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Abstract 
This paper presents a comparison study of popular cluster- 

ing and mapping heuristics which are used to map task-flow 
graphs to message-passing multiprocessors. To this end, we 
use task-graphs which are representative of important scien- 
tific algorithms running on data-sets of practical interest. The 
annotation which assigns weights to nodes and edges of the 
task-graphs is realistic It reflects current trends in processor, 
communication channel, and message-passing interface technol- 
ogy and takes into consideration hardware characteristics of 
state-of-the-art multiprocessors. Our experiments show that 
applying realistic models for task-graph annotation Bffects the 
effectivmess and functionality of clustering and mapping tech- 
niques. Therefore, new heuristics are necessary that will take 
into account more practical models of communication costs. We 
present modifications to existing clustering and mapping algo- 
rithms which improve their efficiency and running-time for the 
practical models adopted 

1 Introduction 
In this paper we present a comparison study of 

popular clustering and mapping heuristics which are 
used to  map task-flow graphs to message-passing mul- 
tiprocessors. To this end, we use task-graphs which 
are representative of two important algorithms for 
the N-Body problem, running on data-sets of prac- 
tical interest. The annotation which assigns weights 
to the nodes and the edges of the task-graphs is real- 
istic. It reflects current trends in processor, commu- 
nication channel, and message-passing interface tech- 
nology and takes into consideration hardware char- 
acteristics of state-of-the-art multiprocessors. Our 
experiments show that  applying realistic models for 
task-graph annotation affects the effectiveness and 
functionality of clustering and mapping techniques. 
Therefore, new heuristics are necessary that will take 
into account more practical models of communication 
costs. We present modifications to existing cluster- 
ing and mapping algorithms which improve their ef- 
ficiency and running-time with the practical models 
adopted. 

Task-graphs are derived with FAST, a software 
system that we built to evaluate the execution of 
parallel scientific algorithms on message-passing sys- 

tems [5, 81. These graphs are a special case of the 
data dependence graphs (DDG’s) that are used fre- 
quently as abstract representations of parallel pro- 
grams [lo, 17, 20, 22, 19, 181.. The nodes of DDG’s 
correspond to single program instructions or sets of 
instructions, depending on the DDG-granularity de- 
sired. Their arcs correspond to  dependences, which 
enforce a partial order of execution on program state- 
ments. 

A key issue that arises in systems employing data 
dependence graphs is the execution of these graphs 
on the processors of a parallel computer. There are 
many approaches for addressing this problem, most of 
which can be classified as static or dynamic.  Static 
schemes apply in systems where the DDG’s can be 
constructed before program execution. In that case, 
the user-program or the compiler can take advantage 
of information pertinent to  the DDG for making deci- 
sions that will guide the assignment of graph-nodes to 
different processors, and the scheduling of tasks within 
each processor [l, 221. I t  is not always possible, how- 
ever, to create the DDG’s before the program execu- 
tion. In that case, execution of DDG’s is accomplished 
with dynamic schemes that  are enforced through the 
operating system or the hardware. 

In this paper we examine algorithms used in static 
schemes. Such algorithms assume for simplicity that 
the processors of a parallel system form a clique inter- 
connection topology (fully-connected network). Map- 
ping is usually accomplished in two phases [ lo ,  20, 191: 

1. The clusterzng or znternalrzatzon phase, seeks to 
minimize communication overhead and improve 
parallel time by deciding that certain tasks must 
go together on the same processor, even if other 
processors are available. 

2.  The mappang or processor asszgnment phase, 
maps the groups of tasks formed by the clustering 
phase to the processors of the parallel architecture 
at hand. At the same time, it seeks to preserve a 
small parallel time. 

In conjunction with clustering and mapping, it is nec- 
essary to perform schedulzng of tasks that are assigned 
to the same cluster. 
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The organization of this paper is as follows: in the 
next section we give the graph-theoretical framework 
that we use to  implement and evaluate clustering and 
mapping heuristics. In Sections 3 and 4 we describe 
the clustering and mapping heuristics studied and sug- 
gest modifications that will improve their effective- 
ness and performance, given the practical annotation 
model adopted. Section 5 presents simulation results 
and comparison-studies, and Section 6 gives our con- 
clusions. 

