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yAbstra
tWeb 
rawlers are the key 
omponent of servi
es running on Internet and providing sear
hingand indexing support for the entire Web, for 
orporate Intranets and large portal sites. Morere
ently, 
rawlers have also been used as tools to 
ondu
t fo
used Web sear
hes and to gatherdata about the 
hara
teristi
s of the WWW. In paper, we study the employment of 
rawlersas a programmable, s
alable, and distributed 
omponent in future Internet middleware infras-tru
tures and proxy servi
es. In parti
ular, we present the ar
hite
ture and implementation of,and experimentation with WebRACE, a high-performan
e, distributed Web 
rawler, �lteringserver and obje
t 
a
he. We address the 
hallenge of designing and implementing modular,open, distributed, and s
alable 
rawlers, using Java. We des
ribe our design and implemen-tation de
isions, and various optimizations. We dis
uss the advantages and disadvantages ofusing Java to implement the WebRACE-
rawler, and present an evaluation of its performan
e.WebRACE is designed in the 
ontext of eRACE, an extensible Retrieval Annotation Ca
hingEngine, whi
h 
olle
ts, annotates and disseminates information from heterogeneous Internetsour
es and proto
ols, a

ording to XML-en
oded user pro�les that determine the urgen
y andrelevan
e of 
olle
ted information.1 Introdu
tionIn this paper we present the ar
hite
ture and implementation of, and early experimentation withWebRACE, a prototype HTTP Retrieval, Annotation and Ca
hing Engine. WebRACE is part of amore generi
 system, 
alled eRACE (extensible Retrieval, Annotation and Ca
hing Engine), whi
h isa distributed middleware infrastru
ture that enables the development and deployment of informationdissemination servi
es on Internet. eRACE servi
es 
olle
t information from heterogeneous Internetsour
es a

ording to pre-registered, XML-en
oded user pro�les. These pro�les drive the 
olle
tion



of information and determine the relevan
e and the urgen
y of 
olle
ted information. eRACE o�ersa fun
tionality that goes beyond the 
apabilities of traditional Web servers and proxies, providingsupport for intelligent personalization, 
ustomization and trans
oding of 
ontent, to mat
h theinterests and priorities of individual end-users through �xed and mobile terminals. It enables thedevelopment of new servi
es and the easy re-targetting of existing servi
es to new terminal devi
es.WebRACE is the Web-spe
i�
 proxy of eRACE. It 
rawls the Web to retrieve do
uments a

ord-ing to user pro�les. The system subsequently 
a
hes and pro
esses retrieved do
uments. Pro
essingis guided by pre-de�ned user queries and 
onsists of keywords-sear
hes, title-extra
tion, summariz-ing, 
lassi�
ation based on relevan
e with respe
t to user-queries, estimation of priority, urgen
y,et
. WebRACE pro
essing results are en
oded in a WebRACE-XML grammar and fed into a dis-semination server, whi
h sele
ts dynami
ally among a suite of available 
hoi
es for informationdissemination, su
h as \push" vs. \pull," the formatting and trans
oding of data (HTML, WML,XML), the 
onne
tion modality (wireless vs. wire-based), the 
ommuni
ation proto
ol employed(HTTP, GSM/WAP, SMS), et
.In this paper we des
ribe our implementation experien
e with using Java to develop the high-performan
e Crawler, Annotation Engine and Obje
t Ca
he of WebRACE. We also des
ribe a num-ber of te
hniques employed to a
hieve high-performan
e, su
h as distributed design to enable theexe
ution of 
rawler modules to di�erent ma
hines, support for multithreading, 
ustomized memorymanagement, employment of persistent data stru
tures with disk-
a
hing support, optimizations ofthe Java 
ore libraries for TCP/IP and HTTP 
ommuni
ation, et
.The remaining of the paper is organized as follows: Se
tion 2 presents and overview of the We-bRACE system ar
hite
ture and the 
hallenges addressed in our work. Se
tion 3 des
ribes the Javaimplementation of a high-performan
e persistent queue used in a number of WebRACE 
omponents.Se
tions 4 and 5 des
ribe the design and implementation of a Crawler and Obje
t Ca
he, used toretrieve and store 
ontent from the Web. Se
tion 6 presents the Filtering Pro
essor that analyzes the
olle
ted information, a

ording to user-pro�les. Finally, we 
on
lude in Se
tion 7 with 
on
lusionsand future work.2 WebRACE Design and Implementation ChallengesThe eRACE infrastru
ture 
onsists of proto
ol-spe
i�
 Agent-Proxies, like mailRACE, newsRACEand dbRACE, that gather information from POP3 email-a

ounts, USENET NNTP-news, and Web-database queries, respe
tively. WebRACE is the Agent-Proxy of eRACE that 
olle
ts, pro
essesand 
a
hes 
ontent from information sour
es on the WWW, a

essible through the HTTP proto
ols(HTTP/1.0, HTTP/1.1), a

ording to eRACE user-pro�les. Other eRACE proxies have the samegeneral ar
hite
ture with WebRACE, di�ering only in the implementation of their proto
ol-spe
i�




