This requirement is well suited to workloads that monitor phys-
ical processes, such as traffic at road intersections via IP cameras,

UCC ’25, December 01-04, 2025, France, France

[® warm-up Prase

Leamm

56

Nelwom DL Model Serving ok ol
Q\w HealTime Inference Network
% Streaming Decoders & Encoders & Dispatch to [N 4
[}}\w —>|| Protocol | —|Pre-Processing| —> | post-Processing| = } Cloud |[—>
% (RTSP) M|
PN |
; elYoLovex]
. Registry
Edge Device Cloud Server

\ Perform

1 Inference

Statistical Model

Estimator

Figure 4: High-level Overview of FakeInf Framework

where successive video frames exhibit strong temporal similarity, as
presented in Figure 3. Our “fake inference” approach capitalizes on
this observation. Specifically, when the analytic insights extracted
from a video stream display phases of low volatility, forwarding
frames to the DNN for inference can be skipped. Conversely, when
the stream’s analytics fluctuate markedly, DNN inference remains
necessary. Therefore, the when aspect of adaptive inference calls
for an estimation module that continuously monitors the volatility
of the video analytics and, in turn, signals when inference can be
skipped. In turn, quantifying the volatility allows for estimating
the length of the skip window. This length denotes how many con-
secutive frames can be bypassed based on the measured volatility
as an overly long window may overlook sudden events, whereas
one that is too short limits the latency and energy savings.

The red line in Fig. 3 illustrates our “fake inference” approach.
Specifically, in the bottom plot, it is evident that our method closely
follows the trend of the default execution. A finer-grained analysis
(Fig. 3 top plot) reveals that, although our method occasionally
misses some values, it maintains strong overall performance. Ac-
cording to our analysis, this approach results in only a 5.1% pre-
cision reduction compared to the default execution. Furthermore,
when grouping the results by second (a reasonable aggregation
given the nature of the use-case) the imprecision difference be-
tween real and fake inference is merely 2.52% with a skipping ratio
(network traffic reduction) of 74% of the total inference tasks.

3 The FakelInf Framework
3.1 Overview

The Fakelnf framework has been designed to seamlessly attach to
the pre- and post-processing stages of existing DL model serving
pipelines. Fakelnf introduces a lightweight decision module that
monitors the stream-level analytics (e.g., object counts) produced
by the DNN. Its goal is twofold: (i) decide whether the next frames
truly require inference; and (ii) determine how long a skip window
can safely last based on supplied confidence levels given by users
that indicate their tolerance to imprecision.

Figure 4 provides a high-level overview of how Fakelnf functions.
In brief, a warm-up phase is first executed (Fig. 4 D). During this
phase every incoming frame passes through the FakeInf FrameFilter
and is forwarded to the DNN. While these early results arrive, Fake-
Inf compiles a statistical estimator that summarises recent analytics

UCC ’25, December 01-04, 2025, France, France

to learn and quantify stream volatility. Once warm-up ends, Fake-
Inf enters the steady-state phase (Fig. 4 (2)), where the following
algorithmic process is adopted. For each new frame Fakelnf (i) com-
putes a volatility score from the estimator; (ii) updates an internal
“confidence” counter via a Reinforcement Learning (RL)-inspired
rewarding mechanism; and (iii) selects an action: either “infer” or
“skip for X frames”. If volatility stays below a user-defined con-
figurable imprecision threshold (introduced in subsection 3.2) and
confidence is high, the FrameFilter suppresses DNN execution for
the next X frames, where X grows with confidence. During a skip
window, the system reuses the last DNN output. When volatility
rises and the estimator’s predictions deviate from the real scene,
confidence drops and the FrameFilter immediately rolls back and
resumes full DNN inference.

Hence, by avoiding unnecessary DNN passes, FakeInf reduces
GPU load, energy draw, and the volume of downstream data. Oper-
ators can tune algorithm confidence threshold as well as the min
and max skip length to balance accuracy against latency and cost,
ensuring compliance with application-level QoS targets.

3.2 Algorithmic Process

Algorithm 1 provides an overview of the decision logic employed
by Fakelnf to quantitatively determine the skip length for adaptive
DNN inference. Several estimators can be used to track the short-
term dynamics of a data stream. Nevertheless, any candidate must
impose minimal computational overhead as the adaptive logic is
valuable only if its (computational) cost is far lower than executing
a full DNN inference. Prominent examples of lightweight estimators
are moving averages, such as the Exponential Weighted Moving
Average (EWMA) that offers a balance between responsiveness and
cost. The EWMA updates in O(1) time by requiring only the pre-
vious estimate and the current datapoint (e.g., video frame) rather
than a full history of observations. Given the current datapoint v;
and previous estimate y;_1, the EWMA is updated as follows:
pgi=a-vi+(1—a)-pi-1, a € [0,1] (1)
The smoothing parameter « controls the estimator’s memory. A
larger a places more weight on recent frames, while a smaller
a produces a smoother signal but may lag behind fast variations.
Because the algorithm stores only the latest y;, it imposes negligible
memory overhead, making it suitable for high-throughput video
streams processed in situ on MEC nodes.

Note that as our goal is to capture the volatility of the emitted
analytics, the absolute value of each metric (e.g., car count) is less
informative than its frame-to-frame change. We therefore actually
operate on the first-order difference §; = |v; — v;—1|, where large
values of § signal a sudden shift in scene dynamics, whereas small
values indicate stability. Moreover, while the EWMA is inexpensive,
it responds poorly to outliers. A single spike can pull the estimate
upward for many frames, and, conversely, the estimator may lag be-
hind when a stable period abruptly ends. To address this limitation

we adopt a Probabilistic EWMA (PEWMA) as shown below:
aij=a—P,ac[0,1]

S 2 s 2

pui=a-6i+(1—-a -y

For our PEWMA, the smoothing factor &; adapts to how “typ-
ical” the current § appears. Specifically, for each §; we estimate

Trihinas et al.

its likelihood P; with a Gaussian kernel density estimator, avoid-
ing any prior assumption about the underlying distribution. The
effective weight then becomes &; = a — P;. With this, unusual
deltas (low P;) increase the influence of the current observation,
allowing the estimate to track rapid changes; whereas common
deltas (high P;) reduce the weight, preserving stability [25]. Thus,
the PEWMA retains the O(1) update cost of EWMA, requires no
pre-defined window, while reacting quickly to both transient spikes
and longer-term shifts.