2 Modeling parallel executions 
The task-graphs used in our study are called 

parallel-execution graphs and follow the Macro- 
Dataflow model of computation [19]. In this model, 
each task starts executing upon receipt of all incom- 
ing messages and continues to completion without in- 
terruption. Upon completion, it forwards its results 
to  adjacent tasks. Each node in a parallel-execution 
graph is assigned the computation time of the corre- 
sponding task and each edge is assigned the latency of 
the respective message. A parallel-execution graph is 
an abstraction of the parallel execution, which enables 
us to  estimate parallel time and available parallelism 
easily, and study the mapping of the parallel compu- 
tation onto some realistic message-passing multipro- 
cessor. Parallel-execution graphs are formally defined 
as follows: 

where: 

1. V is the set of tasks. 

2 .  Epe = E U Esch is the set of edges. Edges 
in E correspond to  explicit messages, and rep- 
resent program-determined dependences between 
tasks. EdCh is a set of edges introduced in the 
graph to  define the order of execution among 
tasks mapped on the same processor and with no 
program-determined dependences between them. 

3. proc: A mapping from the set of task nodes V to 
the set of processors P :  V v E V, proc(v) gives 
the processor in P that executes task v. 

4. T ( v ) ,  v E V is the time it takes processor proc(w) 
to  perform v’s computations. 

5 .  D ( e ) ,  e = ( u , v )  E E is the weight assigned to  
edge e.  D(e)  denotes the time-interval between 
the time that task U finishes its execution and 
the time that task v gains access to  the data car- 
ried by edge e.  If U and v are mapped onto dif- 
ferent processors, D ( e )  is equivalent to the inter- 
val between the time when proc(u) has finished 
executing task U ,  and the time when message e 
has been loaded into the buffers of the destina- 
tion processor’s proc(v) network interface. For a 
single-hop message, it is: D ( e )  = Ide,ay(e) + 
S o v ( e )  + W ( e ) / B  + L n g e s t i o n ( e )  + Ro,(e) where: 
tde loy(e)  is the delay between the time the send- 
ing processor issues the Send instruction initiat- 
ing message e ,  and the time that this processor 
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Figure 1: Blocking vs. Non-blocking Send’s. 

starts loading the message body to the buffers of 
its network interface. Sou(e) is the time it takes 
the sending processor to load its network inter- 
face’s output buffers with the contents of mes- 
sage e and with control information (setup cost). 

e )  is the number of bytes carried by message wL 5 ,  is the bandwidth of the communication links 
(in bytes per second), t c o n g e a ~ i o n ( ~  is the time e 
spends waiting in busy queues o the intercon- 
nection network, and Ro,(e)  is the time it takes 
a message to be loaded in the input buffers of 
the receiving processor’s network interface. Ad- 
ditionally, we use 6(e )  to  denote the time it takes 
the message to propagate through the communi- 
cation channels and then to  be loaded into the 
input buffers of its destination’s network inter- 
face. For one-hop messages this is equal to : 
W ( e ) / B  + t eonges t ion(e )  + %,(e). 

On the parallel-execution graph we can now define the 
Parallel Time as the weight of its critical path, i.e, 
of the path with the largest sum of node and edge 
weights. 

Message-Passing Interface Primitives 
Point-to-point communications in parallel systems 

are implemented with Send and Receive primitives is- 
sued by parallel tasks. These primitives can be charac- 
terized as blockin or non-blocking, and as synchronous 
or asynchronous [4]. Such characterizations determine 
the point in time when a communication primitive re- 
turns control to the task that called it. Also, they 
define the semantics of communication, and affect its 
performance. In the Macro-Dataflow model of com- 
putation edges in E represent pairs of Send and Re- 
ceive primitives. Send’s can be either blocking or 
non-blocking, and synchronous or asynchronous. Re- 
ceive’s must be blocking because of the definition of 
Macro-Dataflow. According to  the non-blocking com- 
munication paradigm, messages are dispatched simul- 
taneously at  the end of the execution of a task. In 
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Figure 2: Scheduling edges. The bold arrows denote 
the sequential paths of execution in the clusters. 

contrast , according to  the blocking paradigm, mes- 
sages are transmitted serially from tasks with no over- 
lap between the loading of a buffer and the subse- 
quent message-dispatches or computation (see Figure 
1) .  Therefore, the choice of message-passing interface 
primitive affects the annotation of task-graph edges 
and, hence, the clustering and mapping steps taken. 

3 Clustering 
Clustering specifies the sequential units of compu- 

tation in a parallel program by mapping tasks to  clus- 
ters. A cluster is a set of tasks that execute sequen- 
tially on the same processor. The principle goal of 
clustering is to achieve the minimum parallel time for 
a given task graph on a clique architecture, with as 
many processors as tasks (“abundant” clique). If com- 
munication overhead were zero, the trivial solution to 
clustering would assign each task to a different pro- 
cessor of an “abundant” clique. In the realistic case, 
however, a parallel execution that assigns every node 
of a task-graph to  a different processor of an “abun- 
dant” clique might not achieve minimum completion 
time because of communication delays and overhead. 

