
GRID RELIABILITY:
A STUDY OF FAILURES
ON THE EGEE INFRASTRUCTURE ∗

Kyriacos Neocleous and Marios D. Dikaiakos
Department of Computer Science, University of Cyprus,
1678 Nicosia, Cyprus

{kyriacos,mdd}@cs.ucy.ac.cy

Paraskevi Fragopoulou and Evangelos Markatos
Institute of Computer Science, Foundation of Research and Technology-Hellas,
1385 Herakleion, Greece

{fragopou,markatos}@ics.forth.gr

Abstract The emergence of Grid infrastructures like EGEE has enabled the deployment of
large-scale computational experiments that address challenging scientific prob-
lems in various fields. However, to realize their full potential, Grid infrastructures
need to achieve a higher degree of dependability, i.e., they need to improve the
ratio of Grid-job requests that complete successfully in the presence of Grid-
component failures. To achieve this, however, we need to determine, analyze
and classify the causes of job failures on Grids. In this paper we study the
reasons behind Grid job failures in the context of EGEE, the largest Grid infras-
tructure currently in operation. We present points of failure in a Grid that affect
the execution of jobs, and describe error types and contributing factors. We
discuss various information sources that provide users and administrators with
indications about failures, and assess their usefulness based on error information
accuracy and completeness. Finally, we discuss two case studies, describing fail-
ures that occurred on a production site of EGEE and the troubleshooting process
for each case.

Keywords: grid, reliability, dependability, EGEE, failure management

∗This research work was supported in part by the European Commission under projects EGEE (Contract
IST-2003-508833) and the Network of Excellence CoreGRID (Contract IST-2002-004265) of the Sixth
Framework Programme of the European Union.



2

1. Introduction

Computing Grids are usually very large scale services that enable the sharing
of heterogeneous resources (hardware and software) over an open network such
as the Internet. A Grid is organised in Virtual Organisations (VOs) [11], col-
lections of computational and storage resources, application software, as well
as individuals (end-users) that usually have a common research area.Access to
Grid resources is provided to VO members through the Grid middleware, which
exposes high-level programming and communication functionalities to applica-
tion programmers and end-users, enforcing some level of resource virtualisation
[4]. VO membership and service brokerage is regulated byaccess and usage
policies agreed among the infrastructure operators, the resource providers,and
the resourse consumers.

Jobs submitted by users to a grid system sometimes fail to complete success-
fully and, in several occasions, the responsibility lies with the user to detectthe
failure of a job and resubmit it. We would like to examine in what extend1 can
this responsibility be moved from the end user to the grid system, with the ulti-
mate goal of proposing a general solution that will satisfy all grid users, without
posing performance penalties, nor resulting to increased CPU-time consump-
tion. It is however difficult to address the problem of grid reliability without
first determining, analysing and classifying the causes of failures. In thispaper
we study the reasons behind grid job failures, for gaining an insight on themost
fruitful direction towards building a more reliable grid infrastructure.

In section 2 we present grid error types and contributing factors, while in
section 3 we present the existing error information sources of the EGEE project
that we have identified, and assess how useful they are, based on error infor-
mation accuracy and completeness. To make things clearer, we felt it was
necessary to include a section on actual grid infrastructure errors that occurred
on the University of Cyprus EGEE production site, with an accompanied anal-
ysis and troubleshooting process; section 4 describes two such cases.We close
by drawing some conclusions and proposing ways to improve the system.

2. Error types and contributing factors

This section briefly describes the factors that can disrupt a job fromstarting
or completing execution:

(a) Hardware faults: if the job is running on the specified machine at the
time of a hardware error, e.g. a machine crashes and has to be restarted,a hard
drive burns etc, the job cannot be recovered and has to be resubmitted.

1with respect to the end-to-end argument as it applies to grid job reliability [3]



Grid Reliability 3

(b) O/S misconfiguration: this relates mainly to operating system services
that are not properly configured. An example is implementing firewall changes
which can lead to closing ports that are needed for inter-node communication.

