
FRES-CAR: An Adaptive Cache Replacement Policy

George Pallis, Athena Vakali, Eythimis Sidiropoulos

Department of Informatics
Aristotle University of Thessaloniki,

54124, Thessaloniki, Greece
gpallis@ccf.auth.gr, {avakali, eythimis}@csd.auth.gr

Abstract

Caching Web objects has become a common practice
towards improving content delivery and users’ servicing.
A Web caching framework is characterized by its cache
replacement policy, which identifies the objects (i.e. the
elements on a Web page, which include text, graphics,
and scripts) to be replaced in a cache upon a request
arrival. In this paper, we present a cache replacement
algorithm (so-called FRES-CAR), which identifies the
objects that should be evicted by considering together
three important criteria: object’s frequency, recency and
size. Experimentation under synthetic workloads has
shown that FRES-CAR achieves higher hit rates when
compared with the most popular and existing algorithms.

1. Introduction

The explosive growth of the Web has imposed a heavy

demand on networking resources over which Web servers

and users often experience long and unpredictable delays

(particularly) when retrieving Web pages. In a certain

extend, the Web has become a “victim” of its own

success. Increasing bandwidth would solve problems

temporarily since it would ease the users to create more

and more resource-hungry applications, bunching again

the network.

To overcome the above limitations, Web caching has

proven to be a valuable tool [7]. Typically, Web caching

aims to improve the performance of Web-based systems

by keeping and reusing Web objects that are likely to be

used often in the near future. In this context, one of the

most critical research issues in Web caching involve

cache replacement as well as cache consistency and

validation. Whenever the cache is full and the proxy

needs to cache a new object, it has to decide which object

to evict from the cache to accommodate the new object.

The policy used for the eviction decision is referred to as

the replacement policy.

In order to evaluate a cache replacement policy, a

common practice is to measure two performance rates, the

hit rate (HR - is the percentage of the number of requests

that are served by the cache over the total number of

requests) and the byte hit rate (BHR - is the percentage of

the number of bytes that correspond to the requests served

by the cache over the total number of bytes requested). A

high HR indicates an effective cache replacement policy

and defines an increased user servicing, reducing the

average latency. On the other hand, a high BHR improves

the network performance (i.e., bandwidth savings, low

congestion etc.).

Usually, the cache past status is used to predict the

future cache replacement actions. Each object is defined

by a “value”, the so-called cache utility value (CUV), for

each object, where the objects with the smallest utility

outcome will be the first candidates to evict from the

cache. Earlier cache replacement policies have been

categorized in:

Recency-based: The object’s CUV is determined by

the time of the last reference to that object. LRU

(Least Recently Used) is the most indicative

algorithm of this category and has been applied in

several proxy caching servers, such as Squid.

Size-based: The object’s CUV is determined by its

size. The most indicative algorithm of this category is

the SIZE [10] which considers object’s size as the

basic parameter (large objects are evicted first),

assuming that users are less likely to re-access large

objects because of the high access delay associated

with such documents.

Frequency-based: The object’s CUV is determined

by the number of requests to that object. Frequency-

based approaches are variations of the LFU (Least

Frequently Used) algorithm and they use the

popularity of objects for the replacement decision.

Function-based: The object’s CUV is determined by

a cost function, which involves multiple parameters

or weights related to a performance metric (such as

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

HR, BHR). The most indicative algorithm of this

category is the Greedy-Dual Size [3].

Most systems use a recency-based policy (i.e. LRU),

due to its simplicity, but the disadvantage of such policies

is that they do not take into account the size of the objects

and the latency time in the server transmission, resulting

to high BHR. The size-based policies usually result in

higher HR since they maintain smaller objects in cache

(i.e., more objects reside in cache). The frequency-based

policies keep in cache the most popular objects

independently on their size and on their recency status i.e.

they avoid keeping in cache recently accessed objects but

with a low frequency (such as the so-called “one-timer”

objects1). Finally, the function-based policies use

complex formulas and usually suffer from heavy

parameterization and high overhead.

