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Abstract

Caching Web objects has become a common practice 
towards improving content delivery and users’ servicing. 
A Web caching framework is characterized by its cache 
replacement policy, which identifies the objects (i.e. the 
elements on a Web page, which include text, graphics, 
and scripts) to be replaced in a cache upon a request 
arrival.  In this paper, we present a cache replacement 
algorithm (so-called FRES-CAR), which identifies the 
objects that should be evicted by considering together 
three important criteria: object’s frequency, recency and 
size. Experimentation under synthetic workloads has 
shown that FRES-CAR achieves higher hit rates when 
compared with the most popular and existing algorithms. 

1. Introduction

The explosive growth of the Web has imposed a heavy 

demand on networking resources over which Web servers 

and users often experience long and unpredictable delays 

(particularly) when retrieving Web pages. In a certain 

extend, the Web has become a “victim” of its own 

success. Increasing bandwidth would solve problems 

temporarily since it would ease the users to create more 

and more resource-hungry applications, bunching again 

the network.  

To overcome the above limitations, Web caching has 

proven to be a valuable tool [7]. Typically, Web caching 

aims to improve the performance of Web-based systems 

by keeping and reusing Web objects that are likely to be 

used often in the near future. In this context, one of the 

most critical research issues in Web caching involve 

cache replacement as well as cache consistency and 

validation. Whenever the cache is full and the proxy 

needs to cache a new object, it has to decide which object 

to evict from the cache to accommodate the new object. 

The policy used for the eviction decision is referred to as 

the replacement policy.  

In order to evaluate a cache replacement policy, a 

common practice is to measure two performance rates, the 

hit rate (HR - is the percentage of the number of requests 

that are served by the cache over the total number of 

requests) and the byte hit rate (BHR - is the percentage of 

the number of bytes that correspond to the requests served 

by the cache over the total number of bytes requested). A 

high HR indicates an effective cache replacement policy 

and defines an increased user servicing, reducing the 

average latency. On the other hand, a high BHR improves 

the network performance (i.e., bandwidth savings, low 

congestion etc.).  

Usually, the cache past status is used to predict the 

future cache replacement actions. Each object is defined 

by a “value”, the so-called cache utility value (CUV), for 

each object, where the objects with the smallest utility 

outcome will be the first candidates to evict from the 

cache. Earlier cache replacement policies have been 

categorized in: 

Recency-based: The object’s CUV is determined by 

the time of the last reference to that object. LRU 

(Least Recently Used) is the most indicative 

algorithm of this category and has been applied in 

several proxy caching servers, such as Squid. 

Size-based: The object’s CUV is determined by its 

size. The most indicative algorithm of this category is 

the SIZE [10] which considers object’s size as the 

basic parameter (large objects are evicted first), 

assuming that users are less likely to re-access large 

objects because of the high access delay associated 

with such documents.

Frequency-based: The object’s CUV is determined 

by the number of requests to that object. Frequency-

based approaches are variations of the LFU (Least 

Frequently Used) algorithm and they use the 

popularity of objects for the replacement decision.  

Function-based: The object’s CUV is determined by 

a cost function, which involves multiple parameters 

or weights related to a performance metric (such as 
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HR, BHR). The most indicative algorithm of this 

category is the Greedy-Dual Size [3]. 

Most systems use a recency-based policy (i.e. LRU), 

due to its simplicity, but the disadvantage of such policies 

is that they do not take into account the size of the objects 

and the latency time in the server transmission, resulting 

to high BHR. The size-based policies usually result in 

higher HR since they maintain smaller objects in cache 

(i.e., more objects reside in cache). The frequency-based 

policies keep in cache the most popular objects 

independently on their size and on their recency status i.e. 

they avoid keeping in cache recently accessed objects but 

with a low frequency (such as the so-called “one-timer” 

objects1). Finally, the function-based policies use 

complex formulas and usually suffer from heavy 

parameterization and high overhead. 

1.1. Paper’s Contribution 

Here, we propose a cache replacement policy that will 

integrate the ideas proposed in frequency, recency and 

size based approaches. More specifically, the proposed 

algorithm aims at addressing the following issues: 

tune recency with frequency by replacing (recently 

accessed) one-timers with more frequently requested 

objects. This practice overcomes the disadvantage of 

a “pure” recency-based policy which might favor 

maintaining one-timer objects in cache.  

tackle the cache fragmentation problem by 

partitioning the cache into groups of exponentially 

increasing sizes. This practice will keep a “balanced” 

cache segmentation and will avoid overflowing the 

cache with large-scale objects.

provide a “cautious” cache replacement that will 

deal with all the main deficiencies of the 

replacements that independently handle either 

recency (one-timers are not tracked), or frequency 

(size is not considered), or size (access delays due to 

large object capacities are not considered).  