(c) Network access disruption/misconfiguration:a factor that can lead to
job failure (more accurately in this case, leading to CPU time being wasted), is
a site losing Internet access. A user waiting too long to retrieve the job output
may resubmit the job, rendering the previous one useless (redundant).

(d) Security breaches/attacks:Takeover of grid nodes by an unauthorized
user can result to corruption of job data, job termination etc. Such attacks are
usually related to security holes of the operating system and grid middleware,
weak root passwords and inappropriate firewall configuration.

(e) Middleware bugs/misconfiguration: attempts to correct problems or
perform updates on a grid site can lead to job failure or a more general service
disruption. This relates to grid site administrator errors, as well as to bugs in new
releases of the middleware that introduce unwanted configuration. According
to [10], a large number of service disruption occurrences is the result of a regular
performance or security software upgrade that leads to configuration errors.

(f) User mistakes: such failures can result from (i) JDL file problems, for
example the user may include an erroneous specification of job requirements
that will result in the job failing to start; (ii) user software can cause errors
during job execution leading to the job being terminated abnormally; and (iii)
problems with user certificate proxies attached to the job, most commonly the
absence of a valid proxy during submission, as well as the expiration of an
originally valid proxy while the job is running.

3. Error information sources for EGEE

The following main sources can be used to retrieve information about errors
on the EGEE testbed:

A. Site Functional Tests (SFTs) report web site
B. Grid Statistics (GStat) web site
C. GGUS and EGEE-SEE ticketing systems
D. CIC broadcasts and GOC entries for site downtime
E. Machine logs, diagnostic commands output, and databases

These sources are analysed below, accompanied by an assessment ofthe use-
fulness of each one of these sources, based on the accuracy and completeness
of the error information provided. For a better understanding of the various
levels on which monitoring is done, the reader can consult Figure 1.



4

Figure 1. Error information sources: levels of monitoring



Grid Reliability 5

Figure 2. SFTs for site CY01 (University of Cyprus)

A. Site Functional Tests (SFTs) report web site.EGEE maintains a central
“reporting web site” [6] (restricted access) for publishing test-job results for all
sites of the infrastructure, primarily serving grid managers and administrators.
From there, authenticated users can further access detailed reports for each
site. SFT pages show the results of tests performed automatically every 3
hours, and the results of extra tests submitted by the administrators of Resource
Centres (RCs) or responsible Regional Operations Centre (ROC) managers and
administrators.

Test jobs are short jobs designed to check the health of the various grid com-
ponents of a site. This testing is done using the DTEAM Virtual Organisation,
which exists mainly for running such internal tests on the entire infrastructure.
It is worth noting here that DTEAM jobs are typically short, around 10 min-
utes of CPU time, unlike production-VO jobs that usually take several hoursto
complete. An SFT consists of several subtests (see head of table in Figure2);
for example ‘ver’ checks the middleware version, and ‘ca’ checks the version
of the Certification Authority RPMs (Linux software packages) installed. For
a short description of each subtest executed during an SFT see [1].

In Figure 2 we provide an example of an SFT report for EGEE site CY01
(University of Cyprus). The red entry (dark highlight) indicates an error, and
the X indicates which component of the site has failed (in this case a Job
Submission error). Clicking on the X hyperlink displays detailed job submission
information, easing the troubleshooting process for site administrators.

B. Grid Statistics (GStat) web site. GStat is a Grid Information System
monitoring application [2]. One GStat page exists for each EGEE Resource
Centre and these pages are public. From the main GStat web page2 one can
navigate to see the detailed pages that exist for every EGEE site.