Figure 1: WebRACE System Ar
hite
ture.proxy engines.WebRACE is 
omprised of two basi
 
omponents, the Mini-
rawler and the Annotation Engine,whi
h operate independently and asyn
hronously (see Figure 1). Both 
omponents 
an be distributedto di�erent 
omputing nodes, exe
ute in di�erent Java heap spa
es, and 
ommuni
ate through apermanent so
ket link; through this so
ket, the Mini-
rawler noti�es the Annotation Engine everytime it fet
hes and 
a
hes a new page in the Obje
t Ca
he. The Annotation Engine 
an then pro
essthe fet
hed page asyn
hronously, a

ording to pre-registered user pro�les or other 
riteria.In the development of WebRACE we address a number of 
hallenges. First is the design andimplementation of a user-driven 
rawler. Typi
al 
rawlers employed by major sear
h engines su
has Google [5℄, start their 
rawls from a 
arefully 
hosen �xed set of \seed" URL's. In 
ontrast, theMini-
rawler of WebRACE re
eives 
ontinuously 
rawling dire
tives whi
h emanate from a queue ofstanding eRACE requests (see Figure 1). These requests 
hange dynami
ally with shifting eRACE-user interests, updates in the base of registered users, 
hanges in the set of monitored resour
es, et
.Se
ond, is the design of a 
rawler that monitors Web-sites exhibiting frequent updates of their
ontent. WebRACE should follow and 
apture these updates so that interested users are noti�edby eRACE a

ordingly. Consequently, WebRACE is expe
ted to 
rawl and index parts of the Webunder short-term time 
onstraints and keep multiple versions of the same Web-page in its store,until all interested users re
eive the 
orresponding alerts.Similarly to personal and site-spe
i�
 
rawlers like SPHINX [20℄ and NetAtta
he Pro [16℄, We-bRACE is 
ustomized and targets spe
i�
 Web-sites. These features, however, must be sustainedin the presen
e of a large and in
reasing user base, with varying interests and di�erent servi
e-level



requirements. In this 
ontext, WebRACE must be s
alable, sustaining high-performan
e and shortturn-around times when serving many users and 
rawling a large portion of the Web. To this end,it should avoid dupli
ation of e�ort and 
ombine similar requests when serving similar user pro�les.Furthermore, it should provide built-in support for QoS poli
ies involving multiple servi
e-levels andservi
e-level guarantees. Consequently, the s
heduling and performan
e requirements of WebRACE
rawling and �ltering fa
e very di�erent 
onstraints than systems like Google [5℄, Mer
ator [14℄,SPHINX [20℄ or NetAtta
he Pro [16℄.Finally, WebRACE is implemented entirely in Java [11℄. Its implementation 
onsists of approx-imately 5500 lines of 
ode, 2649 of whi
h 
orrespond to the Mini-
rawler implementation, 1184 tothe Annotation Engine, 367 to the SafeQueue data stru
ture, and 1300 to 
ommon I/O libraries.Java was 
hosen for a variety of reasons. Its obje
t-oriented design enhan
es the software develop-ment pro
ess, supports rapid prototyping and enables the re-use and easy integration of existing
omponents. Java 
lass libraries provide support for key features of WebRACE: platform indepen-den
e, multithreading, network programming, high-level programming of distributed appli
ations,string pro
essing, 
ode mobility, 
ompression, et
. Other Java features, su
h as automati
 garbage
olle
tion, persisten
e and ex
eption handling, are 
ru
ial in making our system more tolerant torun-time faults.The 
hoi
e of Java, however, 
omes with a 
ertain risk-fa
tor that arises from known performan
eproblems of this programming language and its run-time environment. Notably, performan
e androbustness are issues of 
riti
al importan
e for a system like WebRACE, whi
h is expe
ted to fun
tionas a server, to run 
ontinuously and to sustain high-loads at short periods of time. In our experiments,we found the performan
e of Java SDK 1.3 satisfa
tory when used in 
ombination with the JavaHotSpot Server VM [19, 18℄. Furthermore, the Garbage Colle
tor, whi
h seemed to be a problem withearlier Java versions, has a substantially improved performan
e and e�e
tiveness under Java v.1.3.Numerous experiments with earlier versions of WebRACE, however, showed that memory man-agement 
annot rely entirely on Java's garbage 
olle
tion. During long 
rawls, memory allo
ationin
reased with 
rawl size and duration, leading to over-allo
ation of heap spa
e, heap-spa
e over
owex
eptions, and system 
rashes. Extensive performan
e and memory debugging with the OptimizeItpro�ler [25℄ identi�ed a number of Java 
ore 
lasses that allo
ated new obje
ts ex
essively and
aused heap-spa
e over
ows and performan
e degradation. Consequently, we had to develop ourown data-stru
tures that use a bounded amount of heap-spa
e regardless of the 
rawl size, andmaintain part of their data on disk. Furthermore, we re-wrote some of the mission-
riti
al Java
lasses, streamlining very frequent operations. More details are given in the se
tions that follow.



Figure 2: SafeQueue Ar
hite
ture.3 SafeQueue: A High-performan
e QueueAt the 
ore of WebRACE lies SafeQueue, a data-stru
ture that we designed and implemented inJava to guarantee the eÆ
ient and robust operation of our agent-proxy. Queues are used in systemswhere the rate of in
oming requests is larger than the rate of servi
ed requests, or where this relationis unknown in advan
e. Usually, Internet systems in
orporate queues at the Appli
ation Layer toensure that in
oming requests will not be \lost" during periods of bursty load, system 
rashes, et
.SafeQueue (SQ) is a typi
al FIFO queue used in a number of 
riti
al 
omponents of WebRACE;for example, WebRACE maintains its pending URL requests while 
rawling the Web and pro
essingdownloaded Web pages as Java obje
ts in a SQ data stru
ture. During a long 
rawl, millions of URLobje
ts would have to be inserted and deleted from the queue. Consequently, an implementation ofSafeQueue as a java.util.LinkList 
omponent of Java [11℄ would result to an ex
essive numberof expensive 
alls to obje
t 
onstru
tors, the 
ontinuous allo
ation and de-allo
ation of obje
ts andan in
reased a
tivity of the Garbage Colle
tor, leading to performan
e degradation and frequent
rashes due to heap-memory over
ows.To over
ome these problems, we implemented SafeQueue as a 
ir
ular array of QueueNode obje
tswith its own memory-management me
hanism, whi
h enables the re-use of obje
ts and minimizes thegarbage-
olle
tion overhead. Moreover, we in
orporated support for persisten
e, over
ow 
ontrol,disk 
a
hing, multi-threaded a