With the PEWMA serving as the volatility tracker and used to
provide an estimation for the distance of the next delta (3i+1 — L)
each incoming frame updates the estimator in constant time. In
turn, FakeInf keeps a rolling standard deviation o; of the deltas,
maintained with an incremental (Welford-style) update that also
runs in O(1) time and requires no historical buffer [27]. After these
updates, the framework computes a confidence score:

ci=10- M ¢ < 1.0 3)

oi

where 6; is the standard deviation of the PEWMA estimator and o;
is the observed rolling value. A high c; indicates 6; — o; and the
estimator is following the actual stream behavior, while a low c;
reflects a growing error. The confidence acts as the reward signal in
FakeInf RL-based control loop. When successive frames yield high
rewards, the algorithm accumulates credit and, once a threshold
is crossed, issues a “skip X frames” action. If confidence drops, the
credit decays immediately, forcing the FrameFilter to resume full
DNN inference to preserve accuracy and satisfy QoS targets.

Capitalizing on the RL-inspired credit-decay loop, Equation 4 is
used to compute the size of the skip S;;1 for the next frame. This is
governed by the confidence score c;, which captures how closely the
estimator follows the current video stream dynamics. After comput-
ing c;, FakeInf compares it with a user-given imprecision tolerance
v € [0, 1] and specifically the threshold 1 — y. Here, y approximates
the max prediction error the user can tolerate (e.g., y = 0.15). This
parameter sets the system’s sensitivity when choosing the next skip
window Sit1 € Z*, bounded by Sy (typically 1, meaning no skip)
and a configurable Spax set by frame-rate or latency constraints.
Specifically, if y — 0, the framework behaves conservatively, only
near-perfect confidence allows frame skipping, so the pipeline ef-
fectively runs with continuous inference (no skip). On the other
hand, if y — 1, the framework becomes eager to save resources
and will shorten or extend the skip window at every decision point,
even when confidence is at a low point. Hence, whenever c; falls
below the user acceptable tolerance, FakeInf immediately reverts
to continuous inference for the next interval to prevent accuracy
loss. During the initial warm-up phase or after prolonged discon-
nections, Fakelnf forces continuous inference until the confidence
score stabilises to avoid oscillations.

{min(smaX> I-lc__ly-l “Smin), i 21—y
Sit1 =

min else

©)

In summary, by continuously adapting the skip length S;,1, Fake-
Inf reacts quickly to periods of high volatility while maximizing
latency reduction and energy savings during stable scenes. The
control loop executes in O(1) time per frame as no history of the
video stream is required beyond the statistical estimators. Moreover,

Fakelnf: Selective Deep Neural Network Inference for Latency and Energy-Aware Model Serving Pipelines

Algorithm 1 Adaptive Inference

Input: User imprecision tolerance y and upd value v; for current frame
Output: Skip length S;;; and stream volatility estimates Siv1 — pi and ¢;
Ensure: User requirements {S;+1|Si+1 € Z" and Si+1 € [Smin> Smax]}
1: if ti < Twarm then
//compute distance and est error
2 6 — o — v
3: €; «— 0; — O;
//update stream volatility estimations
4: P; « ProbDistro(e;)
5. 8i41, 6141 «— PEWMAandWelford(P;, 5;)
//update RL-based confidence
6: c; « calcConf (o}, 6iy1)
7: if ¢; > 1 - y then
//compute skip length

8: Q&Ci/(l_y)'smin
9: if 0 < Spax then
10: Siv1 < 0
11: else
12: Si+1 < Smax
13: end if
14: else
//low confidence, rollback to frame-to-frame inference
15: Si+1 < Smin
16: end if
17: else

//warm-up phase, no skipping only prepping volatility tracking
18: Si+1 < Smin
19: Si+1, 0i+1 «— PEWMAandWelford(5;)
20: end if
21: return S;y; //frames to skip

the imprecision-tolerance parameter y is the only mandatory user-
defined knob, although operators cal also tune the bounds Sy, and
Smax to suit app-specific latency or frame-rate constraints.

4 Use Case and FakeInf Implementation

4.1 Hardware Infrastructure

Our use-case is deployed on an infrastructure that combines a B5G
network, edge computing, and high-resolution video sensing for
real-time road traffic analysis. The network backbone is a commer-
cial/private 5G network deployed by Orange Romania, configured
for both Standalone (SA) and Non-Standalone (NSA) modes. The
network can support multiple logical slices and in this case we
selected an enhanced Mobile Broadband (eMBB) slice for high-
throughput transmission of video streams from HD video cameras.
Connectivity between the sensing equipment and the edge com-
puting facility is established via a Nokia FastMile 5G Customer
Premises Equipment (CPE), which handles traffic differentiation
through multiple VLANS configured on a single SIM with multiple
Data Network Name (DNN) profiles.

To process the video stream and emit real-time analytics, a GPU-
enabled MEC node is deployed and configured within proximity
of the road intersection. The MEC is equipped with an Intel Xeon
Silver 4210 CPU @ 2.20GHz, 32GB of main memory, and a V100
NVIDIA GPU with 5,120 CUDA cores and 640 Tensor cores (peak
FP16 performance 28 TFlops) and 32GB memory. Moreover, the edge
server ingests and processes video data from multiple sources, and

UCC ’25, December 01-04, 2025, France, France

operates under strict latency constraints to provide actionable traffic
insights. The architecture of the edge platform is designed according
to the Service Enabler Architecture Layer (SEAL) framework from
3GPP Release 16, which ensures tight integration between network
resources and edge applications. With this, the MEC is capable of
handling concurrent HD video streams at a frame rate of at least
25 fps and maintaining a processing latency below 75ms.