The most interesting point here is the graphs provided by GStat, showing error
(alert) levels and various other metrics, usually going as far back as the last 12
months. From these graphs one can examine the stability of a site, and possibly
how long an error lasted. Other points of interest in GStat pages are total and

2http://goc.grid.sinica.edu.tw/gstat/



6

per-VO CPU and job statistics, storage space reporting, as well as estimated
and actual response time for each supported VO. All this information is given
in the form of graphs except the latest values which are given as numbers.

It is also worth mentioning here the SmokePing network latency monitoring
tool [7]. The website3 maintained by ICS-FORTH provides network moni-
toring for the entire SEE federation. These metrics give additional insight to
site administrators and they are particularly useful when combined with GStat
measurements or SFT results, in order to narrow down the set of components
that may be responsible for a failure.

C. GGUS and SEE ticketing systems.The third error information source
under evaluation consists of the Global Grid User Support (GGUS) and South
East Europe (SEE) ticketing systems. GGUS is the top-level ticketing system
for EGEE, while 2nd-level ticketing systems exist for each federation of the
project, such as the SEE ticketing system dedicated to the South East Europe
federation. The ticketing systems in EGEE are very similar to the ticketing
systems used in other organisations to efficiently manage tasks and requests.

As far as grid operational support is concerned, the ticketing systems are
mainly used to report component failures as well as needed updates for sites.
GGUS tickets are typically opened because of an error that appears in theSFT
(Site Functional Test) reports or the GStat monitoring website; such tickets are
opened by on-duty Core Infrastructure Centre (CIC) personnel.

D. CIC broadcasts and GOC entries for site downtime.Site managers
are required to broadcast information related to site downtime events through
the Core Infrastructure Centre (CIC) web site; this information is subsequently
e-mailed to all affected parties. CIC e-mails often contain information related to
the error that caused the site manager to set the site in maintenance mode; at other
times, downtime events are associated with performance or security upgrades
and are not related to errors. Site managers must also declare downtime in the
Grid Operations Centre (GOC) website, in order to place the site’s status in
maintenance mode instead ofproduction. Such entries are typically one short
phrase, e.g. “CE hard drive burned,” and also contain the start and end dates
and times of the downtime event.

E. Machine logs, diagnostic commands output, and databases.The
last error information source we will review consists of data found on the
nodes of a grid site: (1) the machine logs, such as/var/log/messages,
/var/log/globus-gatekeeper.log, (2) the output of various diagnostic
commands executed on the machines that are involved in the error (while the
error persists), such asps aux, diagnose -j, checkjob -v <jobID>, and
(3) the Logging and Book-keeping Service (LBS) database records found on the
Resource Broker (RB), which can reveal detailed error information spanning

3http://mon.egee-see.org/cgi-bin/smokeping.cgi?target=World.Europe.SEE



Grid Reliability 7

many sites of many different countries, usually an entire region.

In the remaining of this section we will assess the various sources of infor-
mation about grid errors discussed this far:

Site Functional Tests reporting and GStat monitoring: From our expe-
rience the SFT reports are usually accurate in indicating site problems. The
only drawback is that production jobs run for much longer than test jobs, and
this may cause some errors to escape the SFT testing; also, the frequency of
the SFTs may not be as high as needed to catch all errors. For this reasonwe
can also combine some monitoring information from GStat, although this is not
easy to do automatically because the graphs are in image format and the data
used to generate the graphs is not readily accessible.

Ticketing systems:if we rely on this information source, we should restrict
the information we get from tickets, for example to get only the date the ticket
was opened, the time it took for it to be resolved, number of persons involved
for solving the problem, and the problem category (replica manager failures,
job submission failures, R-GMA tests, etc).

GOC and CIC downtime: Data is easy to gather and easy to separate be-
tween “downtime due to errors” and “downtime due to standard maintenance
tasks”. However, these sources may present important drawbacks: the most im-
portant one is that the site manager or administrator publishing this information
may be covering up for other types of failures. Furthermore, some downtime
may not be announced due to negligence or lack of motivation, since more
downtime will be accounted for that site (on some occassions, short failures
may pass unnoticed). This source is possibly both inaccurate and incomplete.