Formally, clustering is the problem of partition- 
ing the nodes of a parallel-execution graph G,, into 
clusters, and deriving the clustered parallel-execution 
graph with the shortest parallel time among all pos- 
sible clustered graphs GSe mapped on “abundant” 
cliques. I t  has been proven that finding the optimal 
clustering of a directed acyclic graph that follows the 
MacreDataflow model of computation is NP-hard in 
the strong sense, if the cost function is the minimiza- 
tion of parallel time of the graph on an “abundant” 
clique architecture [19]. A number of heuristics have 
been developed to  cope with the clustering problem 
[9, 14, 19, 211. 

Clustering heuristics applied to  G,, .will update its 
proc information to  reflect the formation of clusters. 
If, for instance, nodes U and v are clustered within the 
same cluster L ,  then proc(u) = proc(v)  = L .  Fur- 
thermore, clustering alters E ,  the set of edges of Gpe, 
by introducing new “scheduling” edges that express 
the scheduling priorities among nodes belonging to 
the same cluster. For example, in Figure 2,  cluster 
L merges with node D. If task D is scheduled to  run 
after task A and before task B ,  the edges ( A ,  0) and 
( D ,  B )  are inserted in the clustered graph to determine 

Figure 3: Edge weights (blocking Send’s) .  

the new schedule. 
Finally, clustering heuristics change the weights as- 

signed to  the edges of GPe. For example, we consider 
a node U E V that sends n + 1 messages to nodes w1, 
wz,. . . ,wk,  v, wk+l,. . . ,  w,, in that order (see Figure 
3). Assume that proc(wi) # p r o c ( w j )  # proc(u) # 
p r o c ( v ) ,  V i  # j .  If the clustering heuristic assigns 
nodes U and v to  the same cluster, the weights of the 
outgoing edges U, wl),. . . , ( U ,  wk) of U will remain the 
same. The weig 6 t of ( U ,  TI) will be changed from: 

to: 
n 

see Figure 3). The weights of edges 

D C ( U , W i )  = D ( U , W j )  - So , (U ,TI ) ,  i = I C +  1 , .  . . , n .  

These formulas correspond to the case where the 
message-passing interface of the “abundant” clique 
provides a blocking Send communication primitive. 
Most clustering heuristics, however, have been de- 
signed with the assumption that ,  after clustering, 
D‘(u,v) will be equal to  zero and D “ ( u , w ~ )  will be 
the same as D(u,  wj). 

4 Clustering Heuristics 
The clustering heuristics examined here perform 

a number of refinement steps on the input parallel- 
execution graph. Each step performs a refinement on 
the output of the previous clustering step by merg- 
ing two clusters, and scheduling their tasks within the 
newly formed clusters. In the initial parallel-execution 

[U, wk+l),. . . , ( U ,  w,) will be reduced to 
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graph, each task-node is a cluster by itself. The heuris- 
tics complete and report a final clustering when an 
end-condition is satisfied. 

We focus on edge-zeroing heuristics with no back- 
tracking. These algorithms proceed by merging con- 
nected nodes of the parallel-execution graph. Assign- 
ing two connected nodes to the same cluster eliminates 
the message that  corresponds to the edge connecting 
them. After clustering, the message will be carried out 
through local memory Write’s and Read’s at the mem- 
ory of the processor that  executes the cluster. There 
is no backtracking, that  is, once a cluster has been 
formed at one step of the heuristic, it cannot be split 
at a later step. 

Various algorithms belonging to this class of c lus  
tering methods can be characterized with respect to: 

1. The method for choosing which edge to  eliminate. 

2. The end-condition of the heuristic. 

3. The scheduling heuristic employed when merging 
two clusters into a sequential thread of execution. 

The choice of scheduling heuristic is orthogonal to the 
method for zeroing edges and to  the end-condition. 
Here we give concise presentations of a number of clus- 
tering heuristics. A comprehensive discussion on clus- 
tering can be found in [ll]. 
4.1 Sarkar’s Clustering Algorithm 

graph in a number of steps described below [19]: 
Sarkar’s heuristic clusters a parallel-execution 

1.  Sort the edges e E E of the graph in descending 
order of their weights D ( e ) .  

2. Merge the two clusters that include the head and 
tail node of the edge with the greatest weight, if 
this change does not increase parallel time. 