The sensing layer consists of 8 Mobotix Mx-BC1A-4-IR-D bullet
cameras strategically deployed within a crowded intersection in
Tasi to capture comprehensive visual coverage of the traffic envi-
ronment. These Power-over-Ethernet cameras provide high-quality
resolution video with a horizontal field view over 90 degrees and
an infrared (IR) range up to 30m, enabling effective operation in
varying lighting conditions. The cameras are connected to an Aruba
PoE switch, which aggregates the video streams and forwards them
through the 5G CPE to the MEC node.

4.2 Use-Case Software Implementation

The high-level overview of the use-case software architecture fol-
lows the design depicted in Fig. 2. It relies on the open-source Savant
framework?, a Python abstraction layer built on top of the Nvidia
DeepStream SDK for designing high-throughput, GPU-accelerated,
and DL video processing pipelines for edge computing. Its architec-
ture follows a directed acyclic graph (DAG) model, wherein video
streams are captured via source elements supporting various proto-
cols. In our case, these sources are the road-side IP cameras stream-
ing over the B5G network. The incoming video streams undergo
decoding via hardware-accelerated Nvidia’s module (NVDEC), con-
verting compressed inputs into raw frames for further analysis.

Moreover, the framework is able to seamlessly integrate DL infer-
ence engines, facilitating tasks such as object detection and classifi-
cation. In our case, the input frames are forwarded to a YOLOv8-X
detector (input 640 x 640 px) executed via TensorRT/ONNX. Ad-
ditionally, video frames and their associated metadata can be pro-
cessed through a sequence of user-defined pre- and post-inference
filters, Python-based decoders or encoders, and metadata proces-
sors, enabling the application of sophisticated selection criteria
based on object attributes, spatial or temporal constraints, dynamic
application logic, and many more. We utilize this functionality
in order to resize the incoming video streams, and keep useful
data only the cars’ bounding boxes and count. For communication
between python modules (e.g., filters) and ML processing compo-
nents, Savant employs an asynchronous messaging architecture
based on ZeroMQ5 with a PUB/SUB model, enabling scalable and
decoupled data exchange within the pipeline. For integration with
external systems, users must develop Python-based adapters to en-
code and disseminate results. In our case, we created an adapter that
streams inference results to a cloud-based Katka queue, enabling
fast responses and seamless consumption by downstream services,
including the cloud dashboard used by Iasi traffic operators.

The last component of our use case is the operator’s dashboard
(Fig. 5). Through the dashboard, operators can observe the video
stream and the annotated frames, as well as statistics, like the
number of cars in the road in real-time. Moreover, we integrated

* https://savant-ai.io/
> https://zeromq.org/

https://savant-ai.io/
https://zeromq.org/

UCC ’25, December 01-04, 2025, France, France

Figure 5: Use-Case Dashboard

the monitoring stack (see Sec. 4.4) with this dashboard for users to
observe the underlying MEC node utilization metrics.

4.3 Integration with the FakeInf Framework

Processing video near the cameras on the MEC node reduces back-
haul traffic and latency, yet the large YOLOv8-X model imposes sub-
stantial and highly variable GPU load when many cameras stream
concurrently. Integrating FakeInf with Savant-based pipeline and
throttling inference on-the-fly can keep latency and energy use
within lower levels while preserving analytic accuracy.

To realize the FakeInf framework and its integration with the
use case, we implemented two programming modules following the
Python programming abstractions provided by the Savant frame-
work. The first module operates as a pre-inference filter, whose
functionality is to either discard or propagate frames to the sub-
sequent stages of the pipeline based on the computed periodicity
(see the Selector component of Fig. 4). In contrast, the core func-
tionality of our framework is embedded in a post-inference filter.
As described in Sec. 3, the Fakelnf algorithm processes the relevant
inference target metric (e.g., the car count) and updates its internal
lightweight PEWMA Statistical Estimator.

For the Warm-up Phase of our framework (Fig. 4 (D), users pro-
vide a specific configuration defining the size of the datapoints that
the system will use to train the corresponding Statistical Estimator.
During this phase, the system exclusively performs ML inference
on each incoming frame. Then, the system goes to the Steady-
state Phase in which it computes the respective periodicity and
disseminates it to Selector. To enable communication between our
components, we employ a shared memory data structure. Through
this structure, modules (both pre-filter and post-filter) have access
to common data, where the pre-filter reads the current interval,
while the post-filter writes the updated interval determined by the
Fakelnf analysis (Fig. 4 (2)). To this end, the entire FakeInf code is
implemented as a library for the Savant Framework, which users
can enable with just a few lines of code.

4.4 Monitoring Stack

In order to have the required observability in our analysis, we
desinged and implemented a comprehensive monitoring stack that
captures both application-level metrics, like latency, and hardware
metrics, like computational footprint and energy consumption.
Firstly, we focused on extracting app-level metrics using an
internal mechanism of Savant framework. Specifically, the video
frames in Savant have associated metadata that can be processed
through Python-based metadata processors, enabling developers to
apply programmatically new tags on them. We use this functionality

Trihinas et al.

o e
SRS

Error (%)

o N &~ O o

Default-10
Figure 6: MAPE per Frame

to compute the inference latency for each frame by annotating the
frame with a timestamp before entering the inference pipeline, and
subtracting the timestamp after the inference.

In addition to monitoring app-level latency, we introduced a hard-
ware monitoring stack to capture utilization metrics from the under-
lying execution environment, specifically from the Edge server. For
this, we used open-source tools such as NetData and Prometheus®
on the Edge server. These tools allow for the extraction of server
utilization metrics (e.g., CPU/memory usage), service-level metrics
(e.g., CPU usage per container), and network metrics (e.g., data
transferred to the edge server). In addition, we created a wrapper
on top of the nvidia-smi interface’ to enable both GPU manage-
ment (e.g., cap frequency) and GPU monitoring to extract critical
metrics, such as power drawn, operating frequency, utilization and
idle time, all specific to GPU of the MEC node.