Machine logs, diagnostic commands output, and databases:The last cat-
egory of error information sources is to be found at the lowest levels of the grid
nodes themselves (refer to Figure 1, layersMiddleware, Operating System, and
Machine Hardware). The machine logs and the LBS database do not rely on
human intervention for their production, and we can therefore consider them
the most accurate and complete error information sources from the ones exam-
ined here. Processing these logs automatically needs some extra work, possibly
writing the right parser for each log type, since they are in non-standardfor-
mats. On the other hand, obtaining diagnostic command output of real value is
trickier, since this will only be of use if it is obtained at the right time, i.e. while
the error persists and perhaps even before a subsequent change of the machine
state that can hide the initial error information.

For the error analysis, based on the above observations, we proposeto rely
primarily on the information obtained from grid nodes, but also try to associate
this information with entries found on other relevant sources. This could provide



8

a more complete view of errors, and enable us to discard some cases from the
analysis if we find contradicting data between different sources.

4. Case studies

In this section we will present some of the more interesting case studies in-
volving error detection, analysis and correction. These studies were conducted
between December 2005 and February 2006 on the University of Cyprus EGEE
grid site (CY01), in parallel to standard maintenance operations. The analysis
was aided by diagnostic commands and log information, and the output of the
diagnostic commands was recorded while the failures persisted.

Case study 1: DTEAM VO jobs queued indefinitely. As mentioned in
section 3, the DTEAM VO is used for testing the EGEE infrastructure. Standard
test jobs are automatically submitted every three hours to all EGEE sites, and
the results are published on a web site (the Site Functional Tests report - SFTs).
Other DTEAM jobs can also be submitted manually by site administrators, for
running non-standard tests on the infrastructure.

At one point, there was a series of DTEAM jobs queued on site CY01 that
for some reason (unknown at the time) failed to start. This was a mixture of
SFT-related jobs and DTEAM jobs coming from other sites of the federation
that were testing a grid service. By the time this was noticed by CY01 site
administrators, the number of jobs had reached 30 (the normal is usually 1 to 2
such jobs), and they were all in status ‘queued’, while there were enough free
resources to execute 4 of them immediately. This caused several SFT entries
to fail.

This problem persisted for several days, and we had to deal with it at first
by manually forcing the queued jobs to run on idle processors. An example of
manually starting a job, given a processor (node) and job ID, is shown below:

[root@ce101 root]# runjob -f -n wn101.grid.ucy.ac.cy 78075
job ’78075’ started on 1 proc

It was then discovered that the problem was caused by an erroneous job
scheduler and resource manager configuration (site administrators’ responsi-
bility). These components are somewhat complicated, and their configuration
non-intuitive, especially in the case of Maui [5, 12], the middleware component
responsible for handling job scheduling on a large number of EGEE sites. The
need for reconfiguring Maui and the underlying resource manager (Torque [9])
became evident, but this involved more than a few hours of work, so we hadto
make a quick workaround to fix the problem, mimicking our actions of man-
ually starting queued jobs: this was a fairly simple script that read the output
of the job queue every 4 hours, and detected which queued jobs belonged to
DTEAM; the script was then forcing jobs to start execution (whenever possible,



Grid Reliability 9

based on the free resources), while logging the output of the force-run command
(runjob -f). Part of the log can be seen below:

Sun Feb 12 16:26:12 EET 2006, Attempting to start queued dteam jobs:
job ‘79105’ started on 1 proc

After a few days of tuning Maui and Torque, such a problem rarely appears
but when it does, the workaround still handles it successfully. DTEAM jobs are
still likely to be queued (not indefinitely but for several hours) for various other
reasons; by monitoring our site over an extended period of time, we observed
that DTEAM VO members may at any point submit a large number of jobs on
the site, and the result is that the job scheduler avoids starting some of them as
a result of the fair share policy implemented (i.e. the ‘maximum running jobs’
limit set for testjobs is exceeded and Maui does not allow more DTEAM jobs
to run before others terminate).