3. Repeat step 2 until all edges are scanned 

It is not difficult to see that the complexity of 
Sarkar’s heuristic is O(lEl . (IVl + IEl ). This re- 

Therefore, we also implemented a variation of Sarkar’s 
method that sorts the edges in descending order of 
their weights and examines only a percentage of them, 
starting from the one with the largest weight. 
4.2 Kim and Browne’s Algorithm 

proach to  clustering [14]: 

sults in very high execution times for 1 arge graphs. 

Kim and Browne’s method takes a different ap- 

1. 

2. 

Mark all edges in the parallel-execution graph as 
unexamined. 

Find the critical path in the graph com- 
posed of unexamined edges only. This is 
the path with the longest cumulative weight 
in the graph. The cumulative weight of a 
path (u1 2121, (212, w), . . . (~n -1 ,  un) is equal to 

( T ( u i )  + D(Ui u i + l ) )  + T(un ). 

3. 

4. 

Merge in the same cluster the nodes belonging to 
the critical path and mark all edges incident to 
nodes of the critical path as examined. 

Apply steps 2 and 3 to the subgraphs formed by 
nodes and unexamined edges, until all edges are 
examined. 

The complexity of Kim and Browne’s heuristic is 
O(lV1 . (IVl + IEI)), since there are at most IVl con- 
nected components in a graph and it takes O(lVl+lEl) 
time to find the critical path in each component. 
4.3 Greedy Dominant Sequence Algo- 

The clustering algorithm by Yang and Gerasoulis 
[21], identifies a t  every step the critical path of the 
graph, named the Dominant Seqvence (OS). The 
heuristic chooses one edge belonging to the DS and 
merges the clusters of its adjacent nodes, if this deci- 
sion leads to a shorter parallel time. After the clus- 
tering, the algorithm computes the new DS. The com- 

lexity of Yang and Gerasoulis’ heuristic is O((lE1 + 
eVl) . loglvl) .  We implemented a simpler, greedy ver- 
sion of this algorithm, which we call Greedy Dominant 
Sequence (GDS) algorithm: 

1. Identify the Dominant Sequence of the graph. 

2. Choose the edge of the Dominant Sequence whose 
elimination results in the largest decrease of par- 
allel time. Merge the clusters of the nodes adja- 
cent to the selected edge. 

3. Repeat Steps 1 and 2 until there is no edge in the 
DS whose elimination can decrease parallel time. 

Identifying the Dominant Sequence requires a depth- 
first search of the graph which takes O(lEl+lVl) time. 
Choosing which edge of the Dominant Sequence to 
eliminate takes time proportional to  the number of 
edges in the Dominant Sequence, that is, O(lV1). The 
algorithm will perform O( I VI) clusterings and, there- 
fore, the total com lexity of the Greedy Dominant Se- 
quence is O ( I V I  . (bl+ [ V I ) ) .  
4.4 Greedy-Linear Algorithm 

Kim and Browne’s heuristic improves parallel time 
in the case where a simple scheme is used to assign 
weights to edges, and “elimination” of an edge results 
in zeroing its weight. Under the more realistic scheme 
employed in our study, however, Kim and Browne’s 
heuristic may result in clustered graphs with larger 
parallel times than the unclustered ones. With this 
consideration in mind, we modified this heuristic and 
introduced a version that we call Greedy-Linear. This 
algorithm is called “linear” because, as in Kim and 
Browne’s method, it outputs clusters that are linear 
chains of task-nodes. The heuristic works as follows: 

1. Mark all edges in the parallel-execution graph as 

2.  Find the critical path in the graph composed of 

rithm 

unexamined. 

unexamined edges only. 
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3. 

4. 

For every edge of the critical path, cluster its ad- 
jacent nodes only if this does not result in a larger 
parallel time. Mark all the edges incident to nodes 
of the critical path as examined. 

Apply steps 2 and 3 to the subgraphs formed by 
nodes and unexamined edges, until all edges are 
examined. 

5.2 SNC Heuristic 
Sarkar’s mapping algorithm is slow because of the 

large constants involved in its complexity. We imple- 
mented a modified version to improve its running time, 
although without achieving a better asymptotic com- 
plexity. This version follows exactly the same steps 
as the original heuristic. It does not, however, take 
into consideration communication costs when calcu- 
lating parallel time. .We call i t  SNC, that is, Sarkar’s 

Testing whether the clustering of an edge results in a 
larger parallel time can be accomplished in constant 
time, without having to recompute the parallel time of 
the graph. Therefore, the complexity of this algorithm 
is O(lVl .  (IVl + IEI)) as well. 