ess, and fast indexing to avoid the insertion of dupli
ate QueueNodeentries (see Figure 2).All memory required for the SafeQueue stru
ture is bounded and pre-allo
ated during initializa-tion; no new QueueNode obje
ts are allo
ated or dis
arded during the exe
ution of WebRACE. This



is a
hieved with the implementation of a reset() method in the QueueNode 
lass, whi
h 
leansthe various obje
ts 
ontained in a QueueNode obje
t, without de-allo
ating the obje
t itself fromthe heap. SafeQueue implements a variety of blo
king (get(), add()) and non-blo
king methods(isFull(), isEmpty(), nodesServed()), whi
h provide a programmer with transparent a

ess todata lo
ated in the queue. The add() method makes sure that the queue is not full and assigns datato the �rst available QueueNode. The get() method returns the 
ontents of SafeQueue's head andreleases the 
orresponding obje
t.SafeQueue implements an over
ow-management me
hanism as follows: if the queue is full whenan add() request is issued, SafeQueue withholds and returns the �rst available QueueNode of theOver
owBu�er (see Figure 2, point 3). As soon as this bu�er is �lled, its 
ontents are 
ompressed,serialized and 
ushed to se
ondary storage by the Over
owThread. This thread maintains a 
ounterthat is in
remented every time a bu�er is 
ushed to disk to provide unique names to stored bu�ers.Whenever QueueNodes are relinquished, the ReloaderThread is invoked and fet
hes QueueNodeobje
ts stored in over
ow bu�ers and se
ondary storage (see Figure 2, point 7).Many dupli
ate requests are generated during 
rawling be
ause di�erent Web pages often 
on-tain links to the same resour
e. SafeQueue's Index addresses this problem by ensuring that notwo identi
al QueueNodes will be pla
ed in SafeQueue. This me
hanism is implemented with ajava.util.HashTable, whi
h indexes queued QueueNode's. Ea
h time the add() method is 
alled,the key of the respe
tive QueueNode obje
t is added to the SafeQueue Index. If the QueueNodekey is already in the HashTable, the obje
t is dropped. On the other hand, ea
h time we invoke theget() method to remove an obje
t from the queue, its key is also removed from the index.Java-based systems running for long periods of times are exposed to system failures, Java VirtualMa
hine 
rashes, memory over
ow ex
eptions, et
. Fault-toleran
e in su
h systems is very importantbe
ause a 
rawling pro
ess might require many days. SafeQueue provides persisten
e with thedeployment of a Persisten
yThread, whi
h saves SafeQueue on se
ondary storage periodi
ally andasyn
hronously, without blo
king the operation of the Queue. In 
ase of WebRACE failure, whenthe server restarts, it restores SafeQueue to its last saved state. This pro
edure is expensive be
ausethe Persisten
yThread has to de
ompress and de-serialize the queue. The time required is alwaysless than 1 minute for a Queue with 106 nodes. The interval of SafeQueue's storage is 
on�gurablethrough the server's settings.4 The Mini-
rawler of WebRACEA 
rawler is a program that traverses the hypertext stru
ture of the Web automati
ally, starting froman initial hyper-do
ument and re
ursively retrieving all do
uments a

essible from that do
ument.Web 
rawlers are also referred to as robots, wanderers, or spiders. Typi
ally, a 
rawler exe
utes a



basi
 algorithm that takes a list of \seed" URL's as its input, and repeatedly exe
utes the followingsteps [14℄: It initializes the 
rawling engine with the list of seed URL's and pops a URL out ofthe URL list. Then, it determines the IP address of the 
hosen URL's host name, opens a so
ket
onne
tion to the 
orresponding server, asks for the parti
ular do
ument, parses the HTTP responseheader and de
ides if this parti
ular do
ument should be downloaded. If this is so, the 
rawlerdownloads the 
orresponding do
ument and extra
ts the links 
ontained in it; otherwise, it pro
eedsto the next URL. The 
rawler ensures that ea
h extra
ted link 
orresponds to a valid and absoluteURL, invoking a URL-normalizer to \de-relativize" it, if ne
essary. Then, the normalized URL isappended to the list of URL's s
heduled for download, provided this URL has not been fet
hedearlier.In 
ontrast to typi
al 
rawlers [20, 14℄, WebRACE refreshes 
ontinuously its URL-seed list fromrequests posted by the eRACE Request S
heduler. These requests have the following format:[Link, ParentLink, Depth, fownersg℄Link is the URL address of the Web resour
e sought, ParentLink is the URL of the page that
ontained Link, Depth de�nes how deep the 
rawler should \dig" starting from the page de�ned byLink, and fownersg 
ontains the list of eRACE users potentially interested in the page that will bedownloaded.The Mini-
rawler is 
on�gurable through three �les: a) /
onf/webra
e.
onf, whi
h 
ontainsgeneral settings of the engine, su
h as the 
rawling start page, the depth of 
rawling, intervals betweensystem-state save, the size of key data-stru
tures maintained in main memory, et
.; b) /
onf/mime.types,whi
h 
ontrols what Internet media types should be gathered by the 
rawler; 
) /
onf/ignore.types,whi
h 
ontrols what �le extensions should be blo
ked by the engine; URL resour
es with a suÆxlisted in ignore.types will not be downloaded regardless of the a
tual mime-type of that �le's
ontent. Making the Mini-
rawler 
on�gurable through these 
on�guration �les renders it adaptableto spe
i�
 
