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Abstract Computational Grids like EGEE offer sufficient capacity &men most
challenging large-scale computational experiments, lblegsming an indispensable
tool for researchers in various fields. However, the utiitghese infrastructures is
severely hampered by its notoriously low reliability: agatnine-month long study
found that only 48% of jobs submitted in South-Eastern-pammompleted success-
fully. We attack this problem by means of proactive failuegattion. Specifically,
we attempt to predict site failures on short-term time stgleleploying machine
learning algorithms to discover relationships betweea p#rformance variables
and subsequent failures. Such predictions can be used ljpResBrokers for de-
ciding where to submit new jobs, and help operators to takegmtive measures.
Our experimental evaluation on a 30-day trace from 197 EGl#tigs shows that
the accuracy of results is highly dependent on the selectedey the type of failure,
the preprocessing and the choice of input variables.

1 Introduction

Detecting and managing failures is an important step tosvétnd goal of a de-
pendable and reliable Grid. Currently, this is an extrenoelgnplex task that re-
lies on over-provisioning of resources, ad-hoc monitoramgl user intervention.
Adapting ideas from other contexts such as cluster comgufif], Internet ser-
vices [9, 10] and software systems [12] is intrinsicallyfidiilt due to the unique
characteristics of Grid environments. Firstly, a Grid systs not administered cen-
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trally; thus it is hard to access the remote sites in orderdaitar failures. More-
over failure feedback mechanisms cannot be encapsulatbe iapplication logic
of each individual Grid software, as the Grid is an amalgaprefexisting software
libraries, services and components with no centralizedrobrsecondly, these sys-
tems are extremely large; thus, it is difficult to acquire andlyze failure feedback
at a fine granularity. Lastly, identifying the overall stafethe system and exclud-
ing the sites with the highest potential for causing faiuirem the job scheduling
process, can be much more efficient than identifying maniyiddal failures.

In this work, we define the concept &frid Tomography in order to discover
relationships between Grid site performance variablessadequent failures. In
particular, assuming a set of monitoring sources (systeissts, representative
low-level measurements, results of availability tests)ébat characterize Grid sites
we predict with high accuracy site failures on short-temmetiscale by deploying
various off-the-shelf machine learning algorithms. Suddgctions can be used for
deciding where to submit new jobs and help operators to tedseptive measures.

Through this study we manage to answer several questiohshéva to our
knowledge not been addressed before. Particularly, wege@nswers to questions
such as*How many monitoring sources are necessary to yield a higtuaacy?";
“Which of them provide the highest predictive informatidn@nd“How accurately
can we predict the failure of a given Grid site X minutes ahefiime?” Our find-
ings support the argument that Grid tomography data is mh@eeindispensable
resource for failure prediction and management. Our expartal evaluation on a
30-day trace from 197 EGEE queues shows that the accuraeguifs is highly de-
pendent on the selected queue, the type of failure, the geepsing and the choice
of input variables.

This paper builds upon on previous work in [20], in which wegented the
preliminary design of FailRank architecture. In FailRamignitoring data is contin-
uously coalesced into a representative array of numeriorgdheFailShot Matrix
(FSM). FSM is then continuously ranked in order to identify Kesites with the
highest potential to feature some failure. This allows tlesdrirce Broker to au-
tomatically exclude the respective sites from the job salieg process. FailRank
is an architecture for on-line failure ranking using lineaodels, while this work
investigates the problem of predicting failures by depigymore advanced, non-
linearclassification algorithm&om the domain of machine learning.

In summary, this paper makes the following contributions:

e We propose techniques to predict site failures on shomt-téme scale by de-
ploying machine learning algorithms to discover relattups between site per-
formance variables and subsequent failures;

e \We analyze which sources of monitoring data have the higireslictive infor-
mation and determine the influence of preprocessing andqpied parameters
on the accuracy of results;

1 Grid Tomographyrefers in our context to the process of capturing the stategrfd system by
sections, i.e., individual state attributemnfosis the Greek word fosection)
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e \We experimentally validate the efficiency of our proposiavith an extensive
experimental study that utilizes a 30-day trace of Grid tgraphy data that we
acquired from the EGEE infrastructure.

The remainder of the paper is organized as follows: Sectiéori®alizes our
discussion by introducing the terminology. It also desesithe data utilized in this
paper, its preprocessing, and the prediction algorithrasti@n 3 presents an ex-
tensive experimental evaluation of our findings obtained$éipng machine learning
techniques. Finally, Section 4 concludes the paper.