5 Mapping 
Clustering produces a clustered parallel-execution 

graph with a number of clusters usually much larger 
than the number of available processors of the target 
architecture. Optimal Mapping is the problem of find- 
ing an assignment of clusters to processors, leading 
to a parallel time shorter than the times derived by 
all other assignments, for the given number of proces- 
sors [IS]. The Optimal Mapping problem of a clus- 
tered directed acyclic graph has been proven to be 
NP-complete [19]. In this section, we present a num- 
ber of heuristics used to map parallel-execution graphs 
following the MacreDataflow model, to a given set of 
processors. 

5.1 Sarkar’s Algorithm 
Sarkar’s heuristic is a modified version of the Pri- 

ority List Scheduling algorithm [20]. It uses a list, 
pblock, of size P ,  where P is the number of available 
processors. pblock entries are initially empty. When 
the algorithm completes, pblock [i] contains the tasks 
assigned to processor i ,  for i = 1,. . . , P .  The algo- 
rithm creates a priority list of task-nodes, according 
to a topological-sort ordering of the graph. Then, at  
each step, i t  processes the next node T in the priority 
list. If T has not already been assigned to a processor, 
the algorithm performs the following tasks: 

1 . Choose a processor i ,  such that,  the merging of 
clusters p r o c , ( T )  and pblock[i]  will result in a 
parallel time shorter than the one derived from 
the merging of p r o c ( T )  with any other cluster 
p b l o c q j ] .  

2. Merge clusters proc ,  and pblock[ i ] ,  and assign 
the result to p6lock[i \TI 

3. Assign all task-nodes of cluster proc [T]  to proces- 
sor i. 

4. Reduce the number of clusters by one. 

The algorithm completes when the total number of 
clusters in the graph becomes equal to P.  It is not 
difficult to see that its computational complexity is 
O(P Iprocl . (]VI + IEI)), where ]procl is the initial 
number of clusters. 

algo&hm with No Communication Costs.  
5.3 Yang and Gerasoulis’ Algorithm 

In [22], Yang and Gerasoulis introduced a fast 
heuristic for mapping a clustered graph to the pro- 
cessors of a parallel system. This algorithm seeks to 
optimize the load-balancing of the available proces- 
sors. It  is comprised of four steps: 

1 .  Estimate the average processing time, A ,  of the 
processors, as the sum of the processing times of 
all clusters, over the number P of processors. 

2. Sort the clusters in an increasing order of their 
loads. 

3. Assign each cluster with a processing time higher 
than the average A to a different processor. 

4. Use a wrap mapping for the remaining clusters, 
that is, number these clusters from 1 to their total 
number; then, assign each of them on the proces- 
sor whose number is equal to the number of the 
cluster modulo P .  

The complexity of this method is O( IV( .log IVI + IEI). 
5.4 Priority List Scheduling Heuristics 

We also implemented two versions of Priority List 
Scheduling [3], which apply directly to non-clustered 
graphs. In Priority List Scheduling, each task is as- 
signed a priority. The tasks are inserted in a priority 
list according to the descending order of their prior- 
ities. Subsequently, they are assigned to processors 
following the order defined by the priority list. Be- 
fore presenting the scheduling heuristics implemented, 
we introduce some useful notation. Given a directed- 
acyclic graph G = G(V, E ) ,  we denote by E the set of 
“input” nodes, that is, nodes in V with no incoming 
edges. With V,, we denote the set of “exit” nodes, 
that is, nodes in V with no outgoing edges. We de- 
fine ptime(u) as the total weight of the longest path 
from node U to the nodes of V,. Similarly, we define 
stime(u) as the total weight of the longest path, among 
all possible paths going from the nodes of V, to U ,  not 
including T(u) .  Finally, we define the level of a node 
in the graph as follows: fewel (u)  = max,en(v,,u) Ilnll, 
where II(E, U) represents the set of all possible paths 
in G from the nodes in V, to node U ,  and llxll repre- 
sents the number of edges in path T ,  that is, the length 
of 7F. 

The first heuristic orders nodes of the graph ac- 
cording to the Topological Sorl/Earliest Task First 
( T S / E T F )  approach [15]. It performs a topological 
sort of the parallel-execution graph and assigns level 
values to its nodes. If node U precedes node w in 
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the topological-sort order, that is, l eve l (u )  < l e v e l ( v ) ,  
then U will be assigned a hi her priority than U. If, 
however, level(u) equals level fv), then TS/ETF assigns 
a higher priority to  the node with the smaller st ime 
value. The relative priorities of nodes with equal level 
and d i m e  values, is assigned by TS/ETF randomly. 