rawl tasks and ben
hmarks. The 
rawling algorithm des
ribed in the previous se
tionrequires a number of 
omponents, whi
h are listed and des
ribed in detail below:� The URLQueue for storing links that remain to be downloaded.� The URLFet
her, whi
h downloads do
uments using the HTTP proto
ol. The URLFet
her
ontains also a URL extra
tor and normalizer, whi
h extra
ts links from a do
ument andensures that the extra
ted links are valid and absolute URL's.� The Obje
t Ca
he, whi
h stores and indexes downloaded do
uments, and ensures that nodupli
ate do
uments are maintained in 
a
he. The Obje
t Ca
he, however, 
an maintainmultiple versions of the same URL, if its 
ontents have 
hanged with time.



Figure 3: URL Fet
hers.4.1 The URLQueueThe URLQueue is an implementation of the SafeQueue data stru
ture, 
omprised of URLQueueN-ode's. URLQueueNode's are Java obje
ts that 
apture requests 
oming from the Request S
hedulerof eRACE. During the server's initialization, WebRACE allo
ates the full size of the URLQueue onthe heap. The length of the URLQueue is determined during the server's initialization from We-bRACE 
on�guration �les. At that time, our program allo
ates the heap-spa
e required to storeall the nodes of the queue. We 
hose this approa
h instead of allo
ating Queue Nodes on demandfor memory eÆ
ien
y and performan
e. In our experiments, we have 
on�gured the URLQueue sizeto two million nodes, i.e., two million URL's. This number 
orresponds to approximately 27MB ofheap spa
e. A larger URLQueue 
an be employed, however, at the expense of heap size available forother 
omponents of WebRACE. We are 
urrently investigating ways to handle larger URLQueuesizes by making SafeQueue distributed [12℄.4.2 The URLFet
herThe URLFet
her is a WebRACE module that fet
hes a do
ument from the Web when provided witha 
orresponding URL. The URLFet
her is implemented as a simple Java-thread, whi
h supportsboth HTTP/1.0 [3℄ and HTTP/1.1 [10℄. Similarly to 
rawlers like Mer
ator [14℄, WebRACE supportsmultiple URLFet
her threads running 
on
urrently, grabbing pending requests from the URLQueue,
ondu
ting syn
hronous I/O to download WWW 
ontent, and overlapping I/O with 
omputation.In the 
urrent version of WebRACE, resour
e management and thread s
heduling is left to Java'sruntime system and the underlying operating system. The number of available URLFet
her threads,however, 
an be 
on�gured during the initialization of the WebRACE-server. It should be notedthat a very large number of URLFet
her threads 
an lead to serious performan
e degradation of oursystem, due to ex
essive syn
hronization and 
ontext-swit
hing overhead. In future work we plan toinvestigate s
hemes involving Java mobile agents to implement agile and self-adaptable fet
hers [8℄.The URLFet
her supports the Robots Ex
lusion Proto
ol (REP), whi
h allows Web masters tode
lare parts of their sites o�-limits to 
rawlers. The REP is driven by a text do
ument lo
ated



# robots.txt for http://www.w3.org/User-agent: *Disallow: /TeamDisallow: /Proje
tDisallow: /SystemsDisallow: /WebDisallow: /HistoryDisallow: /Out-Of-DateTable 1: Robot.txt �le.in the root of a Web Server, spe
ifying whi
h resour
es should not been a

essed by 
rawlers. Atypi
al Robot.txt �le is shown in Table 1. In addition to supporting the standard Robots Ex
lusionProto
ol, WebRACE supports the ex
lusion of parti
ular domains and URL's. To implement theex
lusion proto
ol, WebRACE provides a Blo
kDomain hash table, whi
h 
ontains all domains andURL's that should be blo
ked.The URLFet
her uses the HTTP support provided by the JDK 1.2 Java 
lass libraries, whi
henables the 
rawler to spe
ify how long a so
ket 
an remain open \waiting" for the Web server to re-spond, through its So
ket.setSoTimeout()method. In the 
urrent java.net.So
ket-
lass imple-mentation, however, so
ket obje
ts are not reusable. Therefore, we had to modify the java.net.So
ketimplementation, adding an extra \reset(String host, int port)" method that enables the reuseof a so
ket obje
t for a di�erent host. Thus, we managed to redu
e signi�
antly the overhead of
ontinuously 
onstru
ting and destru
ting so
ket obje
ts.In addition to handling HTTP 
onne
tions, the URLFet
her pro
esses the do
uments it down-loads from the Web. To this end, it invokes methods of its URLExtra
tor and normalizer sub-
omponent. The URLExtra
tor extra
ts links (URL's) out of a page, disregards URL's pointing touninteresting resour
es, normalizes the URL's so that they are valid and absolute and, �nally, addsthese links to the URLQueue. The URL-extra
tor is exposed to all kinds of URL links that pointto media types whi
h may not be interesting for a parti
ular, spe
ialized 
rawl.As shown in Figure 4, the URLExtra
tor and normalizer works as a 6-step pipe within theURLFet
her. Extra
tion and normalization of URL's works as follows: in step 1, a fastfind()method identi�es 
andidate URL's in the web-page at hand, removes internal links (starting from\#"), mailto links (\mailto:"), et
, and extra
ts the �rst URL that is 
andidate for pro
essing.The eÆ
ient implementation of fast�nd is 
hallenging due to the abundan
e of badly formed HTML
ode on the Web. As an alternative solution we 
ould reuse 
omponents su
h as Tidy [23℄ or itsJava port, JTidy [17℄, to transform the downloaded Web page into well-formed HTML, and thenextra
t all links using a generi
 XML parser. This solution proved to be too slow, in 
ontrast to our