2 Analyzing Grid Tomography Data

This section starts out by overviewing the anatomy of the E@&#id infrastruc-
ture and introducing our notation and terminology. We thisouks the tomography
data utilized in our study, and continue with the discussibpre-processing and
modeling steps used in the prediction process.

2.1 The Anatomy of a Grid

A Grid interconnects a number of remote clustersitas Each site features hetero-
geneous resources (hardware and software) and the siteseao®nnected over an
open network such as the Internet. They contribute diftezapabilities and capac-
ities to the Grid infrastructure. In particular, each sgatiires one or mon&/orker
Nodes which are usually rack-mounted PCs. T®emputing Elemenuns various
services responsible for authenticating users, accefilmgy performing resource
management and job scheduling. Additionally, each sitenbfeature d_ocal Stor-
age site, on which temporary computation results can residd,lacal Software
libraries, that can be utilized by executing processes.ifgiance, a computation
site supporting mathematical operations might featurallpd¢he Linear Algebra
PACKage (LAPACK)The Grid middleware is the component that glues together
local resources and services and exposes high-level pnogirsy and communica-
tion functionalities to application programmers and esdrs. EGEE uses the gLite
middleware [6], while NSF’s TeraGrid is based on the GloboslHit [5].

2.2 The FailBase repository

Our study uses data from o&rilBase Repositoryhich characterizes the EGEE
Grid in respect to failures between 16/3/2007 and 17/4/70@Y. FailBase paves
the way for the community to systematically uncover newyjaasly unknown pat-
terns and rules between the multitudes of parameters thatar#ribute to failures
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in a Grid environment. This database maintains informatior?,565 Computing
Element (CE)yueuesvhich are essentially sites accepting computing jobs. Eor o
study we use only a subset of queues for which we had the targetber of avail-
able types of monitoring data. For each of them the data céimdagyht of as dime-
seriesi.e., a sequence of pairs (timestamp,value-vector). Ealcie-vector consists

of 40 values calledttributes which correspond to various sensors and functional
tests. That comprises th&@ilShot Matrixthat encapsulates the Grid failure values
for each Grid site for a particular timestamp.

2.3 Types of monitoring data

The attributes are subdivided into four groups A, B, C and peteling of their
source as follows [13]:

A. Information Index Queries (BDH)These 11 attributes have been derived from
LDAP queries on the Information Index hosted lodii101.grid.ucy.ac.cyThis
yielded metrics such as the number of free CPUs and the maxinumber of
running and waiting jobs for each respective CE-queue.

B. Grid Statistics (GStat)The raw basis for this group is data downloaded from the
monitoring web site of Academia Sinica [7]. The obtained ftBlautes contain
information such as the geographical region of a ResourceeGehe available
storage space on the Storage Element used by a particulan@Eesults from
various tests concerning BDII hosts.

C. Network Statistics (SmokePing@he two attributes in this group have been de-
rived from a snapshot of thgPing database from ICS-FORTH (Greece). The
database contains network monitoring data for all the EGt&.4~rom this col-
lection we measured the average round-trip-time (RTT) aedgacket loss rate
relevant to each South East Europe CE.

D. Service Availability Monitoring (SAM)These 14 attributes contain information
such as the version number of the middleware running on ther&ftilts of
various replica manager tests and results from test job msions. They have
been obtained by downloading raw html from the CE sites andgssing them
with scripts [4].

The above attributes have different significance when atitig a site failure.
As group D contains functional and job submission testgbates in this group are
particularly useful in this respect. Following the resuttSection 3.2 we regard two
of thesesamattributes, namelgam j s andsam r gna as failure indicators. In
other words, in this work we regard certain values of theseattributes as queue
failures, and focus on predicting their values.
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2.4 Preprocessing

The preprocessing of the above data involves severallistgéps such as masking
missing values, (time-based) resampling, discretizatowl others (these steps are
not a part of this study, see [13, 14]). It is worth mentionihgt data in each group
has been collected with different frequencies (A, C: onceimute, B: every 10
minutes, D: every 30-60 minutes) and resampled to obtaim@lgeneous 1-minute
sampling period. For the purpose of this study we have fudheplified the data
as follows: all missing or outdated values have been setltcand we did not make
difference in severity of errors. Consequently, in ourilatite data we use-1 for
“invalid” values, 0 to indicate normal state, and 1 to indiéca faulty state. We call
such a modified vector of (raw and derived) valussample.