According to the authors knowledge, although several 

cache replacements approaches (e.g. [3,4,5]) have been 

proposed in the past, few efforts (such as in [5]) have 

been devoted in integrating the above characteristics 

together. The proposed algorithm is compared with the 

most popular and widely-used algorithms and based on 

extensive (synthetic) trace-driven simulations (generated 

by the ProWGen tool [2]) is shown to result in beneficial 

HR and BHR. 

The rest of the paper is organized as follows. Section 2 

formulates the problem, whereas the proposed 

replacement algorithm, the so-called FRES-CAR, is 

                                                          
1One-timers are the objects which are requested only once, regardless of 

the duration of the access log studied. 

described in Section 3. Section 4 has the results of the 

experimentation and the algorithm’s performance 

evaluation which are commented and discussed. Finally, 

we conclude the paper and give some future work plans in 

Section 5. 

2. Problem Formulation 

A cache replacement problem involves some 

parameters that are used to monitor the cached objects 

replacement process. In practice, each cache replacement 

policy defines a CUV assigned to each cached object such 

that the object with the appropriate CUV will be evicted 

from cache. In this paper, the Web cache content is 

modeled by a linked list in which each node is associated 

with a particular cached object. Therefore, the number of 

nodes is bounded by the number of cached objects. Here, 

we consider each cached object to be identified by its 

corresponding stored object filename, along with a 

number of related attributes (e.g. object’s size, time of 

object’s request etc.). The basic goal of the proposed 

cache replacement problem is to maintain in cache the 

objects with the largest CUV in order to achieve high HR. 

The total cache size is computed in bytes and is of 

fixed size (S). The total set of objects that are stored in 

the cache is not fixed, but it depends on which objects are 

cached each time (denoted by Ni). Let oi be the Web 

object which is requested at the i-th request. If oi is in the 

cache, then we have a cache hit. Otherwise, we have a 

cache miss and the object oi should be inserted into the 

cache. In case that there is not enough space in cache, 

there is a need to evict one or more objects from the cache 

in order to free sufficient space.

For each cached object x we keep track of: the object 

id (ox), the object size (sx) in order to handle the size
balance, the number of accesses since the last time object 

x was accessed (histx) in order to support recency, and the 

node id (
k

xr ) for the object ox which is updated according 

to its frequency.

It is important that the cache replacement process 

should guarantee enough space for the incoming objects. 

In this context, there are two actions related with the 

replacement process (i.e. either the object will remain 

stored in cache or it will be evicted from cache). We 

define a function to identify the action that should be 

taken for each cached object: 

Definition 1: The function that will determine whether a 

cached object’s will remain in cache or not is defined by 

0

1
)(xf

Problem Statement: Suppose that Ni is the number of 

objects in cache at the i-th request and S is the total 

if object x will be evicted from cache 

otherwise 
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capacity of the cache area, the cache replacement problem 

is to  

maximize  
iN

x
xCUVxf

1

))(1(  subject to 

Sxfs
iN

x
x ))(1(

1

3. The FRES-CAR Replacement Policy 

The proposed cache replacement algorithm, is called 

FRES-CAR (Frequency REcency and Size CAche

Replacement), and it involves two phases:  

1) Phase 1- Cache Segmentation: partition the cache into 

a number of segments which are in accordance to the 

objects’ sizes. Therefore the objects are stored in cache 

into certain variable-sized segments.  

2)Phase 2- Cache replacement: each of the defined 

cache-segments apply a cache replacement policy. 

3.1.  Cache Segmentation 

The motivation for a cache-segmentation is the 

flexibility that it offers to manage the cached objects, 

since the cache segments may grow and shrink 

deliberately (according to request streams) and also at 

each segment a separate replacement policy may be 

applied. In this paper we segment the cache in a way 

inspired from the work presented in [1]. Next, we propose 

a hierarchical pyramid-like cache segmentation (such as 

PSS (Pyramidal Selection Scheme) [1]) depending on 

objects’ sizes such that objects are placed in the 

appropriate segment according to theirs sizes. More 

specifically, we assume that the k-th cache segment will 

host all objects that have sizes ranging between 2k-1 and

2k-1 bytes. Thus, the total number of bytes that can be 

stored in a cache is given by S= 12M
 (M is the total 

number of cache segments, i.e. the number of cache 

segments is )1(log2 SM ).