To sum up, the main cause of the problem here was the lack of proper re-
source manager and job scheduler configuration. The symptoms were treated
first due to the urgency of the matter, while the subsequent fine-tuning of the
resource manager and the job scheduler configuration addressed the root cause
of the problem.

Case study 2: Active Worker Node dies.In this case study, a Worker Node
crashed while a job was running on it, causing the job to be completely lost
and also creating a second problem with resource allocation. In the following
output obtained fromqstat4, notice production job of the LHCb experiment
[8], with ID 74896.ce101. It appears to be running (Status [S] = Running [R]).

[root@ce101 root]# qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
73933.ce101 STDIN atlas004 0 Q atlas
74896.ce101 STDIN lhcb002 00:33:58 R lhcb

However, the output ofdiagnose -j (Maui job scheduler command) shows
a problem with this job (notice the last two lines):

[root@ce101 root]# diagnose -j
...
74896 Running DEF 1 DEF 3:00:00:00 1 1 lhcb002 lhcb
...
WARNING: active job ‘74896’ has inactive node wn107.grid.ucy.ac.cy
allocated for 1:18:17:03 (node state: ‘Down’)

After checking to see what was the problem with worker node wn107, we
could not connect to the machine remotely nor ping; the machine was also inac-
cessible from its console. The WN had crashed due to hard drive overheating.

4command of PBS Torque resource manager used to show the status ofbatch jobs



10

After restarting the failed node, the job appeared to be exiting (Status = E) from
the queue but this state persisted for several minutes. This can be seen below
from the new output ofqstat:

[root@ce101 root]# qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
73933.ce101 STDIN atlas004 0 Q atlas
74896.ce101 STDIN lhcb002 00:33:58 E lhcb

The output ofdiagnose -j erroneously showed that the job was running
normally. The only difference from the previous message is that the warning on
‘wn107 being down’ was no longer present, which means that the job scheduler
was updated with the information that the WN was on-line again, and the server
daemon (pbsserver) of the resource manager on the CE could connect to the
torque client (pbsmom) on the restarted WN. This job had to be killed manually,
since the data from it being executed on wn107 had been lost when the machine
died, and it was certain that the job could not recover. The new output of
diagnose -j (after restarting the failed WN) can be seen below:

[root@ce101 root]# diagnose -j
...
74896 Running DEF 1 DEF 3:00:00:00 1 1 lhcb002 lhcb
- 1:18:33:49 [NONE] [NONE] [NONE] >=0 >=0 NC0 [lhcb:1] [NONE]

Another related problem was that the worker node that had crashed waslater
reserved and could not be utilized for a fresh job, despite the fact that itsCPUs
were idle. This can be seen from the output of other Maui commands, suchas
showres -n andcheckjob <jobID> (the latter is shown next):

[root@ce101 root]# checkjob 74896

State: Running
Creds: user:lhcb002 group:lhcb class:lhcb qos:DEFAULT
WallTime: 1:18:42:46 of 3:00:00:00
...
NodeCount: 1
Allocated Nodes:
[wn107.grid.ucy.ac.cy:1]

The job stayed in the queue with ‘exiting’ status, despite the attempts to delete
it (qdel), suspend it (mjobctl -s), and similar modifications with Torque and
Maui commands. All such attempts failed because the job was at a state that
could not accept modifications. Next, the reservation that was made on wn107
was removed manually using Maui commandreleaseres <jobID>, so at
least the node was free to serve another job.

[root@ce101 root]# releaseres 74896
released Job reservation ‘74896’

The job was later removed from the queue (after spending more than several
hours in ‘exiting’ status, even persisting after a restart following a middleware



Grid Reliability 11

upgrade) by manually deleting the resource manager job-specific files from
the Grid Gate (node ce101,/var/spool/pbs/server priv/jobs/74896*),
and restarting the resource manager.

