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Abstract

Web crawlers are the key component of services running on Internet and providing searching
and indexing support for the entire Web, for corporate Intranets and large portal sites. More
recently, crawlers have also been used as tools to conduct focused Web searches and to gather
data about the characteristics of the WWW. In paper, we study the employment of crawlers
as a programmable, scalable, and distributed component in future Internet middleware infras-
tructures and proxy services. In particular, we present the architecture and implementation of,
and experimentation with WebRACE, a high-performance, distributed Web crawler, filtering
server and object cache. We address the challenge of designing and implementing modular,
open, distributed, and scalable crawlers, using Java. We describe our design and implemen-
tation decisions, and various optimizations. We discuss the advantages and disadvantages of
using Java to implement the WebRACE-crawler, and present an evaluation of its performance.
WebRACE is designed in the context of eRACE, an extensible Retrieval Annotation Caching
Engine, which collects, annotates and disseminates information from heterogeneous Internet
sources and protocols,; according to XML-encoded user profiles that determine the urgency and

relevance of collected information.

1 Introduction

In this paper we present the architecture and implementation of, and early experimentation with
WebRACE, a prototype HTTP Retrieval, Annotation and Caching Engine. WebRACE is part of a
more generic system, called eRACE (extensible Retrieval, Annotation and Caching Engine), which is
a distributed middleware infrastructure that enables the development and deployment of information
dissemination services on Internet. eRACE services collect information from heterogeneous Internet

sources according to pre-registered, XML-encoded user profiles. These profiles drive the collection



of information and determine the relevance and the urgency of collected information. eRACE offers
a functionality that goes beyond the capabilities of traditional Web servers and proxies, providing
support for intelligent personalization, customization and transcoding of content, to match the
interests and priorities of individual end-users through fixed and mobile terminals. It enables the
development of new services and the easy re-targetting of existing services to new terminal devices.

WebRACE is the Web-specific proxy of eRACE. It crawls the Web to retrieve documents accord-
ing to user profiles. The system subsequently caches and processes retrieved documents. Processing
is guided by pre-defined user queries and consists of keywords-searches, title-extraction, summariz-
ing, classification based on relevance with respect to user-queries, estimation of priority, urgency,
etc. WebRACE processing results are encoded in a WebRACE-XML grammar and fed into a dis-
semination server, which selects dynamically among a suite of available choices for information
dissemination, such as “push” vs. “pull,” the formatting and transcoding of data (HTML, WML,
XML), the connection modality (wireless vs. wire-based), the communication protocol employed
(HTTP, GSM/WAP, SMS), etc.

In this paper we describe our implementation experience with using Java to develop the high-
performance Crawler, Annotation Engine and Object Cache of WebRACE. We also describe a num-
ber of techniques employed to achieve high-performance, such as distributed design to enable the
execution of crawler modules to different machines, support for multithreading, customized memory
management, employment of persistent data structures with disk-caching support, optimizations of
the Java core libraries for TCP/IP and HTTP communication, etc.

The remaining of the paper is organized as follows: Section 2 presents and overview of the We-
bRACE system architecture and the challenges addressed in our work. Section 3 describes the Java
implementation of a high-performance persistent queue used in a number of WebRACE components.
Sections 4 and 5 describe the design and implementation of a Crawler and Object Cache, used to
retrieve and store content from the Web. Section 6 presents the Filtering Processor that analyzes the
collected information, according to user-profiles. Finally, we conclude in Section 7 with conclusions

and future work.

2 WebRACE Design and Implementation Challenges

The eRACE infrastructure consists of protocol-specific Agent-Prozies, like mailRACE, newsRACE
and dbRACE, that gather information from POP3 email-accounts, USENET NNTP-news, and Web-
database queries, respectively. WebRACE is the Agent-Proxy of eRACE that collects, processes
and caches content from information sources on the WWW, accessible through the HTTP protocols
(HTTP/1.0, HTTP/1.1), according to eRACE user-profiles. Other eRACE proxies have the same

general architecture with WebRACE, differing only in the implementation of their protocol-specific
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Figure 1: WebRACE System Architecture.

proxy engines.

WebRACE is comprised of two basic components, the Mini-crawler and the Annotation Engine,
which operate independently and asynchronously (see Figure 1). Both components can be distributed
to different computing nodes, execute in different Java heap spaces, and communicate through a
permanent socket link; through this socket, the Mini-crawler notifies the Annotation Engine every
time it fetches and caches a new page in the Object Cache. The Annotation Engine can then process
the fetched page asynchronously, according to pre-registered user profiles or other criteria.