FakeInf-10 Default-50 Fakelnf-50

5 Evaluation

To evaluate the efficacy and efficiency of Fakelnf, we perform: (i) ac-
curacy evaluation between the default (YOLOv8-X) deployment
with different values of inference periodicity and Fakelnf configu-
rations; (ii) performance evaluation, comparing application latency,
GPU usage, network traffic, and energy consumption, w/o Fake-
Inf; (iii) model pruning vs FakeInf with a comparison against lighter
models (YOLOvV8-N and YOLOv8-M); and (iv) scalability study, eval-
uating Fakelnf scalability against other techniques.

Each experiment is run for 1 hour, unless otherwise noted, and
all experiments are connected to the IP camera video feed of the
use-case featuring a 25 fps input data rate. Moreover, the warm-up
period for all evaluation methods (incl. Fakelnf) is set to 5min and
upon request from the traffic operators, the maximum tolerable
imprecision is set to 10% (y = 0.1). We explicitly note that all
ethical guidelines requested by the UC operators were adhered to.
Specifically, experiment sessions were only conducted from the
control room (restricted access), no personal data was monitored,
and no video stream content was stored for later access.

5.1 Accuracy Evaluation

First, we evaluate the effect of Fakelnf on the emitted analytics
stream of the DL model. We consider the execution of the vanilla
use-case (DNN without Fakelnf) as the baseline (ground truth), and
compare the following methods: (i) Default-10, executes inference
every 10 frames (fixed-sampling) retaining the same output for
intermediate frames; (ii) Default-50, similar but with fixed sampling
of 50 frames; (iii) Fakelnf-10, with a max skip window of 10 frames;
and (iv) Fakelnf-50, similar but with Smax = 50. We denote that, for
fairness, all methods are executed on the same video feed.

® https://www.netdata.cloud/ and https://prometheus.io/
7 https://docs.nvidia.com/deploy/nvidia-smi/index. html

https://www.netdata.cloud/
https://prometheus.io/
https://docs.nvidia.com/deploy/nvidia-smi/index.html

Fakelnf: Selective Deep Neural Network Inference for Latency and Energy-Aware Model Serving Pipelines

=1

30
25
21

T

— = 1T =

Default-10 Fakelnf-10 Default-50 FakeInf-50

Error (%)
=
G

=
o

o w

Figure 7: MAPE with Frames Aggregated per Second

Figure 6 shows the Mean Absolute Percentage Error (MAPE) of
each method against the baseline. We observe the best results by
FakeInf-10 with a MAPE of 5.13%, followed by FakelInf-50 with a
MAPE of 6.19%. In contrast, the fixed sampling methods illustrate
the worst results with Default-10 and Default-50 introducing a
MAPE of 8.31% and 14.64%, respectively. Interestingly, even with
Smax = 50, FakeInf'still achieves better precision than Default-10, as
it exploits the low-volatility phases in the stream and understands
that during high-volatility phases, adaptivity must roll back and
execute inference at a per-frame instance.

To further investigate and eliminate (potential) synchronization
factors between video frames, we also compute the mean car-count
at a per second aggregation. Figure 7 depicts boxplots for the MAPE
of the different methods. The results clearly show that FakeInf
outperforms the fixed sampling methods. Specifically, FakeInf-10
achieves a median error of 1.74% and a mean error of 2.52%, while
FakelInf-50 attains a median error of 2.05% and a mean error of
3.16%. In contrast, the Default-10 configuration exhibits a median
error of 4.01% and a mean error of 5.56%. The poorest performance
is observed for Default-50, with a median error of 9.96% and a mean
error of 13.27%. We note that the aggregated results yield lower
errors compared to the per-frame evaluation, as the aggregation
process smooths out frame-level fluctuations and mitigates the
influence of outliers on the overall car-count metric.

5.2 Resource Utilization Comparison

Next, we evaluate the runtime performance of the use-case w/o the
integration of Fakelnf. For these runs, we utilize our monitoring to
capture inference latency, GPU usage, and energy consumption, as
described in Sec. 4.4. In turn data volume reduction, which consid-
ers the network impact in kbps when disseminating the inference
output from the MEC near the user equipment devices (IP cameras)
to the use-case remote services (e.g., traffic dashboard).

Figure 8 presents four box plots comparing the baseline UC exe-
cution against the UC embedding Fakelnf for the four performance
indicators of interest. The first plot demonstrates that FakeInf re-
duces the mean latency by 59% compared to the baseline use case.
In particular, the mean application latency is reduced from 53ms to
22ms. The second plot highlights a 66% reduction in GPU utilization,
showcasing Fakelnf’s efficiency in minimizing computational de-
mand. The third plot measures the energy consumption attributed
to the edge server’s GPU for DL model inference, where FakeInf
achieves a 72% reduction. In terms of operating power levels this
translates to a reduction from 61 W/s to 44 W/s. Finally, the fourth
plot presents data volume reduction in terms of network traffic,
revealing a 71% reduction, indicating significantly lower bandwidth
usage (from 25.40 kbps to only 7.27 kbps). These results highlight

UCC ’25, December 01-04, 2025, France, France

Fakelnf’s ability to optimize system performance by reducing com-
putational overhead, energy consumption, and network load while
maintaining both responsiveness and accuracy of the DL models.

5.3 Model Pruning vs FakelInf Performance

In this set of experiments, we compare FakeInf against model com-
pression via pruning. For a realistic comparison, we opt to run the
use-case with Fakelnf against the use-case adopting lighter model
variants of YOLOVS, and specifically, the medium (25.9M params)
and nano (3.2M params) variants. For fairness, Fakelnf, YOLOv8-M,
YOLOwvS-N, and YOLOvS-X were all executed on the same video feed
to measure differences in accuracy between the default execution
and the under-comparison methods. We note that all plots compare
the under-evaluation method (e.g., FakeInf) against the baseline
(YOLOvV8-X) and for visualization clarity, the boxplots that follow
(Fig.11) present only the first 15 minutes of execution.