To sum up case study 2, the problem originated due to a middleware bug
that did not allow the job scheduler to detect that one of the worker nodes had
crashed and a job was lost, so manual modifications by the site administrator
were necessary in order to clear the failed job and allow the restarted worker
node to be utilised by new jobs.

5. Conclusions and Future Work

Detecting and managing failures is an important step toward the goal of a de-
pendable grid. The experiences described in this paper show that manual failure
management in large-scale infrastructures such as EGEE is a tedious and cum-
bersome process, due to the complexity, the scale and the multi-institutional
span of Grid infrastructures. Furthermore, it can be asserted that current mid-
dleware systems do not provide adequate support for handling failuresand
for supporting Grid dependability. Therefore, we need to develop tools that
will support system administrators and end-users to identify failures of Grid
components and to investigate their root causes. These tools should provide a
higher-level representation of failures, integrating information from the variety
of error-information sources presented earlier. Furthermore, they should ease
the troubleshooting process undergone by grid system administrators by au-
tomating diagnostic and corrective functions, and helping them cope with the
complexity of error-information provided by underlying monitoring systems
through proper abstractions and uniform user-interfaces. Also, we need to de-
velop systems and algorithms for processing the information collected by the
various failure-information sources in order to support the automatic identifi-
cation and prediction of failures, in order to improve the dependability of the
Grid’s operation.

Acknowledgements

The authors wish to thank Chryssis Georgiou, Demetris Zeinalipour-Yazti
and George Tsouloupas for their helpful comments and suggestions, Nicolas
Jacq for insights on the results of the WISDOM data challenge concerning grid
reliability, as well as Fabrizio Pacini and Zdenek Salvet for clarifications on the
internals of the Workload Management System of EGEE.



12

References

[1] Description of Site Functional Tests.
http://lcg-testzone-reports.web.cern.ch/lcg-testzone-reports/sftestcases.html (accessed
February 2006).

[2] Grid Statistics (GStat) description.
http://goc.grid.sinica.edu.tw/gstat/filterhelp.html (accessed June 2006).

[3] D. Thain and M. Livny. Building Reliable Clients and Services. InGrid 2: Blueprint for
a New Computing Infrastructure (I. Foster and C. Kesselman, eds.), Elsevier, Morgan
Kaufmann, 2004.

[4] M. Xu, Z. Hu, W. Long and W. Liu. Service Virtualization: Infrastructure and Applications.
In Grid 2: Blueprint for a New Computing Infrastructure (I. Foster and C. Kesselman,
eds.), Elsevier, Morgan Kaufmann, 2004.

[5] Maui Administrator’s Guide.
http://www.clusterresources.com/products/maui/docs/mauiadmin.pdf (accessed May
2006).

[6] Site Functional Tests for EGEE sites.
https://lcg-sft.cern.ch/sft/lastreport.cgi (accessed June 2006).

[7] SmokePing network latency measurement tool.
http://oss.oetiker.ch/smokeping/ (accessed June 2006).

[8] The Large Hadron Collider beauty experiment, homepage.
http://lhcb.web.cern.ch/lhcb/ (accessed June 2006).

[9] Torque Administrator’s Manual.
http://www.clusterresources.com/torquedocs21/ (accessed May 2006).

[10] Aaron Brown. Coping with human error in IT systems. InACM Queue magazine,
http://www.acmqueue.com, November 2004.

[11] I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid:Enabling Scalable Virtual
Organizations. InInternational J. Supercomputer Applications, Volume 15, number 3,
pages 200-222, 2001.

[12] Sophie Lemaitre et al.Maui Cookbook.
http://grid-deployment.web.cern.ch/grid-deployment/documentation/Maui-
Cookbook.pdf (accessed May 2006).