The second heuristic implements the CP/MISF 
principle [13]. It uses topological sort and critical- 
path information to construct a priority list of nodes. 
Nodes are introduced in the priority list according to 
the descending order of their pt ime values. For nodes 
with the same pt ime value, CP/MISF assigns a higher 
priority to the ones with the larger number of imme- 
diate successors, that  is, with the larger number of 
outgoing edges. 

After constructing the priority lists, the heuristics 
traverse them and map each task to the processor that 
will start executing i t  a t  the earliest possible time. 

6 Scheduling 
The scheduling problem arises during the merg- 

ing of two clusters, when their tasks have to be or- 
dered according to  some sequential order of execu- 
tion. A scheduling algorithm should specify an or- 
dering of tasks that achieves the shortest parallel 
time and, a t  the same time, complies to existing 
precedence constraints. For general directed-acyclic 
parallel-execution graphs, the problem of finding the 
optimal task sequences that minimize overall parallel 
time is NP-complete [20]. Consequently, for our ex- 
periments, we implemented the CP/MISF scheduling 
heuristic, which is based on the principles of Priority 
List Scheduling. The results do not change when using 
TS/ETF. 

7 Experimental Results 
In this section we present experimental results us- 

ing the clustering, scheduling, and mapping presented 
in the previous sections. We give data derived when 
using these heuristics on parallel-execution graphs rep- 
resentative of two algorithms solving the N-Body prob- 
lem. The first graph has 1445 task-nodes and 12,860 
message-edges. I t  corresponds to the parallel compu- 
tation of one time-step of the Fast Multipole Method 
(FMM) on 1000 bodies [12, 61. The second graph has 
2532 task-nodes and 12,918 message-edges. It repre- 
sents the parallel computation of one time-step of the 
Barnes-Hut (BH) algorithm on 1000 bodies [2,6]. Fur- 
ther experiments, performed on task-graphs represent- 
ing other instances of the two algorithms, corroborate 
the results presented in the following sections. 

The clustering algorithms used the CP/MISF 
heuristic for scheduling. For the annotation of the 
task-graphs we used values representative of Intel’s 
iPSCl860 multiprocessor, which has very high So, 
and R,, values [7]. 
7.1 Clustering 

Figure 4 shows the ratio of the parallel time of the 
clustered parallel-execution graphs over the parallel 
time of the unclustered graphs, for a number of differ- 
ent clustering techniques and for two message-passing 
interface paradigms (blocking or non-blocking Send’s): 
Sarkar’s method; Greedy-Linear algorithm (GL);  Kim 

I--- ---- -----* 
I--- - 

Figure 4: Effects of clustering to  parallel time. 

and Browne’s method (K&B);  running Greedy-Linear 
on the graph and then applying Sarkar’s heuristic for 
only the 20% of the edges (GL&S-20!%), and Greedy 
Dominant Sequence approach. In most cases, the clus- 
tering heuristics do not improve the parallel time of 
the clustered graph with respect to the parallel time of 
the unclustered graph. Only when applying GDS and 
Sarkar’s heuristics to  the task-graph of the Barnes-Hut 
algorithm, do we get improvements larger than 20% 
and 50% (respectively). This remark holds for both 
message-passing interface paradigms adopted (block- 
ing or non-blocking Send’s). 

The diagrams in Figure 5 present the numbers 
of the clusters produced by the different clustering 
heuristics. This is an interesting metric, since the per- 
formance of mapping algorithms depends on the num- 
ber of clusters generated by the clustering heuristics 
which precede mapping; clearly, mapping is faster for 
clustered graphs with fewer clusters. As expected, ap- 
plying Sarkar’s heuristic results in the smallest number 
of tasks. The reason is that the algorithm considers 
all the edges in the graph for “zeroing.” 

In contrast, the Greedy Dominant Sequence 
method results in a number of clusters almost identical 
to  the initial number of tasks. GDS eliminates only 
edges belonging to the Dominant Sequence (that is, 
the critical path of the parallel-execution graph) and, 
thus, clusters few of the tasks belonging to the DS. Un- 
der the realistic model used here, however, clustering 
these tasks does not necessarily alter the DS. Hence, 
the algorithm can complete without further clustering. 