3.2.   The Cache Replacement Algorithm 

A typical replacement approach involves updating the 

cache content under a certain criterion or over a 

considered time period. Here, we consider that a cache 

replacement is occurred when there is a need for cache 

disk space. Specifically, whenever an object is requested 

and it is a cache hit, we update the place where the 

requested object is stored in the list (namely, we re-order 

the list by moving the requested object towards to the tail 

of the list). On the other hand, in case of a cache miss, the 

requested object is located to the appropriate cache 

segment with respect to its size. Thus, regarding to the 

amount of free cache space, we have two options. If there 

is enough free space (available space xsC ) to 

accommodate the object ox in the cache, then we locate 

the requested object to the appropriate cache segment. If 

not, we should make space by evicting from the cache one 

or more objects. Then, we locate the requested object to 

the appropriate cache segment. 

3.2.1. Locating Objects within Segments. If there is 

enough space in order to cache the requested object, we 

assign it to the appropriate cache segment with respect to 

its size. Considering that we have M segments the total 

cache size S is computed by the sum of the sizes of all 

cache segments. In particular 

M

k
kSS

1

, where Sk is 

the size of cache segment k

Each cache segment is modeled by a linked list where 

each node of the list is associated with a particular cached 

object.  The list structure used for each cache segment is 

organized with respect to the three major characteristics: 

frequency, recency and size. This is realized by holding in 

the tail of the list the most frequently, recently and 

(moderate)-sized objects. Given that the cache segment k 

stores
k
iN  objects (

M

k

k
ii NN

1

) at the i-th request, we 

adopt a similar to [6] approach by considering a variable 

k ( 1
1

kk
iN

) for each cache segment k. In our 

case, the location of the objects is performed as follows: 

a. If the object is not in cache, then insert it at node 

b. If it is currently at node 
k

ir , move it to node 

The above process updates the location of objects 

within cache segments even when the object is already in 

cache such that we support a dynamic and adaptive cache. 

Therefore, frequently accessed objects will remain in 

(close to) the tail nodes.  

The locating objects process uses a linked list to 

maintain the order of the objects in the cache. Therefore, 

it has )log( k
i

k
i NNO complexity, since it needs to 

perform insertions in the list at arbitrary nodes. 

3.2.2. Free Space in Cache for Replacement. When the 

cache is full, the cache replacement policy should 

determine which objects should be purged from the cache 

in order to make room for the incoming objects. 

Typically, a function is needed in order to determine 

k
ik N

)( k
i

k
ik

k
i rNr
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which object should be evicted from the cache and in our 

case we use the following CUV:

Definition 2: Each object x in cache is characterized by 

its CUV which is evaluated by CUVx = 

xxhists

1
, where

sx  is the size of object x, and xhist  keeps the track of the 

number of accesses since the last time object x was 

accessed.

According to the above definition, it follows that the 

utility of each object in cache is lower for large-sized 

objects as well as for objects that have not been requested 

for a long time. Whenever we need to decide which 

object to eject from the cache, we compare the CUV of all 

objects residing at the head of each cache segment list. 

The object with the smallest CUV will be evicted from 

the span of the cache, and not necessarily from the cache 

segment where the incoming object is meant to be cached. 

This process is continued until to free the required space 

from the span of cache area in order to make room for the 

new object. Therefore, each time we have a cache action 

(add an object to a cache segment or delete an object from 

a cache segment), the cache segments are re-sized so that 

the condition 

M

k
kSS

1

 is always satisfied. The 

proposed FRES-CAR algorithm involves two phases: 

PHASE 1: Cache Segmentation 

Step 1.1: The number of cache segments is computed. 

Step 1.2: An object oi in a cache segment k is identified 

by its corresponding stored object filename (fi), its size 

(si), the number of accesses since the last access of object 

oi (histi), and the place (node-id) object oi is assigned in 

the list k (
k

ir ) . 

Step 1.3: We only cache the object’s oi of size (si) if there 

is cache free space. 

Step 1.4: Depending on the object’s oi size (si) we select 

an appropriate cache segment will be chosen. 