Figure 4: URL Extra
tor Ar
hite
turehttp URL = ``http:'' ``=='' host [ ``:'' port ℄ [ abs path℄host = < A legal Internet host domain name or IP address(in dotted-de
imal form), as defined by Se
tion 2.1 of RFC 1123 >port = *DIGITabs path = Absolute path of the resour
e starting from ``/''Table 2: Valid URL Syntax.fastfind() method whi
h extra
ts links from a 70KB web page in approximately 80ms.In step 2, a Proa
tive Link Filtering (PLF) method is invoked to disregard links to resour
es thatare of no interest to the parti
ular 
rawl. PLF uses the /
onf/ignore.types 
on�guration �le ofWebRACE to determine the �le extensions that should be blo
ked during the URL extra
tion phase.De
iding if a link should be dropped takes less than 1ms and saves WebRACE of the unne
essarye�ort to normalize a URL, add it to the URLQueue, and open an HTTP 
onne
tion, just to seethat this do
ument has a media type that is not 
olle
ted by the 
rawler.Step 3 deals with the normalization of the URL at hand. To this end, we use our URL-normalizermethod, whi
h alters links that do not 
omply to the s
heme-spe
i�
 syntax of HTTP URL's, asde�ned in the HTTP RFCs (see Table 2) [3, 10℄. The URL-normalizer applies a set of heuristi
 
orre
-tions, whi
h give on the average a 95% of valid and normalized URL's. For ea
h Web page pro
essed,the URL-normalizer made extensive use of the java.net.URL library while 
he
king the synta
ti
validity of the normalized URL. Nevertheless, this library 
reates numerous obje
ts that 
annot bereused, resulting to ex
essive heap-memory 
onsumption, an in
reased a
tivity of the garbage 
olle
-tor, and signi�
ant performan
e degradation. Therefore, we implemented webra
e.net.fastURL,a streamlined URL 
lass that enables the reuse of URL obje
ts via its reparse() method. Thisoptimization a
hieves twofold and threefold improvements of the normalization performan
e underSolaris and Windows NT respe
tively. This 
an be seen from Figure 5, where we present the resultsof a java.net.URL vs. webra
e.net.fastURL performan
e ben
hmark. In this ben
hmark, weevaluated webra
e.net.URL by instantiating up to 108 new URL obje
ts. The ben
hmark ran on a
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Figure 5: webra
e.net.URL Performan
e.Sun Enterprise E250 Server with 2 UltraSPARC-II pro
essors at 400MHz, with 512MB memory,running the Solaris 5.7 operating system. The URL-normalizer took on the average 200ms for 100URL's.Step 4 �lters out links that belong to domains that are blo
ked or ex
luded by the RobotEx
lusion Proto
ols. Steps 1 through 4 are exe
uted repeatedly until all links of the do
umentat hand have been pro
essed. Step 5 logs the URL's that failed the normalization pro
ess fordebugging purposes. Finally, at step 6, all extra
ted and normalized URL's are 
olle
tively addedto the URL-Queue and stored to the Meta-Info Store. Caution is taken to drop dupli
ate URL's.The URL extra
tion and normalization pipe requires an average of 300ms to extra
t the linksfrom a 70KB HTML page and to normalize them appropriately, when exe
uted on our Sun En-terprise E250 Server. To evaluate the overall performan
e of the URLFet
her, we ran a number ofexperiments, laun
hing many 
on
urrent fet
hers that try to establish TCP 
onne
tions and fet
hdo
uments from Web servers lo
ated on our 10/100Mbits LAN. Ea
h URLFet
her pre-allo
atesall of its required resour
es before the ben
hmark start-up. The ben
hmarks ran on a 360MHzUltraSPARC-IIi, with 128MB RAM and Solaris 5.7. As we 
an see from Figure 6, the throughputin
reases with the number of 
on
urrent URLFet
hers, until a peak P is rea
hed. After that point,throughput drops substantially. This 
rawling pro
ess took a very short time (3 minutes with onlyone thread), whi
h is a
tually the reason why the peak value P is 40. In this 
ase, URLQueueempties very fast, limiting the utilization of URLFet
her's near the ben
hmark's end. Running thesame ben
hmark for a lengthy 
rawl we observed that 100 
on
urrent URLFet
her's a
hieve optimal
rawling throughput.
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Figure 6: URL-fet
her throughput degradation.5 The Obje
t Ca
heTheObje
t Ca
he is the 
omponent responsible for managing do
uments 
a
hed in se
ondary storage.It is used for storing downloaded do
uments that will be retrieved later for pro
essing, annotationand subsequent dissemination to eRACE users. The Obje
t Ca
he, moreover, 
a
hes the 
rawlingstate in order to 
oalles
e similar 
rawling requests and to a