In the development of WebRACE we address a number of challenges. First is the design and
implementation of a user-driven crawler. Typical crawlers employed by major search engines such
as Google [5], start their crawls from a carefully chosen fixed set of “seed” URL’s. In contrast, the
Mini-crawler of WebRACE receives continuously crawling directives which emanate from a queue of
standing eRACE requests (see Figure 1). These requests change dynamically with shifting eRACE-

user interests, updates in the base of registered users, changes in the set of monitored resources, etc.

Second, is the design of a crawler that monitors Web-sites exhibiting frequent updates of their
content. WebRACE should follow and capture these updates so that interested users are notified
by eRACE accordingly. Consequently, WebRACE is expected to crawl and index parts of the Web
under short-term time constraints and keep multiple versions of the same Web-page in its store,
until all interested users receive the corresponding alerts.

Similarly to personal and site-specific crawlers like SPHINX [20] and NetAttache Pro [16], We-
bRACE is customized and targets specific Web-sites. These features, however, must be sustained

in the presence of a large and increasing user base, with varying interests and different service-level



requirements. In this context, WebRACE must be scalable, sustaining high-performance and short
turn-around times when serving many users and crawling a large portion of the Web. To this end,
it should avoid duplication of effort and combine similar requests when serving similar user profiles.
Furthermore, it should provide built-in support for QoS policies involving multiple service-levels and
service-level guarantees. Consequently, the scheduling and performance requirements of WebRACE
crawling and filtering face very different constraints than systems like Google [5], Mercator [14],
SPHINX [20] or NetAttache Pro [16].

Finally, WebRACE is implemented entirely in Java [11]. Its implementation consists of approx-
imately 5500 lines of code, 2649 of which correspond to the Mini-crawler implementation, 1184 to
the Annotation Engine, 367 to the SafeQueue data structure, and 1300 to common I/O libraries.
Java was chosen for a variety of reasons. Its object-oriented design enhances the software develop-
ment process, supports rapid prototyping and enables the re-use and easy integration of existing
components. Java class libraries provide support for key features of WebRACE: platform indepen-
dence, multithreading, network programming, high-level programming of distributed applications,
string processing, code mobility, compression, etc. Other Java features, such as automatic garbage
collection, persistence and exception handling, are crucial in making our system more tolerant to
run-time faults.

The choice of Java, however, comes with a certain risk-factor that arises from known performance
problems of this programming language and its run-time environment. Notably, performance and
robustness are issues of critical importance for a system like WebRACE, which is expected to function
as a server, to run continuously and to sustain high-loads at short periods of time. In our experiments,
we found the performance of Java SDK 1.3 satisfactory when used in combination with the Java
HotSpot Server VM [19, 18]. Furthermore, the Garbage Collector, which seemed to be a problem with
earlier Java versions, has a substantially improved performance and effectiveness under Java v.1.3.

Numerous experiments with earlier versions of WebRACE, however, showed that memory man-
agement cannot rely entirely on Java’s garbage collection. During long crawls, memory allocation
increased with crawl size and duration, leading to over-allocation of heap space, heap-space overflow
exceptions, and system crashes. Extensive performance and memory debugging with the Optimizelt
profiler [25] identified a number of Java core classes that allocated new objects excessively and
caused heap-space overflows and performance degradation. Consequently, we had to develop our
own data-structures that use a bounded amount of heap-space regardless of the crawl size, and
maintain part of their data on disk. Furthermore, we re-wrote some of the mission-critical Java

classes, streamlining very frequent operations. More details are given in the sections that follow.



SafeQueue
N Index (Hashtable)
TrETTTITT

p ‘ remove
- get(), size(),
add(Node) |7 ’é‘ ‘ ‘ ‘FIFO Queue (circular array) nodes_served(),

[T ([T prm—

I

reload

7
Re-Loader
Thread
serialize &
gzip

A 4

save

Overflow Buffer

Overflow 4
Thread

Secondary~~
Strorage

5 Persistency
Thread
serialize &

safequeue.dat.gzip
{1,2,..}.dat.gzip

Figure 2: SafeQueue Architecture.