1.1. Paper’s Contribution

Here, we propose a cache replacement policy that will

integrate the ideas proposed in frequency, recency and

size based approaches. More specifically, the proposed

algorithm aims at addressing the following issues:

tune recency with frequency by replacing (recently

accessed) one-timers with more frequently requested

objects. This practice overcomes the disadvantage of

a “pure” recency-based policy which might favor

maintaining one-timer objects in cache.

tackle the cache fragmentation problem by

partitioning the cache into groups of exponentially

increasing sizes. This practice will keep a “balanced”

cache segmentation and will avoid overflowing the

cache with large-scale objects.

provide a “cautious” cache replacement that will

deal with all the main deficiencies of the

replacements that independently handle either

recency (one-timers are not tracked), or frequency

(size is not considered), or size (access delays due to

large object capacities are not considered).

According to the authors knowledge, although several

cache replacements approaches (e.g. [3,4,5]) have been

proposed in the past, few efforts (such as in [5]) have

been devoted in integrating the above characteristics

together. The proposed algorithm is compared with the

most popular and widely-used algorithms and based on

extensive (synthetic) trace-driven simulations (generated

by the ProWGen tool [2]) is shown to result in beneficial

HR and BHR.

The rest of the paper is organized as follows. Section 2

formulates the problem, whereas the proposed

replacement algorithm, the so-called FRES-CAR, is

1One-timers are the objects which are requested only once, regardless of

the duration of the access log studied.

described in Section 3. Section 4 has the results of the

experimentation and the algorithm’s performance

evaluation which are commented and discussed. Finally,

we conclude the paper and give some future work plans in

Section 5.

2. Problem Formulation

A cache replacement problem involves some

parameters that are used to monitor the cached objects

replacement process. In practice, each cache replacement

policy defines a CUV assigned to each cached object such

that the object with the appropriate CUV will be evicted

from cache. In this paper, the Web cache content is

modeled by a linked list in which each node is associated

with a particular cached object. Therefore, the number of

nodes is bounded by the number of cached objects. Here,

we consider each cached object to be identified by its

corresponding stored object filename, along with a

number of related attributes (e.g. object’s size, time of

object’s request etc.). The basic goal of the proposed

cache replacement problem is to maintain in cache the

objects with the largest CUV in order to achieve high HR.

The total cache size is computed in bytes and is of

fixed size (S). The total set of objects that are stored in

the cache is not fixed, but it depends on which objects are

cached each time (denoted by Ni). Let oi be the Web

object which is requested at the i-th request. If oi is in the

cache, then we have a cache hit. Otherwise, we have a

cache miss and the object oi should be inserted into the

cache. In case that there is not enough space in cache,

there is a need to evict one or more objects from the cache

in order to free sufficient space.

For each cached object x we keep track of: the object

id (ox), the object size (sx) in order to handle the size
balance, the number of accesses since the last time object

x was accessed (histx) in order to support recency, and the

node id (
k

xr) for the object ox which is updated according

to its frequency.

It is important that the cache replacement process

should guarantee enough space for the incoming objects.

In this context, there are two actions related with the

replacement process (i.e. either the object will remain

stored in cache or it will be evicted from cache). We

define a function to identify the action that should be

taken for each cached object:

Definition 1: The function that will determine whether a

cached object’s will remain in cache or not is defined by

0

1
)(xf

Problem Statement: Suppose that Ni is the number of

objects in cache at the i-th request and S is the total

if object x will be evicted from cache

otherwise

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

capacity of the cache area, the cache replacement problem

is to

maximize
iN

x
xCUVxf

1

))(1(subject to

Sxfs
iN

x
x))(1(

1

3. The FRES-CAR Replacement Policy

The proposed cache replacement algorithm, is called

FRES-CAR (Frequency REcency and Size CAche

Replacement), and it involves two phases:

1) Phase 1- Cache Segmentation: partition the cache into

a number of segments which are in accordance to the

objects’ sizes. Therefore the objects are stored in cache

into certain variable-sized segments.