elerate the re-
rawling of WWWresour
es that have not 
hanged sin
e their last 
rawl.The Obje
t Ca
he is 
omprised of an Index, aMeta-Info Store and an Obje
t Store (see Figure 1).The Index resides in main memory and indexes do
uments stored on disk; it is implemented as ajava.util.HashTable, whi
h 
ontains URL's that have been fet
hed and stored in WebRACE. Thatway, URLFet
her's 
an 
he
k if a page has been re-fet
hed, before de
iding whether to download its
ontents from the Web. The Meta-Info Store 
olle
ts and maintains meta-information for 
a
heddo
uments. Finally, the Obje
t Store is a dire
tory in se
ondary storage that 
ontains a 
ompressedversion of downloaded resour
es.5.1 Meta-Info StoreThe Meta-Info Store maintains a meta-information �le for ea
h Web do
ument stored in the Obje
tCa
he. Furthermore, a key for ea
h meta-info �le is kept with the Index of the Obje
t Ca
he toallow for fast look-ups. The 
ontents of a meta-info �le are en
oded in XML and in
lude:� The URL address of the 
orresponding do
ument;� The IP address of its origin Web server;



< webra
e:url>http:==www.
s.u
y.a
.
y=~epl121=< =webra
e:url>< webra
e:ip>194.42.7.2< =webra
e:ip>< webra
e:kbytes>1< =webra
e:kbytes>< webra
e:ifmodi�edsin
e>989814504121< =webra
e:ifmodi�edsin
e><webra
e:header>HTTP=1.0 200 OKServer: Nets
ape-FastTra
k=2.01Date: Fri, 11 May 2001 13:50:10 GMTA

ept-ranges: bytesLast-modified: Fri, 26 Jan 2001 21:46:08 GMTContent-length: 1800Content-type: text=html< =webra
e:header><webra
e:links>http:==www.
s.u
y.a
.
y=Computing=labs.htmlhttp:==www.
s.u
y.a
.
y=http:==www.
s.u
y.a
.
y=helpdesk< =webra
e:links>Table 3: Example of meta-information �le.� The do
ument size in KiloBytes;� The Last-Modi�ed �eld returned by the HTTP proto
ol during download;� The HTTP response header, and all extra
ted and normalized links 
ontained in this do
ument.An example of a meta-info �le is given in Table 3. Meta-information is used to a

elerate the re-
rawling of visited Web sites as follows: Normally, a URLFet
her exe
utes the following algorithmto download a Web page:1. Retrieve a QueueNode from the URLQueue and extra
t its URL.2. Retrieve the URL and analyze the HTTP-header of the response message. If the host server
ontains the message \200 Ok," pro
eed to the next step. Otherwise, 
ontinue with the nextQueueNode.3. Download the body of the do
ument and store it in main memory.4. Extra
t and normalize all links 
ontained in the downloaded do
ument.5. Compress and save the do
ument in the Obje
t Ca
he.



6. Save a generated meta-info �le in the Meta-Info Store.7. Add the key (hashCode) of the fet
hed URL to the Index of the Obje
t Ca
he.8. Notify the Annotation Engine that a new do
ument has been fet
hed and stored in the Obje
tCa
he.9. Add all extra
ted URL's to the URLQueue.To avoid the overhead of the repeated downloading and analysis of do
uments that have not
hanged, we alter the above algorithm and use the Meta-Info Store to de
ide whether to downloada do
ument that is already 
a
hed in WebRACE. More spe
i�
ally, we 
hange the se
ond and thirdsteps of the above 
rawling algorithm as follows:2. A

ess the Index of the Obje
t Ca
he and 
he
k if the URL retrieved from the URLQueue
orresponds to a do
ument fet
hed earlier and 
a
hed in WebRACE.3. If the do
ument is not in the Ca
he, download it and pro
eed to step 4. Otherwise:� Load its meta-info �le and extra
t the HTTP Last-Modified time-stamp assigned by theorigin server. Open a so
ket 
onne
tion to the origin server and request the do
umentusing a 
onditional HTTP GET 
ommand (if-modified-then), with the extra
ted time-stamp as its parameter.� If the origin server returns a \304 (not modified)" response and no message-body,terminate the fet
hing of this parti
ular resour
e, extra
t the do
ument links from itsmeta-info �le, and pro
eed to step 8.� Otherwise, download the body of the do
ument, store it in main memory and pro
eed tostep 4.If a 
a
hed do
ument has not been 
hanged during a re-
rawl, the URLFet
her pro
eeds with 
rawlingthe do
ument's outgoing links, whi
h are stored in the Meta-Info Store, and whi
h may have 
hanged.To assess the performan
e improvement provided by the use of the Meta-Info Store, we 
ondu
tedan experiment with 
rawling two 
lasses of Web sites. The �rst 
lass in
ludes servers that provide
ontent whi
h does not 
hange very frequently (University sites). The se
ond 
lass 
onsists ofpopular news-sites, sear
h-engine sites and portals (
nn.
om, yahoo.
om, msn.
om, et
.). For theseexperiments we 
on�gured WebRACE to use 150 
on
urrent URLFet
hers and ran it on our SunEnterprise E250 Server, with the Annotation Pro
essor running 
on
urrently on a Spar
 5.The diagram of Figure 7 (left) presents the progress of the 
rawl and re-
rawl operations for the�rst 
lass of sites. The time interval between the 
rawl and the subsequent re-
rawl was one hour;within that hour the 
rawled do
uments had not 
hanged at all. The delay observed for the re-
rawl
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Figure 7: Crawling vs. re-
rawling in WebRACE.operation is attributed to the HTTP \if-modi�ed-sin
e" validation messages and the overhead of theObje
t Ca
he. As we 
an see from this diagram, the employment of the Meta-Info Store results toan almost three-fold improvement in the 
rawling performan
e. Moreover, it redu
es substantiallythe network traÆ
 and the Web-servers' load generated be
ause of the 
rawl.The diagram of Figure 7 (right) presents our measurements from the 
rawl and re-
rawl opera-tions for the se
ond 
lass of sites. Here, almost 10% of the 993 downloaded do
uments 
hange be-tween subsequent re-
rawls. From this diagram we 
an easily see the performan
e advantage gainedby using the Meta-Info Store to 
a
he 
rawling meta-information. It should be noted, however, thatwithin the �rst 100mse
s of all 
rawl operations, 
rawling and re-
rawling exhibit pra
ti
ally thesame performan
e behavior. This is attributed to the fa
t that most of the 
rawled portals replyto our HTTP GET requests with \301 (Moved Permanently)'' responses, and re-dire
t our 
rawlerto other URL's. In these 
ases, the 
rawler terminates the 
onne
tion and s
hedules immediately anew HTTP GET operation to fet
h the requested do
uments from the re-dire
ted address.Finally, in Figure 8, we present measurements from a longer 
rawl that took 30mins to 
ompleteand produ
ed 11669 do
uments. This 
rawl was 
ondu
ted on our departmental Web server.6 The Annotation Engine (AE)The Annotation Engine pro
esses do
uments that have been downloaded and 
a
hed in the Ob-je
t Ca
he of WebRACE. Its purpose is to \
lassify" 
olle
ted 
ontent a