3 SafeQueue: A High-performance Queue

At the core of WebRACE lies SafeQueue, a data-structure that we designed and implemented in
Java to guarantee the efficient and robust operation of our agent-proxy. Queues are used in systems
where the rate of incoming requests is larger than the rate of serviced requests, or where this relation
is unknown in advance. Usually, Internet systems incorporate queues at the Application Layer to
ensure that incoming requests will not be “lost” during periods of bursty load, system crashes, etc.

SafeQueue (SQ) is a typical FIFO queue used in a number of critical components of WebRACE;
for example, WebRACE maintains its pending URL requests while crawling the Web and processing
downloaded Web pages as Java objects in a SQ data structure. During a long crawl, millions of URL
objects would have to be inserted and deleted from the queue. Consequently, an implementation of
SafeQueue as a java.util.LinkList component of Java [11] would result to an excessive number
of expensive calls to object constructors, the continuous allocation and de-allocation of objects and
an increased activity of the Garbage Collector, leading to performance degradation and frequent
crashes due to heap-memory overflows.

To overcome these problems, we implemented SafeQueue as a circular array of QueueNode objects
with its own memory-management mechanism, which enables the re-use of objects and minimizes the
garbage-collection overhead. Moreover, we incorporated support for persistence, overflow control,
disk caching, multi-threaded access, and fast indexing to avoid the insertion of duplicate QueueNode
entries (see Figure 2).

All memory required for the SafeQueue structure is bounded and pre-allocated during initializa-

tion; no new QueueNode objects are allocated or discarded during the execution of WebRACE. This



is achieved with the implementation of a reset() method in the QueueNode class, which cleans
the various objects contained in a QueueNode object, without de-allocating the object itself from
the heap. SafeQueue implements a variety of blocking (get(), add()) and non-blocking methods
(isFull(), isEmpty(), nodesServed()), which provide a programmer with transparent access to
data located in the queue. The add () method makes sure that the queue is not full and assigns data
to the first available QueueNode. The get () method returns the contents of SafeQueue’s head and
releases the corresponding object.

SafeQueue implements an overflow-management mechanism as follows: if the queue is full when
an add () request is issued, SafeQueue withholds and returns the first available QueueNode of the
OverflowBuffer (see Figure 2, point 3). As soon as this buffer is filled, its contents are compressed,
serialized and flushed to secondary storage by the OuerflowThread. This thread maintains a counter
that is incremented every time a buffer is flushed to disk to provide unique names to stored buffers.
Whenever QueueNodes are relinquished, the ReloaderThread is invoked and fetches QueueNode
objects stored in overflow buffers and secondary storage (see Figure 2, point 7).

Many duplicate requests are generated during crawling because different Web pages often con-
tain links to the same resource. SafeQueue’s Index addresses this problem by ensuring that no
two identical QueueNodes will be placed in SafeQueue. This mechanism is implemented with a
java.util.HashTable, which indexes queued QueueNode’s. Each time the add () method is called,
the key of the respective QueueNode object is added to the SafeQueue Index. If the QueueNode
key is already in the HashTable, the object is dropped. On the other hand, each time we invoke the
get () method to remove an object from the queue, its key is also removed from the index.

Java-based systems running for long periods of times are exposed to system failures, Java Virtual
Machine crashes, memory overflow exceptions, etc. Fault-tolerance in such systems is very important
because a crawling process might require many days. SafeQueue provides persistence with the
deployment of a PersistencyThread, which saves SafeQueue on secondary storage periodically and
asynchronously, without blocking the operation of the Queue. In case of WebRACE failure, when
the server restarts, it restores SafeQueue to its last saved state. This procedure is expensive because
the PersistencyThread has to decompress and de-serialize the queue. The time required is always
less than 1 minute for a Queue with 10® nodes. The interval of SafeQueue’s storage is configurable

through the server’s settings.

4 The Mini-crawler of WebRACE

A crawler is a program that traverses the hypertext structure of the Web automatically, starting from
an initial hyper-document and recursively retrieving all documents accessible from that document.

Web crawlers are also referred to as robots, wanderers, or spiders. Typically, a crawler executes a



basic algorithm that takes a list of “seed” URL’s as its input, and repeatedly executes the following
steps [14]: It initializes the crawling engine with the list of seed URL’s and pops a URL out of
the URL list. Then, it determines the IP address of the chosen URL’s host name, opens a socket
connection to the corresponding server, asks for the particular document, parses the HTTP response
header and decides if this particular document should be downloaded. If this is so, the crawler
downloads the corresponding document and extracts the links contained in it; otherwise, it proceeds
to the next URL. The crawler ensures that each extracted link corresponds to a valid and absolute
URL, invoking a URL-normalizer to “de-relativize” it, if necessary. Then, the normalized URL is
appended to the list of URL’s scheduled for download, provided this URL has not been fetched
earlier.