2)Phase 2- Cache replacement: each of the defined

cache-segments apply a cache replacement policy.

3.1. Cache Segmentation

The motivation for a cache-segmentation is the

flexibility that it offers to manage the cached objects,

since the cache segments may grow and shrink

deliberately (according to request streams) and also at

each segment a separate replacement policy may be

applied. In this paper we segment the cache in a way

inspired from the work presented in [1]. Next, we propose

a hierarchical pyramid-like cache segmentation (such as

PSS (Pyramidal Selection Scheme) [1]) depending on

objects’ sizes such that objects are placed in the

appropriate segment according to theirs sizes. More

specifically, we assume that the k-th cache segment will

host all objects that have sizes ranging between 2k-1 and

2k-1 bytes. Thus, the total number of bytes that can be

stored in a cache is given by S= 12M
 (M is the total

number of cache segments, i.e. the number of cache

segments is)1(log2 SM).

3.2. The Cache Replacement Algorithm

A typical replacement approach involves updating the

cache content under a certain criterion or over a

considered time period. Here, we consider that a cache

replacement is occurred when there is a need for cache

disk space. Specifically, whenever an object is requested

and it is a cache hit, we update the place where the

requested object is stored in the list (namely, we re-order

the list by moving the requested object towards to the tail

of the list). On the other hand, in case of a cache miss, the

requested object is located to the appropriate cache

segment with respect to its size. Thus, regarding to the

amount of free cache space, we have two options. If there

is enough free space (available space xsC) to

accommodate the object ox in the cache, then we locate

the requested object to the appropriate cache segment. If

not, we should make space by evicting from the cache one

or more objects. Then, we locate the requested object to

the appropriate cache segment.

3.2.1. Locating Objects within Segments. If there is

enough space in order to cache the requested object, we

assign it to the appropriate cache segment with respect to

its size. Considering that we have M segments the total

cache size S is computed by the sum of the sizes of all

cache segments. In particular

M

k
kSS

1

, where Sk is

the size of cache segment k

Each cache segment is modeled by a linked list where

each node of the list is associated with a particular cached

object. The list structure used for each cache segment is

organized with respect to the three major characteristics:

frequency, recency and size. This is realized by holding in

the tail of the list the most frequently, recently and

(moderate)-sized objects. Given that the cache segment k

stores
k
iN objects (

M

k

k
ii NN

1

) at the i-th request, we

adopt a similar to [6] approach by considering a variable

k (1
1

kk
iN

) for each cache segment k. In our

case, the location of the objects is performed as follows:

a. If the object is not in cache, then insert it at node

b. If it is currently at node
k

ir , move it to node

The above process updates the location of objects

within cache segments even when the object is already in

cache such that we support a dynamic and adaptive cache.

Therefore, frequently accessed objects will remain in

(close to) the tail nodes.

The locating objects process uses a linked list to

maintain the order of the objects in the cache. Therefore,

it has)log(k
i

k
i NNO complexity, since it needs to

perform insertions in the list at arbitrary nodes.

3.2.2. Free Space in Cache for Replacement. When the

cache is full, the cache replacement policy should

determine which objects should be purged from the cache

in order to make room for the incoming objects.

Typically, a function is needed in order to determine

k
ik N

)(k
i

k
ik

k
i rNr

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

which object should be evicted from the cache and in our

case we use the following CUV:

Definition 2: Each object x in cache is characterized by

its CUV which is evaluated by CUVx =

xxhists

1
, where

sx is the size of object x, and xhist keeps the track of the

number of accesses since the last time object x was

accessed.

According to the above definition, it follows that the

utility of each object in cache is lower for large-sized

objects as well as for objects that have not been requested

for a long time. Whenever we need to decide which

object to eject from the cache, we compare the CUV of all

objects residing at the head of each cache segment list.