PHASE 2: Cache Update and Replacement 

Step 2.1: We search the resulted in Step 1.4 cache 

segment, which was previously selected, for the existence 

of object oi.

o In case of object oi being in the cache segment k, we 

use the cache location scheme (subsection 3.2.1) to 

update object’s oi place (
k

ir ) in the cache segment k. 

Step 2.2: In case the object oi has not been found in cache 

segment k and the free size in the whole cache area is 

greater than object’s oi size (si) we insert the object in the 

previously selected cache-segment k based on cache 

location scheme. 

Step 2.3: Otherwise, until the free size of the cache is 

enough for the object to be cached, we evict objects from 

the whole cache area (i.e., meaning from different cache 

segments and not just from the one where the object is 

meant to be cached) according to the following rules: 

o We compute the CUV for each of the objects in the 

heads of the linked-lists of the cache segments and 

we evict that with the smallest CUV. 

o Finally after making enough space for the new object 

to be cached, we insert it into the specific cache-

segment computed earlier by means of cache location 

scheme. 

In conclusion, it is being understood that the cache 

location scheme (subsection 3.2.1) is used to find the 

place (node id), in a specific cache segment (list), in 

which we will cache our newly requested object and in 

the appropriate change of its position in its parent cache 

segment in case of a cache hit. On the other hand, the 

logic of the cache segmentation is based on the choice of 

which object to evict in order to make space for a new 

request that will need to be cached. 

4. Experimentation – Results 

In our experiments, we use extensive (synthetic) trace-

driven simulations, which are generated by the ProWGen2

tool [2]. The motivation to use the ProWGen is that it 

incorporates five selected workload characteristics, which 

are deemed relevant to caching performance. Due to its 

flexibility, the ProWGen workload generator has been 

used in several earlier research efforts [4, 11]. 

Table 1. Input Parameters to ProWGen Tool 
Parameters Default Values Range 

Total requests 1,500,000 1,500,000 

Unique objects 30% 20%-40% 

One timers 70% 50%-80% 

Zipf slope 85% 50%-95% 

Pareto tail index 1.0 1.0 

Correspondence size-

popularity 

No correlation No correlation 

Temporal locality Dynamic Dynamic 

ProWGen traces capture the most important 

characteristics of Web proxy workloads that are most 

relevant to Web proxy cache performance [11]. The input 

parameters of ProWGen tool are summarized in Table 1. 

The choice of these input parameters’ values, as default 

values, was made in order to have a more realistic Web 

trace. These parameters are discussed in the next 

subsections.

We examined the performance of FRES-CAR against 

that of LRU, LFU, -LRU for variable-sized objects [6], 

HLRU [8], and PSS [1] under several workloads. Due to 

the lack of space we will present the most indicative of 

the obtained results. Before we experiment on the 

                                                          
2 The ProWGen is a synthetic workload generation tool for simulation 

evaluation of Web proxy caches and it is very flexible. 
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performance of these algorithms, we examine the 

behavior of -LRU for variable-sized objects as  varies 

from 1/ iN  to 1, and FRES-CAR, as k varies from 

1/
k
iN  to 1 (for each cache segment k). Furthermore, we 

should investigate the behavior of HLRU with respect of 

h value (h indicates the number of references for a certain 

Web object in a specific time period). The motivation for 

this evaluation is to use the values of , k and h that will 

result in better performance. After several experiments, 

we conclude that the highest HR was observed when 

=0.6 in case of -LRU for variable-sized objects, k=0.8

in case of FRES-CAR for each cache segment k, and h=6 

in case of HLRU. The experimentation is carried out by 

considering the percentage of one-timers, the skewness of 

the access patterns (zipf slope), and the percentage of 

unique objects. Then we evaluate the impact of the above 

parameters on each replacement policy for a specific 

cache size. The size of the cache is expressed in terms of 

the percentage of the total number of bytes of all objects 

in a Web log file. In our experiments, we consider that the 

default value of cache size is defined as the 1% of bytes 

of all objects in a Web log.  

4.1. One-Time Referencing 

Initially, we examine the sensitivity of the proposed 

caching policy to one-timer objects. As mentioned earlier, 

one-timers are defined as the objects which are requested 

only once, regardless of the duration of the access log 

studied. Indeed, there is not use to cache one-timers, since 

they are never accessed again. Thus, the cache 

replacement algorithms should distinguish such one-timer 

objects in order not to reduce the cache effectiveness. 