ording to user-interestsdes
ribed in eRACE pro�les. The meta-information produ
ed by the pro
essing of the AnnotationEngine is stored in WebRACE as annotation linked to the 
a
hed 
ontent. Pages whi
h are irrelevant
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Figure 8: Performan
e of a longer 
rawl.to user-pro�les are dropped from the 
a
he.Personalized annotation engines are not used in typi
al Sear
h Engines [5℄, whi
h employ general-purpose indi
es instead. To avoid the overhead of in
orporating a generi
 look-up index in WebRACEthat will be updated dynami
ally as resour
es are downloaded from the Web, we designed the AE sothat it pro
esses \on the 
y" downloaded pages. Therefore, ea
h time the Annotation Engine re
eivesa ``pro
ess(file,fusersg)'' request through the established so
ket 
onne
tion with the Mini-
rawler, it inserts the request in the Coordinator, whi
h is a SafeQueue data stru
ture (see Figure 9).Multiple Filtering Pro
essors remove requests from the Coordinator and pro
ess them a

ording tothe Uni�ed Resour
e Des
riptions (URD's) of eRACE users 
ontained in the request. Currently, theannotation engine implements a simple pattern-mat
hing algorithm looking for weighted keywordsthat are in
luded in the user-pro�les.6.1 URD's and ACI'sURD is an XML-en
oded data stru
ture that en
apsulates sour
e information, pro
essing dire
tivesand urgen
y information for Web servi
es monitored by eRACE. A typi
al URD request is shownin Table 4. The explanation of the URD s
heme is beyond the s
ope of this paper.URD's are stored in a single XML-en
oded do
ument, whi
h is managed by a persistent DOMdata manager (PDOM) [15℄. The Annotation Engine fet
hes the ne
essary URD's from the PDOMdata manager issuing XQL queries (eXtensible Query Language) to a GMD-IPSI XQL engine [15, 21℄.The GMD-IPSI XQL engine is a Java-based storage and query appli
ation developed by DarmstadtGMD for handling large XML do
uments. This engine is based on two key me
hanisms: a) a



Figure 9: WebRACE Annotation Engine.
<urd><uri timing= \600000" last
he
k = \97876750000" port= \80 >"http://www.
s.u
y.a
.
y/default.html < =uri><type proto
ol= \http" method= \pull" pro
esstype= \�lter"= ><keywords><keyword key= \ibm" weight= \1" = ><keyword key= \resear
h" weight= \3" = ><keyword key= \java" weight= \4" = ><keyword key= \xmlp4j" weight= \5" = >< =keywords><depth level= \4"= ><urgen
y urgent= \1"= >< =urd> Table 4: A typi
al URD.



publi
 Element get(String id) fString query = 00==urd[�id= � 00 + id + � \℄00;XQLResult r = XQL.exe
ute(query, do
);Element urd = (Element) r.getItem(0);gTable 5: Retrieving a URD-XML node from PDOM.persistent implementation of W3C-DOM Do
ument obje
ts [1℄; b) a full implementation of the XQLquery language. GMD-IPSI provides an eÆ
ient and reliable way to handle large XML do
umentsthrough PDOM, whi
h is a thread-safe and persistent XML-DOM implementation. PDOM supportsmain-memory 
a
hing of XML nodes, enabling fast sear
hes in the DOM tree. A PDOM �le isorganized in pages, ea
h 
ontaining 128 DOM nodes of variable length. When a PDOM node isa

essed by a W3C-DOM method, its page is loaded into a main memory 
a
he. The default 
a
hesize is 100 pages (12800 DOM nodes). Do
uments are parsed on
e and stored in Java serializedbinary form on se
ondary storage. The generated do
ument is a