In the last step of the preprocessing, a sample correspgtalfimeT is assigned
a(true) labelindicating a future failure as follows. Having decided whaf thesam
attributesS represents a failure indicator, we set this label to 1 if ahthe values
of Sin the interval[T + 1, T + p] is 1; otherwise the label of the sample is set to 0.
The parametep is called thdead time In other words, the label indicates a future
failure if the samattribute S takes a fault-indicating value anytime during the
subsequenp minutes.

2.5 Modeling methodol ogy

Our prediction methods armaodel-basedA modelin this sense is a function map-
ping a set of raw and/or preprocessed sensor values to antpiatpur case a binary
value indicating whether the queue is expected to be he@or not (1) in a spec-
ified future time interval. While such models can take a fofra custom formula or
an algorithm created by an expert, we use in this wankeasurement-basedodel
[17]. In this approach, models are extrapolaéetomaticallyfrom historical rela-
tionships between sensor values and the simulated modalito{gomputed from
offline data). One of the most popular and powerful class @htieasurement-based
models areclassification algorithm®r classifiers[19, 3]. They are usually most
appropriate if outputs are discrete [17]. Moreover, thégvalthe incorporation of
multiple inputs or even functions of data suitable to exptsaformation content
in a better way than the raw data. Both conditions apply insetting.

A classifier is a function which mapsdzdimensional vector of real or discrete
values calledattributes(or features)to a discrete value calledass label In the
context of this paper each such vector is a sample and a ehkskdorresponds
to the true label as defined in Section 2.4. Note that for aordree classifier the
values of class labels and true labels would be identicakémh sample. Prior to
its usage as a predictive model, a classifietrégsned on a set of pairs (sample,
true label). In our case samples have consecutive timestaWip call these pairs
the training dataand denote byD the maximum amount of samples used to this
purpose.
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Fig. 1 Recall and Precision of eagtamattribute

A trained classifier is used as a predictive model by lettirmpmpute the class
label values for a sequence of samples following the trgimiata. We call these
samplegest data By comparing the values of the computed class labels agaims
corresponding true labels we can estimate the accuracyeofltissifier. We also
perform model updates after all samples from the test data been tested. This
number - expressed in minutes or number of samples - is daléaghdate time

In this work we have tested several alternative classifiach sas C4.5, LS,
Stumps, AdaBoost and Naive Bayes. The interested readefdésred to [3, 16]
for a full description of these algorithms.

3 Experimental Results

Each prediction run (also callezkperimenthas a controlled set of preprocessing
parameters. If not stated otherwise, the following defaailies of these parameters
are used. The size of the training d&tas set to 15 days or 21600 samples, while
the model update time is fixed to 10 days (14400 samples). Weausad time
of 15 minutes. The input data groups are A and D, i.e., eaclpleaoonsists of
11+ 14 attributes from both groups. On this data we performetbate selection
via the backward branch-and-bound algorithm [16] to find &t la¢tributes used as
the classifier input. As classification algorithm we deplbytee C4.5 decision tree
algorithm from [15] with the default parameter values.
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Fig. 3 Recall of attributesam r gna for all 197 queues

3.1 Evaluation metrics: recall and precision

During preprocessing, each training or test sample is msdigtrue label a value
of 1 indicates a failure at the corresponding sample timd,awalue 0 indicates
no failure. During testing, a classifier assigns to eachdastple gredicted label
with analogous values. Obviously, the more frequently wathes agree, the higher
the quality of predictions. For the purpose of failure potidn cases with true label
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equal to 1 are especially interesting. This gives rise toftilewing definitions
common in the field of document retrieval.

For all test examples in a single experimeartall is the number of examples
with both predicted and true label equal 1 divided by numlbeases with true label
equal 1. This metrics estimates the probability that a fails indeed predicted. The
precisionis the ratio of the number of examples with both predictedtame labels
equal 1 to the number of examples with predicted label equialid interpreted as
the probability that a predicted failure really occurs. Vée in the following these
two metrics to evaluate prediction accuracy.

3.2 Analysis of prediction accuracy

We shall next present an extensive experimental study,hwfoicuses on two as-
pects: First, we investigate the influence of monitoringadgoups as well as var-
ious preprocessing and mining parameters on the accura®solts. Second, we
seek to determine the highest prediction accuracy (medsuterms of recall and
precision) that can be achieved depending on specific regeints on the predic-
tions. For example, one type of the latter questionisasv accurately can we predict
the behavior of a Grid site X minutes ahead of time?