The object with the smallest CUV will be evicted from

the span of the cache, and not necessarily from the cache

segment where the incoming object is meant to be cached.

This process is continued until to free the required space

from the span of cache area in order to make room for the

new object. Therefore, each time we have a cache action

(add an object to a cache segment or delete an object from

a cache segment), the cache segments are re-sized so that

the condition

M

k
kSS

1

 is always satisfied. The

proposed FRES-CAR algorithm involves two phases:

PHASE 1: Cache Segmentation

Step 1.1: The number of cache segments is computed.

Step 1.2: An object oi in a cache segment k is identified

by its corresponding stored object filename (fi), its size

(si), the number of accesses since the last access of object

oi (histi), and the place (node-id) object oi is assigned in

the list k (
k

ir) .

Step 1.3: We only cache the object’s oi of size (si) if there

is cache free space.

Step 1.4: Depending on the object’s oi size (si) we select

an appropriate cache segment will be chosen.

PHASE 2: Cache Update and Replacement

Step 2.1: We search the resulted in Step 1.4 cache

segment, which was previously selected, for the existence

of object oi.

o In case of object oi being in the cache segment k, we

use the cache location scheme (subsection 3.2.1) to

update object’s oi place (
k

ir) in the cache segment k.

Step 2.2: In case the object oi has not been found in cache

segment k and the free size in the whole cache area is

greater than object’s oi size (si) we insert the object in the

previously selected cache-segment k based on cache

location scheme.

Step 2.3: Otherwise, until the free size of the cache is

enough for the object to be cached, we evict objects from

the whole cache area (i.e., meaning from different cache

segments and not just from the one where the object is

meant to be cached) according to the following rules:

o We compute the CUV for each of the objects in the

heads of the linked-lists of the cache segments and

we evict that with the smallest CUV.

o Finally after making enough space for the new object

to be cached, we insert it into the specific cache-

segment computed earlier by means of cache location

scheme.

In conclusion, it is being understood that the cache

location scheme (subsection 3.2.1) is used to find the

place (node id), in a specific cache segment (list), in

which we will cache our newly requested object and in

the appropriate change of its position in its parent cache

segment in case of a cache hit. On the other hand, the

logic of the cache segmentation is based on the choice of

which object to evict in order to make space for a new

request that will need to be cached.

4. Experimentation – Results

In our experiments, we use extensive (synthetic) trace-

driven simulations, which are generated by the ProWGen2

tool [2]. The motivation to use the ProWGen is that it

incorporates five selected workload characteristics, which

are deemed relevant to caching performance. Due to its

flexibility, the ProWGen workload generator has been

used in several earlier research efforts [4, 11].

Table 1. Input Parameters to ProWGen Tool
Parameters Default Values Range

Total requests 1,500,000 1,500,000

Unique objects 30% 20%-40%

One timers 70% 50%-80%

Zipf slope 85% 50%-95%

Pareto tail index 1.0 1.0

Correspondence size-

popularity

No correlation No correlation

Temporal locality Dynamic Dynamic

ProWGen traces capture the most important

characteristics of Web proxy workloads that are most

relevant to Web proxy cache performance [11]. The input

parameters of ProWGen tool are summarized in Table 1.

The choice of these input parameters’ values, as default

values, was made in order to have a more realistic Web

trace. These parameters are discussed in the next

subsections.

We examined the performance of FRES-CAR against

that of LRU, LFU, -LRU for variable-sized objects [6],

HLRU [8], and PSS [1] under several workloads. Due to

the lack of space we will present the most indicative of

the obtained results. Before we experiment on the

2 The ProWGen is a synthetic workload generation tool for simulation

evaluation of Web proxy caches and it is very flexible.