Figure 9 illustrates the mean per-frame error of each method,
while Figure 10 presents boxplots of the errors aggregated over the
car-count metric per second. FakeInf achieves a mean per-frame
error of 6% and a mean per-second error of 2%. Interestingly, FakeInf
significantly outperforms both YOLOv8-M and YOLOv8-N, which
exhibit mean errors of approximately 13%/18% (grouped/frame-by-
frame) and 33%/34% (grouped/frame-by-frame), respectively.

Nonetheless, one can advocate that although the lighter models
do not achieve better accuracy than Fakelnf, they may still exhibit a
smaller computational footprint on the underlying MEC. To assess
this assumption, we generate a series of boxplots (Fig. 11) illustrat-
ing the resource utilization of each approach. We should note here
that we excluded network utilization because the results would be
the same as the previous section (Sec. 5.2 and Fig. 8).

Interestingly, FakeInf not only demonstrates superior perfor-
mance in terms of accuracy, but also imposes lower computational
overhead and achieves lower application latency compared to the
other methods. In particular, FakeInf outperforms the YOLOv8-N
model (the lightest YOLO variant), achieving an average per-frame
inference latency of 2ms compared to 4ms, alongside similar GPU
utilization (5.4%-5.5%) and comparable power needs (41.5W for
YOLOV8-N, 44.4W for Fakelnf). The performance gap widens when
comparing FakelInf to YOLOv8-M, with Fakelnf delivering improve-
ments of 56%, 30%, and 57% in latency, utilization, and energy con-
sumption, respectively. To this end, FakeInf delivers a better balance
of accuracy, latency, and resource efficiency, outperforming lighter
YOLOvV8 variants and demonstrating the effectiveness of targeted
inference optimization over conventional model downsizing.

5.4 Scalability Evaluation

Next, we evaluate the scalability of the proposed use case when
streaming multiple camera feeds over the 5G network and process-
ing them on the MEC. These experiments examine: (i) if there are
any bottlenecks (i.e., 5G network, MEC) in our infrastructure; and
(ii) if FakeInf’s algorithmic optimizations can enable efficiencies
while increasing the number of camera feeds that must be pro-
cessed. For the experiments, a script was coded so that the number
of video streams fed to the MEC is increased by 1 every 10min until
a max of 8 camera feeds is achieved. The input data rate received
by the MEC is depicted in Figure 12. We denote that 8 camera

UCC ’25, December 01-04, 2025, France, France

Trihinas et al.

Latency GPU Utilization GPU Power Needs Network Traffic
0.06 o [+ e o
40 o 8
0.05 g 120 g 100
= 8
[=
0.04 o 30 S 100 § 80
35 & o &
5 0.03 £ . g 60
S g 20 8 & 80 2
“ 0.02 o & £ 40
10 = 60
0.01 ! 20 zl
0.00 0 8 40 0
Default Fakelnf Default Fakelnf Default Fakelnf Default Fakelnf

Figure 8: Utilization Metrics Comparison of the Default Use-Case vs the Use-Case with FakeInf Integration

FakelInf

YOLOvE8-M

YOLOvVE8-N

Figure 9: FakelInf vs Model Pruning Error Evaluation

70

S
< a0
=
230
20
10
0 =

Fakelnf

YOLOvE-M

YOLOvS-N

Figure 10: FakeInf vs Model Pruning per Second Aggregation

Latency

GPU Power Needs

GPU Utilization

° 20.0 ©
0.025 120
17.5
0.020 15.0 2 100
“ S1s g
2 0015 . £ A
s ° b
g g o goo o H
0010 & 75 £
] g
50 2 60] §
0.005 %
2.5 ° .i.
0.000 b 40
YOLOV8-M Fakelnf YOLOV8-M Fakelnf YOLOV8-M Fakelnf
Latency GPU Utilization GPU Power Needs
0.030) 20.0 120
0.025 ° 17.5
o
15.0 2 100
0.020 v 8
5 °© 212.5 K]
2 £ v
g oois ° . § 100 g 80 :
n o o n +]
0.010 B g 75 g
5.0 ‘%‘ = 60 f
0.005 H
2.5 N
0.000 b 40

YOLOvS-N Fakeinf

YOLOVS-N Fakelnf

YOLOV8-N FakeInf

Figure 11: Utilization Metrics from Different Approaches

feeds is the max number available at the Iasi road intersection. In
addition to the Default and Fakelnf-enabled execution, we also
evaluate a scenario where the use-case employs model swapping.
For this we adopt the open-source ModelSwapper [24] where the
DNN model variant is swapped-on-the-fly depending on the MEC
resource availability and the desired latency set by the traffic op-
erators. For consideration, the YOLOv8 N, M, and X variants were
employed. Upon consultation with the use-case traffic operators,
the max acceptable inference latency was set to 75ms. Beyond this,

35
5 /N‘n”u't".l'uﬂ.f
a
30 |
2 ﬂ,w.w‘w.n'
= faran
L o
E 20 ./IM !
[oy
g 15 fh
f ‘I’-\‘WM
5 10 e
|
§ s
0 500 1000 1500 2000 2500
Timestamp

Figure 12: Multi-Camera Data Rate Received by MEC

the DL model serving pipeline is deemed unstable as the video
feed received by the dashboard is “pixeled” and the inference error
increases significantly.

Figures 13, 14, and 15 depict our key findings. The light gray line
depicts results for the baseline use case setting, the dark gray line
depicts the results for use-case with model swapping, and the black
line depicts the results for the FakeInf optimization. Starting with
Figure 13, the focus is given on latency where the max tolerable
inference latency was set at 75ms (horizontal red dot line). With
this QoS threshold in mind, one can immediately observe that the
DL pipeline for the default use case reaches peak computational
utilization (Figure 14), and experiences significant delays translating
in negative QoS (Figure 13) after the introduction of the fourth video
feed. In this case, the system becomes unstable, and the MEC can no
longer handle the workload, rendering the results useless for traffic
operators. In contrast, FakeInf and model swapping can support
the requested 8 video camera feeds while remaining within the
requested QoS threshold. Figures 13 and 14 show that the FakeInf
optimization remains below 10ms for up to 5 video feeds and then
gradually increases. However, it always stays below the threshold,
as it effectively balances computational resource availability and
inference accuracy. In turn, the Adaptive Model Selection approach
can also support the 8 video feeds but presents significantly higher
latency and computational footprint than Fakelnf.