The Greedy-Linear (GL)  and Kim&Browne’s 
heuristics do not check the Dominant Sequence only. 
Instead, after performing clustering on the DS, they 
proceed by clustering tasks belonging to the critical 
paths of the subgraphs formed when deleting edges 
adjacent to  the initial DS. The GL method results 
in a larger number of clusters in the case of block- 
ing Send’s than in the case of non-blocking Send’s. 
This is due to the fact that “zeroing” an edge on the 
critical path of a parallel-execution graph, will always 
result in a smaller cumulative weight for this path, if 
the message-passing interface paradigm provides for 
non-blocking Send’s. This is not always the case with 
blocking Send’s and, thus, there are fewer opportu- 
nities for the clustering heuristic to  perform effective 
clusterings. 
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Figure 6: Execution times of clustering heuristics. 

Kim and Browne's method performs the cluster- 
ing of linear chains of tasks, even if such an alter- 
ation results in a larger parallel time. Therefore, 
the cluster-numbers reported for this algorithm are 
relatively small, both for the blocking and the non- 
blocking paradigms. 

Finally, GL&S-ZO% reports cluster numbers which 
are proportional to  the numbers reported by Sarkar's 
algorithm. This is expected since, in its first pass, the 
method applies GI, to  the graph. This does not de- 
crease the number of clusters substantially. The sec- 
ond pass applies Sarkar's heuristic, but only for the 
20% heaviest edges. 

In Figure 6 ,  we present a plot of execution-time 
measurements for the various clustering heuristics ex- 
amined. The execution times represent measurements 
on FAST simulations of the FMM running on a DEC- 
Alpha workstation. As expected, Sarkar's algorithm 
is substantially slower than the other heuristics. 
7.2 Mapping 

To compare the mapping algorithms implemented 
in FAST, we applied them to the clustered parallel- 
execution graphs derived from the examples of the 
previous section, and mapped the clusters t o  16 pro- 
cessors connected in a clique topology. Experiments 
with different numbers of processors resulted in simi- 
lar conclusions. In Figure 7, we present speedups for 
twelve different combinations of clustering and map- 
ping algorithms. The speedup is defined as the ratio of 
the sequential time of the task-graph, that is, the sum 
of the weights of all the tasks, over its parallel-time. 
It represents a measure of the efficiency of the par- 
allel computation described by the parallel-execution 
graph. Therefore, it can be used as a metric for the 

Figure 7: Speedups for different clustering-mapping 
strategies (16 processors). 

Mapping Algorithm Notation 1 Clustering Algorithm I 
I Sarkar's sarkar's s/s I 

effectiveness of the mapping techniques applied. 
Table 1 explains the notation used in the plot of 

Figure 7. In addition to  the results corresponding to 
combinations of clustering and mapping heuristics, we 
present speedups obtained with an ad-hoc approach 
for partitioning and parallelizing the problems un- 
der consideration. From Figure 7,  we can see that 
the various combinations of heuristics perform differ- 
ently for the two task-graphs examined. This differ- 
ence is due to the different characteristics of the task- 
graphs: the computation-to-communication ratio (av- 
erage task execution time over the average message de- 
lay) is much higher in the task-graph that corresponds 
to  the Fast Multipole Method than in the task-graph 
corresponding to  the Barnes-Hut algorithm. 

In the case of the task-graph representing a parallel 
execution of an instance of the Fast Multipole Method 
(Figure 7, left) the measured speedup depends primar- 
ily on the choice of the mapping heuristic. More specif- 
ically, Sarkar's mapping method achieves the best re- 
sults regardless of the clustering heuristic adopted. 
The SNCapproach performs almost as well as Sarkar's 
method, although it disregards communication costs 
in the parallel-execution graph. Therefore, the reason 
that the measured speedups are lower than the ideal 
linear speedups is not communication overhead but 
lack of load-balancing and the data-dependences in the 
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task-graph that result in almost sequential portions of 
the execution. The Yang and Gerasoulis mapping al- 
gorithm reports smaller speedups, which are on the 
average less than 15% below the speedups reported 
by Sarkar’s method. Using SNC on the parallel- 
execution graph of our example, with no prior cluster- 
ing, gives speedups comparable to those derived when 
running SNCon the clustered graph. The Priority List 
Scheduling algorithms with no clustering (CP/MISF 
and TS/ETF) report the lowest speedups. 

In the case of the task-graph representing an in- 
stance of the modified Barnes-Hut algorithm, our ex- 
periments show that the speedups depend more on the 
choice of the clustering than on the mapping heuris- 
tic. More specifically, speedups derived from mapping 
the graph clustered with Sarkar’s heuristic, are higher 
than speedups derived from mapping graphs clustered 
with other heuristics. (see Figure 7, right). Moreover, 
Priority List Scheduling with no clustering performs 
poorly. 