Authors in [11] studied various percentages for one-

timers and observed that as their percentages increase, the 

performance of cache replacement algorithms get a small 

improvement. As depicted from the Figure 1, we confirm 

this observation since the HR and BHR increase as the 

percentage of one-timer objects increase.  

Concerning the performance of FRES-CAR, as 

depicted from the Figure 1a, its HR is significantly higher 

than the recency-based and frequency-based policies 

(10% higher HR compared to the other examined 

policies). On the other hand, its BHR is moderately lower 

than that of the recency-based policies (Figure 1b). 

Therefore, we conclude that FRES-CAR algorithm can 

effectively distinguish and isolate one-timers. 

Figure 1.  HR and BHR vs. One-Timers Ratio 

Figure 2.  HR and BHR vs. Zipf Slope 

4.2. Zipf-like Popularity Distribution.  

A common characteristic in Web traces is the highly 

“uneven” distribution of references to files. As observed 

in the literature [2], Zipf’s law and power-law are quite 

common on proxies. Particularly, Zipf-law has been 

applied to model file popularity since Zipf’s law defines a 

power-law relationship between the popularity (P) of an 

object and its frequency (l). This relationship is 

formulated by P=c/l , where c is a constant and  is often 

close to 1. From the previous discussion follows that 

increased skewness means stronger temporal locality. 

Here, further experimentation was carried out in relation 

to the impact of the cache replacement policies on the 

zipf-like popularity distribution of objects. Thus, as 

depicted from the Figure 2, the recency-based policies are 

benefited from this skewness. Furthermore, we observe 

that the HR and BHR of all policies increase with 

increasing skewness. Regarding the performance of 

FRES-CAR, its HR achieves the highest performance 

comparing with all the other policies. On the other hand, 

we observed that its BHR is moderately lower than the 

recency-based policies at the slope value of 75% and 

higher. 
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4.3. Percentage of Unique Objects.

The third experiment studies the impact of the cache 

replacement policies on the percentage of unique objects 

that include in a Web log file. We observe that as the 

percentage of unique objects increase, the HR and BHR 

for all the algorithms decreases. Concerning the 

performance of FRES-CAR, Figure 3a depicts that it 

achieves a 10% to 14% higher HR comparing with the 

recency-based and frequency-based policies. Regarding 

its BHR, we observe that FRES-CAR has a quite similar 

performance if the percentage of unique documents is 

30% or smaller. 

Figure 3. HR and BHR vs. Unique Docs Ratio 

The most similar to FRES-CAR policies are the PSS 

and the -LRU for variable-sized objects policies. Table 2 

summarizes the performance of FRES-CAR with respect 

to the PSS and -LRU for variable-sized objects. 

Table 2. FRES-CAR vs. PSS and -LRU
FRES-CAR vs. PSS -LRU

Cache Size HR BHR HR BHR 

Large (1,5%) +0.21% -0.28% +8.90% -5.74% 

Medium (1%) +0.16% +0.26% +9.61% -3.55% 

Small (0,5%) -0.10% +0.25% +9.45% -0.90% 

Average +0.09% +0.07% +9.32% -3.40% 

Each table’s cell shows the FRES-CAR’s performance 

improvement taken over for a particular cache size.  Note 

that a plus sign (+) indicates better performance and a 

minus sign (-) indicates worse performance. From this 

table it follows that our proposed algorithm achieves a 9% 

higher HR comparing with the -LRU for variable-sized 

objects. However, FRES-CAR sacrifices 3.4% of BHR in 

order to have such a great improvement in HR. When 

compared with the PSS algorithm, it improves a small 

amount of both HR and BHR. The low variation in hit 

rate values, compared with the PSS, can be explained by 

the common practice of segment-based cache and by the 

same k values in all cache segments. A further 

experimentation with varying k is underway. 

5. Conclusion and Future Work 

Caching is a typical approach for improving the 

performance of Web-based systems. In this paper, we 

introduced the FRES-CAR replacement algorithm, where 

the decision about which objects should be evicted is 

determined by unifying three object’s factors: frequency, 

recency and size. Trace-driven simulation was employed 

to evaluate and comment on the performance of the 

proposed caching scheme. Results have indicated that 

FRES-CAR algorithm “sacrifices” a small amount (~3%) 

of BHR in order to improve significantly the HR. 

Further research should extend the proposed work in 

order to study the performance of FRES-CAR under real 

data traces and under different values of k per segment. 

Finally, research efforts are underway towards extending 

the proposed work under a Content Delivery Network 

(CDN) [9].  
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