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

performance of these algorithms, we examine the

behavior of -LRU for variable-sized objects as varies

from 1/ iN to 1, and FRES-CAR, as k varies from

1/
k
iN to 1 (for each cache segment k). Furthermore, we

should investigate the behavior of HLRU with respect of

h value (h indicates the number of references for a certain

Web object in a specific time period). The motivation for

this evaluation is to use the values of , k and h that will

result in better performance. After several experiments,

we conclude that the highest HR was observed when

=0.6 in case of -LRU for variable-sized objects, k=0.8

in case of FRES-CAR for each cache segment k, and h=6

in case of HLRU. The experimentation is carried out by

considering the percentage of one-timers, the skewness of

the access patterns (zipf slope), and the percentage of

unique objects. Then we evaluate the impact of the above

parameters on each replacement policy for a specific

cache size. The size of the cache is expressed in terms of

the percentage of the total number of bytes of all objects

in a Web log file. In our experiments, we consider that the

default value of cache size is defined as the 1% of bytes

of all objects in a Web log.

4.1. One-Time Referencing

Initially, we examine the sensitivity of the proposed

caching policy to one-timer objects. As mentioned earlier,

one-timers are defined as the objects which are requested

only once, regardless of the duration of the access log

studied. Indeed, there is not use to cache one-timers, since

they are never accessed again. Thus, the cache

replacement algorithms should distinguish such one-timer

objects in order not to reduce the cache effectiveness.

Authors in [11] studied various percentages for one-

timers and observed that as their percentages increase, the

performance of cache replacement algorithms get a small

improvement. As depicted from the Figure 1, we confirm

this observation since the HR and BHR increase as the

percentage of one-timer objects increase.

Concerning the performance of FRES-CAR, as

depicted from the Figure 1a, its HR is significantly higher

than the recency-based and frequency-based policies

(10% higher HR compared to the other examined

policies). On the other hand, its BHR is moderately lower

than that of the recency-based policies (Figure 1b).

Therefore, we conclude that FRES-CAR algorithm can

effectively distinguish and isolate one-timers.

Figure 1. HR and BHR vs. One-Timers Ratio

Figure 2. HR and BHR vs. Zipf Slope

4.2. Zipf-like Popularity Distribution.

A common characteristic in Web traces is the highly

“uneven” distribution of references to files. As observed

in the literature [2], Zipf’s law and power-law are quite

common on proxies. Particularly, Zipf-law has been

applied to model file popularity since Zipf’s law defines a

power-law relationship between the popularity (P) of an

object and its frequency (l). This relationship is

formulated by P=c/l , where c is a constant and is often

close to 1. From the previous discussion follows that

increased skewness means stronger temporal locality.

Here, further experimentation was carried out in relation

to the impact of the cache replacement policies on the

zipf-like popularity distribution of objects. Thus, as

depicted from the Figure 2, the recency-based policies are

benefited from this skewness. Furthermore, we observe

that the HR and BHR of all policies increase with

increasing skewness. Regarding the performance of

FRES-CAR, its HR achieves the highest performance

comparing with all the other policies. On the other hand,

we observed that its BHR is moderately lower than the

recency-based policies at the slope value of 75% and

higher.

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

4.3. Percentage of Unique Objects.

The third experiment studies the impact of the cache

replacement policies on the percentage of unique objects

that include in a Web log file. We observe that as the

percentage of unique objects increase, the HR and BHR

for all the algorithms decreases. Concerning the

performance of FRES-CAR, Figure 3a depicts that it

achieves a 10% to 14% higher HR comparing with the

recency-based and frequency-based policies. Regarding

its BHR, we observe that FRES-CAR has a quite similar

performance if the percentage of unique documents is

30% or smaller.

Figure 3. HR and BHR vs. Unique Docs Ratio

The most similar to FRES-CAR policies are the PSS

and the -LRU for variable-sized objects policies. Table 2

summarizes the performance of FRES-CAR with respect

to the PSS and -LRU for variable-sized objects.