Moreover, Figure 15 depicts the power drawn by the GPU for
the experiment series. From this, one can observe that the base-
line starts with lower power consumption but gradually increases,
reaching approx. 160W. The black line, corresponding to FakeInf
optimization, maintains consistently lower power consumption
compared to the other two approaches, staying mostly between
60W and 120W. Finally, the dark gray line, which represents model

Fakelnf: Selective Deep Neural Network Inference for Latency and Energy-Aware Model Serving Pipelines

Default
Adaptive Model Selection
0.10 { = Fakelnf Framework

=== Threshaold {0 075) ’!

o 10000 20000 30000 40000 50000 60000 70000
Intervals

Figure 13: Latency per Frame of Scalability Evaluation

012

Latency (s)
s = 5 5
s = o o
ST -]

=
=1
s

100

|

GPU Utilization

Default
Adaptive Model Selection
= Fakelnf Framework

o 10000 20000 30000 40000 50000 60000 70000
Intervals

Figure 14: GPU Utilization of Scalability Evaluation

Adaptive Model Selection
— Fakelnf Framework

o 10000 20000 30000 40000 50000 60000 70000
Intervals

Figure 15: GPU Power of Scalability Evaluation

selection, follows a similar trend to the baseline but exhibits more
fluctuations, including noticeable drops when the Nano variant is
selected. We reiterate that execution with the Nano variant yields
a 33% accuracy hit (section 5.3).

Finally, from the depicted results, it is evident that the 5G net-
work provided by Orange Romania can satisfactorily support the 8
HD video feeds without introducing network delays. However, the
MEC server struggles to support inference QoS requirements when
scaling beyond 4 video feeds (no optimizations). This bottleneck
is alleviated and the use-case can reach the 8 video feeds when
Fakelnf is integrated with the use-case.

Hence, our findings illustrate that data-driven intelligent services
like Fakelnf can substantially enhance both network performance and
sustainability, setting a strong foundation for future network genera-
tions (beyond 5G). Moreover, despite the high data rates provided
by current 5G infrastructures, modern DL pipelines often fail to fully
exploit them due to computational bottlenecks of edge computing
nodes. Smart support services such as Fakelnf, can help overcome
these limitations by enhancing the performance of EC devices and
unlocking the full potential of 5G networks.

6 Related Work

Several techniques have been proposed to reduce latency for EdgeAl
inference on DL model serving pipelines and, by extension, achieve
energy savings. A broad category of techniques relies on model
compression [10]. For example, model pruning algorithms compress
the feature vector and execution time by removing less important
or redundant parameters [26]. In turn, model quantization algo-
rithms lower parameter precision (e.g., FP32 to INT8) to reduce the
DNN memory footprint and computational overhead [17]. While
model compression can succeed in reducing the inference delay,

UCC ’25, December 01-04, 2025, France, France

the gains come with a fixed cost and permanent accuracy loss even
when only a modest relaxation would suffice. To overcome these
limitations, early exiting can be introduced to DNNs. For example,
Teerapittayanon et al. introduce BranchyNet [22] and Bateni et
al. [4] ApNet, where auxiliary heads are added to the DNN for
inference requests to exit the network if the classification is confi-
dent (BranchyNet) or when a latency budget is exceeded (ApNet).
In contrast, FakeInf does not require modifications to the DNN
and exploits efficiency savings when the algorithm is “confident”
maintaining the original accuracy whenever volatility rises.

Another set of recent techniques suggest performing model se-
lection at run time. For example, distillation transfers knowledge
from a large “teacher” model to a compact “student” model that can
be invoked when resources are scarce [14]. JellyFish [15] is a hot
swapping technique where the algorithm selects a subset from a
number of available DL models to run a batch of inference tasks to
achieve high accuracy guarantees through the ensemble of these
models. In turn, Trihinas et al. [24], introduce a low-cost classifi-
cation algorithm that explores meaningful trade-offs between the
computational overhead of the underlying edge node and energy
consumption to select the model variant that will be used for a
batch of inference tasks while maintaining user-desired classifica-
tion accuracy. Fakelnf differs from these techniques by working
with a single model and thus, avoiding GPU memory pressure due
to many resident variants; and its decision is per frame, driven by
output dynamics rather than coarse resource metrics.

Recent video stream analysis techniques suggest employing a
heuristic that skips the computation for the current frame when it
closely resembles the previous one, allowing the DL model serving
system to reuse previously inferred results. Ying et al. [30] suggest
computing inter-frame similarity through motion vectors that cap-
ture pixel-level changes between consecutive frames. If the vector
differences do not exceed a predefined threshold, their framework
bypasses DL inference and reuses the previously cached output.
Taranco et al. propose a similar scheme, denoted as SLTA [21]. How-
ever, their approach requires access to the surveillance cameras
for the library to signal the downstream DL backend to lower the
input data rate. Finally, Reducto [12] achieves low latency for video
analytics by embracing offline training to determine discriminative
features for a given set of queries and perform frame correlation
filtering during inference. These methods rely on pixel-level sim-
ilarity, which may miss semantic stability (e.g., the car count can
remain steady while pixel differences fluctuate due to lighting)
limiting skip windows and in turn, latency and energy savings.

7 Conclusion

In this paper, we introduced Fakelnf, a lightweight and adaptive
framework for optimizing the runtime inference of DL models on
streaming data at the network edge. Fakelnf intelligently moni-
tors the volatility of analytic insights and adjusts the inference
frequency to balance computational efficiency with application-
level QoS. Through extensive experiments on a real-world smart
traffic management use case, deployed on a 5G-enabled edge infras-
tructure, we demonstrated that Fakelnf can substantially reduce
application latency, network traffic, computational overhead, and
energy consumption, while also maintaining high accuracy levels.