Another observation that can be drawn from Fig- 
ure 7, is that the speedups reported from simulations 
of the non-blocking Sendlblocking Receive primitives 
are 20% to 50% higher than the speedups reported 
for blocking Send/blocking Receive primitives. This is 
expected since the non-blocking Send’s incur smaller 
communication overhead to the processors of a par- 
allel system. The speedup improvement is higher in 
the case of Barnes-Hut task-graphs than in the case of 
Fast Multipole Method graphs, since the former have 
a lower computation-to-communication ratio. 

In Figure 8, we present a diagram of execution time 
measurements for the various mapping algorithms. 
These measurements were extracted from FAST sim- 
ulations of the Fast Multipole Method. Sarkar’s algo- 
rithm is the slowest. SNC, which performs the map- 
ping without taking into consideration communication 
delays and overhead, has a moderate execution time. 
Therefore, the high running-time of Sarkar’s approach 
is partly a result of the overhead for estimating com- 
munication costs while testing the different mapping 
choices at each step of the method. For the cases 
where Sarkar’s clustering algorithm was used before 
the mapping, the running-time of the mapping was 
smaller. This is because Sarkar’s clustering heuristic 
results in low numbers of clusters. 

8 Conclusions 
In this paper we examined popular clustering and 

mapping heuristics used for assigning task-graphs 
to message-passing multiprocessors. We used task- 
graphs representative of the two most popular algo- 
rithms for the N-Body problem and employed a realis- 
tic scheme for annotating these graphs and accurately 
modeling task-processing time and communication de- 
lay. 

Our experiments reveal interesting aspects of the 
effectiveness of clustering heuristics. We conclude 
that for graphs of coarsegranularity (Fast Multipole 
Method graphs), with a high ratio of average task  ex- 
ecution time to average message delay, clustering does 
not improve the parallel time of the graph substan- 
tially. 

MappinglScheduling Heuristics 

Figure 8: Execution times for the Mapping heuristics. 

In contrast, for graphs with average task execu- 
tion time comparable to the average message delay 
(Barnes-Hut graphs), clustering does improve the par- 
allel time of the task-graph. The greatest improve- 
ment is achieved with Sarkar’s algorithm (more than 
50% for both blocking and non-blocking Send’s). The 
next biggest improvement is achieved with the GDS 
algorithm (more than 20%). In contrast, Kim and 
Browne’s method results in an increase of parallel time 
after clustering, in the case of blocking Send’s; this is 
a side-effect of the realistic scheme we employed to an- 
notate the task-graph. The GL heuristic introduced 
in this paper, which is based on a principle similar 
to that of Kim and Browne’s, takes into consideration 
the realistic modeling of computation and communica- 
tion costs and improves parallel time by approximately 
10%. 

All the clustering heuristics examined, except GDS, 
result in numbers of clusters which are significantly 
smaller than the number of tasks; partitioning a task- 
graph into a small number of clusters expedites the 
mapping process that follows clustering. 

Data from mapping experiments show that,  in the 
case of coarse-grain task-graphs, all mapping heuris- 
tics that are used in conjunction with some clustering 
heuristic have similar effectiveness, regardless of the 
clustering heuristic used. For fine-grain task-graphs, 
however, the mapping heuristics examined report very 
low speedups, except in the case where the task- 
graphs were previously clustered with Sarkar’s cluster- 
ing method. Finally, it is clear that combining clus- 
tering and mapping heuristics gives consistently bet- 
ter results than one-phase mapping algorithms, such 
as Priority List Scheduling. 

Our experiments reveal a critical tradeoff between 
the effectiveness and the running time of clustering 
and mapping heuristics. Best results, in terms of num- 
ber of clusters and speedup, are achieved when us- 
ing Sarkar’s clustering and mapping heuristics. Their 
running time, however, is prohibitively high for task- 
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graphs of medium to lar e size. Another remark is 
that communication overlead does not play an im- 
portant role in the mapping of clustered task-graphs 
to processors - the mapping heuristic SNC does not 
take into consideration communication costs. Never- 
theless, it reports speedup figures which are close to 
the ones reported by Sarkar‘s heuristic, which does 
account for communication overhead. 

We conclude that, mapping task-graphs to 
message-passing multiprocessors effectively and effi- 
ciently requires a clustering heuristic that will min- 
imize communication overhead and decrease parallel 
time under the practical communication-cost model 
presented earlier, and for task-graphs of various gran- 
ularities. Such a clustering heuristic can then be com- 
bined with a fast, “communication-cost insensitive” 
method, such as SNC, for mapping the clustered task- 
graphs to the limited number of available processors, 
and achieving load-balancing of the processors. 
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