Table 2. FRES-CAR vs. PSS and -LRU
FRES-CAR vs. PSS -LRU

Cache Size HR BHR HR BHR

Large (1,5%) +0.21% -0.28% +8.90% -5.74%

Medium (1%) +0.16% +0.26% +9.61% -3.55%

Small (0,5%) -0.10% +0.25% +9.45% -0.90%

Average +0.09% +0.07% +9.32% -3.40%

Each table’s cell shows the FRES-CAR’s performance

improvement taken over for a particular cache size. Note

that a plus sign (+) indicates better performance and a

minus sign (-) indicates worse performance. From this

table it follows that our proposed algorithm achieves a 9%

higher HR comparing with the -LRU for variable-sized

objects. However, FRES-CAR sacrifices 3.4% of BHR in

order to have such a great improvement in HR. When

compared with the PSS algorithm, it improves a small

amount of both HR and BHR. The low variation in hit

rate values, compared with the PSS, can be explained by

the common practice of segment-based cache and by the

same k values in all cache segments. A further

experimentation with varying k is underway.

5. Conclusion and Future Work

Caching is a typical approach for improving the

performance of Web-based systems. In this paper, we

introduced the FRES-CAR replacement algorithm, where

the decision about which objects should be evicted is

determined by unifying three object’s factors: frequency,

recency and size. Trace-driven simulation was employed

to evaluate and comment on the performance of the

proposed caching scheme. Results have indicated that

FRES-CAR algorithm “sacrifices” a small amount (~3%)

of BHR in order to improve significantly the HR.

Further research should extend the proposed work in

order to study the performance of FRES-CAR under real

data traces and under different values of k per segment.

Finally, research efforts are underway towards extending

the proposed work under a Content Delivery Network

(CDN) [9].

6. References

[1] C. Aggarwal, J. Wolf, P. Yu, “Caching on the World Wide

Web”, IEEE Transactions on Knowledge and Data Engineering,

11(1), 1999, pp. 94-107.

[2] M. Busari, C. Williamson, “ProWGen: A Synthetic

Workload Generation Tool for the Simulation Evaluation of

Web Proxy Caches”, Computer Networks, 38(6), Jun. 2002, pp.

779-794.

[3] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching

Algorithms”, Proceedings of the 1st USENIX Symposium on

Internet Technologies and Systems, Monterey, California, USA,

Dec. 1997, pp. 193–206.

[4] D. Katsaros, Y. Manolopoulos, “Caching in Web Memory

Hierarchies”, Proceedings of the ACM Symposium on Applied

Computing, Nicosia, Cyprus, Mar. 2004, pp. 1109-1113.

[5] S. Podlipnig, L. Boszormenyi, “A Survey of Web Cache

Replacement Strategies”, ACM Computing Surveys, 35(4), 2003,

pp. 374-398.

[6] K. Psounis, A. Zhu, B. Prabhakar, R. Motwani, “Modeling

Correlations in Web Traces and Implications for Designing

Replacement Policies”, Computer Communications, 45(4), Jul.

2004, pp. 379-398.

[7] M. Rabinovich, O. Spatsheck, Web Caching and
Replication, Addison Wesley, 2002.

[8] A. Vakali, “Proxy Cache Replacement Algorithms: A

history-based approach”, World Wide Web Journal, 4(4), 2001,

pp. 227-297.

[9] A. Vakali, G. Pallis, “Content Delivery Networks: Status and

Trends”, IEEE Internet Computing, Vol. 7(6), 2003, pp. 68-74.

[10] S. Williams, M. Abrams, C. Standridge, E. Fox, “Removal

Policies in Network Caches for World Wide Web Documents”,

Proceedings of the ACM SIGCOMM Conference, Stanford

University, Aug. 1996, pp. 293–305.

[11] C. Williamson, “On Filter Effects in Web Caching

Hierarchies”, ACM Transactions on Internet Technology, 2(1),

2002, pp. 47-77.

Proceedings of the 2005 International Workshop on Challenges in Web Information Retrieval and Integration (WIRI’05)
0-7695-2414-1/05 $20.00 © 2005 IEEE