UCC ’25, December 01-04, 2025, France, France

Furthermore, our scalability evaluation showed that Fakelnf en-
ables the processing of significantly more concurrent video streams
without exceeding latency thresholds, thus overcoming the typical
bottlenecks faced by MEC servers in such deployments. By em-
powering edge-based Al pipelines to operate more efficiently and
sustainably, Fakelnf contributes a practical step towards unlocking
the full potential of next-generation intelligent networks, including
beyond-5G and 6G architectures.

Our future directions are twofold. First, we intend to extend
the algorithmic mechanisms of the decision-making process to ex-
tract and allow the use of seasonal data from the video stream so
that traffic patterns can be used to increase the skip window with
greater confidence. Second, we intend to explore the generalization
of Fakelnf to support a wider range of DL model types and applica-
tion domains, as well as its integration with multi-tier cloud-edge
orchestration strategies to further improve the resource efficiency
of EdgeAl services.

Acknowledgments

This work is part of AdaptoFlow that has indirectly received fund-
ing from the European Union’s Horizon Europe research and in-
novation action programme, via the TRIALSNET Open Call issued
and executed under the TrialsNet project (Grant Agreement no.
101017141), respectively. In addition, certain language refinements
were performed at the sentence level using ChatGPT. All original
content and ideas are solely those of the authors.

References

[1] Jari Arkko, Michael Bjérn, Wolfgang John, Johan Sjéberg, Mattias Wildeman,
Gustav Wikstrém, and Peter Ohlén. 2024. Beyond Bit-Pipes—New Opportunities
on the 6G Platform. Ericsson Technology Review 2024, 6 (2024), 2-8.

[2] Lisa Asciak, Justicia Kyeremeh, Xichun Luo, Asimina Kazakidi, Patricia Connolly,
Frederic Picard, Kevin O’Neill, Sotirios A Tsaftaris, Grant D Stewart, and Wenmiao
Shu. 2025. Digital twin assisted surgery, concept, opportunities, and challenges.
npj Digital Medicine 8, 1 (2025), 32.

[3] Akram Aslani and Mostafa Ghobaei-Arani. 2025. Machine learning inference
serving models in serverless computing: a survey. Computing 107, 1 (2025), 47.

[4] Soroush Bateni and Cong Liu. 2018. ApNet: Approximation-Aware Real-Time
Neural Network. In 2018 IEEE Real-Time Systems Symposium (RTSS). 67-79. doi:10.
1109/RTSS.2018.00017

[5] Nicolae Cleju, Carlos Pascal, Ciprian-Romeo Comsa, Constantin-Florin Caruntu,
Tulian B. Ciocoiu, Cristian Patachia-Sultanoiu, and Razvan Mihai. 2024. Towards
Efficient Urban Mobility: Deployment Strategies for Smart Traffic Management
and Crowd Monitoring Systems. In 2024 Joint European Conference on Networks
and Communications & 6G Summit (EuCNC/6G Summit). 997-1002. doi:10.1109/
EuCNC/6GSummit60053.2024.10597063

[6] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In 14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17). USENIX Association, Boston, MA, 613-627.

[7] Radosvet Desislavov, Fernando Martinez-Plumed, and José Hernandez-Orallo.
2023. Trends in Al inference energy consumption: Beyond the performance-vs-
parameter laws of deep learning. Sustainable Computing: Informatics and Systems
38 (2023), 100857. doi:10.1016/j.suscom.2023.100857

[8] Tiago M. Fernandez-Carames and Paula Fraga-Lamas. 2024. Forging the Industrial
Metaverse for Industry 5.0: Where Extended Reality, IIoT, Opportunistic Edge
Computing, and Digital Twins Meet. IEEE Access 12 (2024), 95778-95819. doi:10.
1109/ACCESS.2024.3422109

[9] Zhen Gao, Lei Yang, and Yu Dai. 2024. Large-Scale Cooperative Task Offload-
ing and Resource Allocation in Heterogeneous MEC Systems via Multiagent
Reinforcement Learning. IEEE Internet of Things Journal 11, 2 (2024), 2303-2321.

[10] Jangho Kim, Simyung Chang, and Nojun Kwak. 2021. PQK: Model Compression
via Pruning, Quantization, and Knowledge Distillation. CoRR abs/2106.14681
(2021). arXiv:2106.14681 https://arxiv.org/abs/2106.14681

Khaled B. Letaief, Wei Chen, Yuanming Shi, Jun Zhang, and Ying-Jun Angela
Zhang. 2019. The Roadmap to 6G: AI Empowered Wireless Networks. IEEE
Communications Magazine 57, 8 (2019), 84-90. doi:10.1109/MCOM.2019.1900271

(11

[12

(13

[14

[15

[16

(17

oy
&

[19

[20

[21

[22

[23

[24

[25

[26

[27]

[28

[29

%
=

[31

Trihinas et al.

Yuangi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu,
and Ravi Netravali. 2020. Reducto: On-Camera Filtering for Resource-Efficient
Real-Time Video Analytics (SIGCOMM °20). Association for Computing Machin-
ery, New York, NY, USA, 359-376. doi:10.1145/3387514.3405874

Nestor Maslej, Loredana Fattorini, Raymond Perrault, Yolanda Gil, Vanessa Parli,
Njenga Kariuki, Emily Capstick, Anka Reuel, Erik Brynjolfsson, John Etchemendy,
Katrina Ligett, Terah Lyons, James Manyika, Juan Carlos Niebles, Yoav Shoham,
Russell Wald, Tobi Walsh, Armin Hamrah, Lapo Santarlasci, Julia Betts Lotufo,
Alexandra Rome, Andrew Shi, and Sukrut Oak. 2025. Artificial Intelligence Index
Report 2025. arXiv:2504.07139 [cs.AI] https://arxiv.org/abs/2504.07139
Yoshitomo Matsubara, Ruihan Yang, Marco Levorato, and Stephan Mandt. 2022.
Supervised Compression for Resource-Constrained Edge Computing Systems.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV). 2685-2695.