Selecting the target attributes.

First we study whicls amattributes are most interesting in terms of prediction accu
racy and variance. We compute recall and precision for eagtbmation of queue

/ samattribute. Figure 1 shows these results for each particdanattribute av-
eraged over all queues. The preliminary conclusion fronfithee is that most of
the samattributes (i.e., 12 out of the 14) are good choices for yigjaa high re-
call/precision.

Consequently, we also considered fa#dure ratio: the ratio of all samples in-
dicating a failure (in respect to the chosen target attejptd all samples. Figure
2 shows these values for easlam attribute, averaged over all queues. The at-
tributessam bi , sam gfal, sam csh, sam ver andsam swdi r had a
low failure ratio and standard deviation and were consetijuercluded from fur-
ther consideration.

We additionally ranked the remaining attributes accordmgheir importance
and their recall values, and consequently decided to owlydon the following two
attributes:

e sam-js: This is a test that submits a simple job for execution to thid @nd then
seeks to retrieve that job’s output from the Ul. The test sads only if the job
finishes successfully and the output is retrieved.

e sam-rgma: R-GMA [2] is the Relational Grid Monitoring Architecturehich
makes all Grid monitoring data appear like one large Retali®atabase that



Improving the Dependability of Grids via Short-Term FadRredictions 9

may be queried in order to find the information required. Tlaen r gna test
tries to insert a tuple and run a query for that tuple. Theregstns success if all
operations are successful.

Figure 3 shows that the recall sam r gnma varies strongly among the queues.
We observed a similar behavior for the failure indicas@amt j s but omit these
results for brevity.

Data characteristics and accuracy.

[ Recall

== Failure ratio

Recall of sam—js / Failure ratio of sam—js

T III'f|||| “
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Queue index (relabeled by growing failure ratio)

Fig. 4 Recall vs. sorted failure ratio sfam j s for all 197 queues

Next, we investigated the key characteristics of the dathanv their variations
influence the prediction accuracy. For each of the 197 quanédor the two tar-
get attributesgam j s andsam r gma) we computed the failure ratio as defined
above. We then sorted all queues by increasing failuresaim plotted the cor-
responding recall values for predictions with standardiesl As seen in Figure 4
there is obviously no relationship between failure ratid prediction accuracy. The
same conclusions apply for tlsam r gma attribute.

We have also inspected visually the failure patterns owee iin our data. Typ-
ically, an occurrence of a failure or non-failure is folladvby a large number of
samples of the same kind, i.e., the failure state does notgehfiequently; see top
graph in Figure 5. Also typically the prediction errors ocaght after the change
in the failure state. This indicates that the value of thé éstorical sample of the
target attribute was a good indicator of its future value.
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Fig. 5 Comparison of true and predicted failures for a typical ivakof data (queue number 6,
attributesam j s, samples 27100 to 27500)

Effects of different classification algorithms.

Despite the theoretical knowledge and practical evidemaerto classification algo-
rithm can perform significantly better than others [8, 1] weerienced substantial
deviations in recall and precision values for differentoaithms, in the absence of
attribute selection. We attribute this to the potentialybthdimensionality of the in-
put data (up to 40 attributes if all input groups are used)aralatively large noise
in the data. Figure 6 shows the recall values of five classificalgorithms (see
[15]) for the attribute sam-js averaged over 10 randomlgaeld queues (indexes
6, 9, 19, 54, 62, 75, 86, 137, 163, 188) without and with anbatte selection al-
gorithm. Other algorithms such as k-nearest neighbor ifikaser Support Vector
Machine did not produce representative results due to mgorimplementation
problems in the used libraries [16, 15]. Figure 6 tells ustina AdaBoost algorithm
(combined with Stumps) yielded best recall values. Furtioee, attribute selection
improved the accuracy in all cases but for C4.5. Despiteisfféttt, C4.5 has been
used as it had very small running time compared e.g. to AdaBoo

4 Conclusions

In this paper we attack the problem of low reliability in jobrapletion of Grid
systems by means of proactive failure detection. Spedifjcak predict site fail-
ures on short-term time scale by deploying classificatigor@thms that discover
the relationships between site performance variables absesjuent failures. Our
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experimental evaluation on a 30-day trace from 197 EGEE egishows that the
accuracy of results can be significantly high in many cases.
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