essible to DOM operations dire
tly,without re-parsing. The XQL pro
essor is used to query PDOM �les. Table 5 illustrates the use ofan XQL 
ommand to extra
t a URD-XML node out of PDOM.The output of a �ltering pro
ess in the Annotation Engine is en
oded in XML and 
alled anACI (Annotated Ca
hed Information) [28℄; ACI's are stored in an XML-ACI PDOM database. ACIstands for Annotated Ca
hed Information and is an extensible data stru
ture that en
apsulatesinformation about the Web sour
e that 
orresponds to the ACI, the potential user-re
ipient(s) ofthe \alert" that will be generated by eRACE's Content Distribution Agents a

ording to the ACI,a pointer to the 
a
hed 
ontent, a des
ription of the 
ontent (format, �le size, extension), a 
lassi-�
ation of this 
ontent a

ording to its urgen
y and/or expiration time, and a 
lassi�
ation of thedo
ument's relevan
e with respe
t to the semanti
 interests of its potential re
ipient(s). The XMLdes
ription of the ACI's is extendible and therefore we 
an easily in
lude additional information init without having to 
hange the ar
hite
ture of WebRACE. Table 6 gives an example of a typi
alACI snippet. A more detailed des
ription of the ACI s
heme is beyond the s
ope of this paper.6.2 Filtering Pro
essorFiltering Pro
essor (FP) is the 
omponent responsible for evaluating if a do
ument mat
hes theinterests of a parti
ular eRACE-user, and for generating an ACI out of a 
rawled page (see Fig-ure 10). The Filtering Pro
essor works as a pipe of �lters: At step 1, FP loads and de
ompressesthe appropriate �le from the Obje
t Ca
he of WebRACE. At step 2, it removes all links 
ontainedin the do
ument and pro
eeds to step 3, where all spe
ial HTML 
hara
ters are also removed. At



<a
i owner = ``
syiazt1'' extension = ``html'' format= ``html''relevan
e= ``18'' updatetime= ``97876950000 filesize= ``2000''><uri>http://www.
s.u
y.a
.
y/default.html< =uri><urgen
y urgent= ``1''= ><do
base>969890.gzip< =do
base><expired expir= ``false'' = ><summary>This is a part of the do
ument with keywords 1)...< =summary>< =a
i> Table 6: ACI snippet.

Figure 10: The Filtering Pro
essor.step 4, any remaining text is added to a Keyword HashTable. Finally, at step 5, a pattern-mat
hingme
hanism loads sequentially all the required URD elements from the URD-PDOM and generatesACI meta-information, whi
h is stored in the ACI-PDOM (step 6). This pipe requires an averageof 200 mse
s to 
al
ulate the ACI for a 70KB Web page, with 3 potential re
ipients.In our experiments, we have 
on�gured the SafeQueue size of the Annotation Engine to 1000nodes, whi
h is more than enough, sin
e it is almost every time 
lear if the AE operates with 10Filtering Pro
essors and the Mini-
rawler with 100 URL-fet
hers. We have also observed that thenumber of pending requests in the AE SafeQueue has rea
hed a peak of 55 pending requests at aparti
ular run of our system.7 Con
lusions and Future WorkIn this paper, we presented WebRACE, a World-Wide Web \agent-proxy" that 
olle
ts, �lters and
a
hes Web do
uments. WebRACE is designed in the 
ontext of eRACE, an extensible RetrievalAnnotation Ca
hing Engine. eRACE 
olle
ts, annotates and disseminates information from hetero-geneous Internet sour
es and proto
ols (Web, email, newsgroups), a

ording to XML-en
oded user



pro�les that determine the urgen
y and relevan
e of 
olle
ted information. The main 
omponent ofWebRACE is a high-performan
e, distributed Web 
rawler and �ltering pro
essor, written entirelyin Java. Although a number of papers have been published on Web 
rawlers [20, 14, 7, 6, 24℄,proxy servi
es [4, 26℄, information dissemination systems [27, 2, 22℄ and Internet middleware [13, 9℄,the issue of in
orporating 
exible, s
alable and user-driven 
rawlers in middleware infrastru
turesremains open. Furthermore, the adoption of Java as the language of 
hoi
e in the design of Inter-net middleware and servers raises many doubts, primarily be
ause of performan
e and s
alabilityquestions. There is no question, however, that Web 
rawlers written in Java will be an important
omponent of su
h systems, along with modules that pro
ess 
olle
ted 
ontent.In our work, we address the 
hallenge of designing and implementing a modular, user-driven,open, distributed, and s
alable 
rawler and �ltering pro
essor, in the 
ontext of the eRACE mid-dleware. We des
ribe our design and implementation de
isions, and various optimizations. Further-more, we dis
uss the advantages and disadvantages of using Java to implement the 
rawler, andpresent an evaluation of its performan
e. To assess WebRACE's performan
e and robustness weran numerous experiments and 
rawls; several of our 
rawls lasted for days. Our system workedeÆ
iently and with no failures when 
rawling lo
al Webs in our LAN and University WAN, and theglobal Internet. Our experiments showed that our implementation is robust and reliable. Furtheroptimizations will be in
luded in the near future, so as to prevent our 
rawler from overloading re-mote Web servers with too many 
on
urrent requests. We also plan to investigate alternative queuedesigns and di�erent 
rawling strategies (breadth-�rst versus depth-�rst) that have been reportedto provide improved 
rawling eÆ
ien
y [7℄. Finally, we plan to investigate the employment of Dis-tributed Data Stru
tures [12℄ to further improve the s
alability and performan
e of mission-
riti
al
omponents of WebRACE.8 A
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