Vinod Nigade, Pablo Bauszat, Henri Bal, and Lin Wang. 2022. Jellyfish: Timely
Inference Serving for Dynamic Edge Networks. In 2022 IEEE Real-Time Systems
Symposium (RTSS). 277-290. doi:10.1109/RTSS55097.2022.00032

David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean. 2021. Carbon
Emissions and Large Neural Network Training. CoRR abs/2104.10350 (2021).
Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, Jack Montgomery, Bert Maher, Satish Nadathur, Jakob Olesen, Jongsoo
Park, Artem Rakhov, Misha Smelyanskiy, and Man Wang. 2019. Glow: Graph
Lowering Compiler Techniques for Neural Networks. arXiv:1805.00907 [cs.PL]
Veronika Samborska. 2025. Scaling up: how increasing inputs has
made artificial intelligence more capable. Our World in Data (2025).
https://ourworldindata.org/scaling-up-ai.

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU
cluster engine for accelerating DNN-based video analysis. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA,
322-337. doi:10.1145/3341301.3359658

Moysis Symeonides, Demetris Trihinas, George Pallis, Marios D Dikaiakos, Con-
stantinos Psomas, and Ioannis Krikidis. 2022. 5g-slicer: An emulator for mobile
iot applications deployed over 5g network slices. In 2022 IEEE/ACM Seventh In-
ternational Conference on Internet-of-Things Design and Implementation (IoTDI).
IEEE, 115-127.

Radl Taranco, José-Maria Arnau, and Antonio Gonzalez. 2023. & LTA: De-
coupling Camera Sampling from Processing to Avoid Redundant Computa-
tions in the Vision Pipeline. In Proceedings of the 56th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Toronto, ON, Canada) (MICRO
’23). Association for Computing Machinery, New York, NY, USA, 1029-1043.
doi:10.1145/3613424.3614261

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. 2017. BranchyNet: Fast
Inference via Early Exiting from Deep Neural Networks. CoRR abs/1709.01686
(2017). arXiv:1709.01686 http://arxiv.org/abs/1709.01686

Demetris Trihinas, Panagiotis Michael, and Moysis Symeonides. 2024. Evaluating
DL Model Scaling Trade-Offs During Inference via an Empirical Benchmark
Analysis. Future Internet 16, 12 (2024), 468.

Demetris Trihinas, Panagiotis Michael, and Moysis Symeonides. 2024. Towards
Low-Cost and Energy-Aware Inference for EdgeAl Services via Model Swapping.
In 2024 IEEE International Conference on Cloud Engineering (IC2E). 168-177. doi:10.
1109/IC2E61754.2024.00026

Demetris Trihinas, George Pallis, and Marios D Dikaiakos. 2018. Low-cost
adaptive monitoring techniques for the internet of things. IEEE Transactions on
Services Computing 14, 2 (2018), 487-501.

Hanrui Wang, Zhekai Zhang, and Song Han. 2020. SpAtten: Efficient Sparse Atten-
tion Architecture with Cascade Token and Head Pruning. CoRR abs/2012.09852
(2020). arXiv:2012.09852 https://arxiv.org/abs/2012.09852

B. P. Welford. 1962. Note on a Method for Calculating Corrected Sums of Squares
and Products. Technometrics 4, 3 (1962), 419-420.

Minrui Xu, Hongyang Du, Dusit Niyato, Jiawen Kang, Zehui Xiong, Shiwen Mao,
Zhu Han, Abbas Jamalipour, Dong In Kim, Xuemin Shen, et al. 2024. Unleashing
the power of edge-cloud generative Al in mobile networks: A survey of AIGC
services. IEEE Communications Surveys & Tutorials 26, 2 (2024), 1127-1170.
Vinay Yadhav, Andrew Williams, Ondrej Smid, Jimmy Kjillman, Raihan Ul Islam,
Joacim Halén, and Wolfgang John. 2024. Benefits of Dynamic Computational
Offloading for Mobile Devices.. In CLOSER. 265-276.

Ziyu Ying, Shulin Zhao, Haibo Zhang, Cyan Subhra Mishra, Sandeepa Bhuyan,
Mahmut T. Kandemir, Anand Sivasubramaniam, and Chita R. Das. 2022. Exploit-
ing Frame Similarity for Efficient Inference on Edge Devices. In 2022 IEEE 42nd
International Conference on Distributed Computing Systems (ICDCS). 1073-1084.
Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge
Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing.
Proc. IEEE 107, 8 (2019), 1738-1762.

https://doi.org/10.1109/RTSS.2018.00017
https://doi.org/10.1109/RTSS.2018.00017
https://doi.org/10.1109/EuCNC/6GSummit60053.2024.10597063
https://doi.org/10.1109/EuCNC/6GSummit60053.2024.10597063
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1109/ACCESS.2024.3422109
https://doi.org/10.1109/ACCESS.2024.3422109
https://arxiv.org/abs/2106.14681
https://arxiv.org/abs/2106.14681
https://doi.org/10.1109/MCOM.2019.1900271
https://doi.org/10.1145/3387514.3405874
https://arxiv.org/abs/2504.07139
https://arxiv.org/abs/2504.07139
https://doi.org/10.1109/RTSS55097.2022.00032
https://arxiv.org/abs/1805.00907
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3613424.3614261
https://arxiv.org/abs/1709.01686
http://arxiv.org/abs/1709.01686
https://doi.org/10.1109/IC2E61754.2024.00026
https://doi.org/10.1109/IC2E61754.2024.00026
https://arxiv.org/abs/2012.09852
https://arxiv.org/abs/2012.09852

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Model Serving
	2.2 Edge-AI Traffic Management Use-Case
	2.3 The ``Fake Inference'' Approach

	3 The FakeInf Framework
	3.1 Overview
	3.2 Algorithmic Process

	4 Use Case and FakeInf Implementation
	4.1 Hardware Infrastructure
	4.2 Use-Case Software Implementation
	4.3 Integration with the FakeInf Framework
	4.4 Monitoring Stack

	5 Evaluation
	5.1 Accuracy Evaluation
	5.2 Resource Utilization Comparison
	5.3 Model Pruning vs FakeInf Performance
	5.4 Scalability Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