In contrast to typical crawlers [20, 14], WebRACE refreshes continuously its URL-seed list from
requests posted by the eRACE Request Scheduler. These requests have the following format:

[Link, ParentLink, Depth, {owners}]
Link is the URL address of the Web resource sought, ParentLink is the URL of the page that
contained Link, Depth defines how deep the crawler should “dig” starting from the page defined by
Link, and {owners} contains the list of eRACE users potentially interested in the page that will be
downloaded.

The Mini-crawler is configurable through three files: a) /conf/webrace.conf, which contains
general settings of the engine, such as the crawling start page, the depth of crawling, intervals between
system-state save, the size of key data-structures maintained in main memory, etc.; b) /conf/mime.types,
which controls what Internet media types should be gathered by the crawler; ¢) /conf/ignore.types,
which controls what file extensions should be blocked by the engine; URL resources with a suffix
listed in ignore.types will not be downloaded regardless of the actual mime-type of that file’s
content. Making the Mini-crawler configurable through these configuration files renders it adaptable
to specific crawl tasks and benchmarks. The crawling algorithm described in the previous section

requires a number of components, which are listed and described in detail below:
e The URLQueue for storing links that remain to be downloaded.

e The URLFetcher, which downloads documents using the HTTP protocol. The URLFetcher
contains also a URL extractor and normalizer, which extracts links from a document and

ensures that the extracted links are valid and absolute URL’s.

e The Object Cache, which stores and indexes downloaded documents, and ensures that no
duplicate documents are maintained in cache. The Object Cache, however, can maintain

multiple versions of the same URL, if its contents have changed with time.
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4.1 The URLQueue

The URLQueue is an implementation of the SafeQueue data structure, comprised of URLQueueN-
ode’s. URLQueueNode’s are Java objects that capture requests coming from the Request Scheduler
of eRACE. During the server’s initialization, WebRACE allocates the full size of the URLQueue on
the heap. The length of the URLQueue is determined during the server’s initialization from We-
bRACE configuration files. At that time, our program allocates the heap-space required to store
all the nodes of the queue. We chose this approach instead of allocating Queue Nodes on demand
for memory efficiency and performance. In our experiments, we have configured the URLQueue size
to two million nodes, i.e., two million URL’s. This number corresponds to approximately 27M B of
heap space. A larger URLQueue can be employed, however, at the expense of heap size available for
other components of WebRACE. We are currently investigating ways to handle larger URLQueue

sizes by making SafeQueue distributed [12].

4.2 The URLFetcher

The URLFetcheris a WebRACE module that fetches a document from the Web when provided with
a corresponding URL. The URLFetcher is implemented as a simple Java-thread, which supports
both HTTP /1.0 [3] and HTTP /1.1 [10]. Similarly to crawlers like Mercator [14], WebRACE supports
multiple URLFetcher threads running concurrently, grabbing pending requests from the URLQueue,
conducting synchronous I/O to download WWW content, and overlapping I/O with computation.
In the current version of WebRACE, resource management and thread scheduling is left to Java’s
runtime system and the underlying operating system. The number of available URLFetcher threads,
however, can be configured during the initialization of the WebRACE-server. It should be noted
that a very large number of URLFetcher threads can lead to serious performance degradation of our
system, due to excessive synchronization and context-switching overhead. In future work we plan to
investigate schemes involving Java mobile agents to implement agile and self-adaptable fetchers [8].

The URLFetcher supports the Robots Exclusion Protocol (REP), which allows Web masters to

declare parts of their sites off-limits to crawlers. The REP is driven by a text document located



# robots.txt for http://www.w3.org/
User-agent: *

Disallow: /Team

Disallow: /Project

Disallow: /Systems

Disallow: /Web

Disallow: /History

Disallow: /Out-0f-Date

Table 1: Robot.txt file.

in the root of a Web Server, specifying which resources should not been accessed by crawlers. A
typical Robot.txt file is shown in Table 1. In addition to supporting the standard Robots Exclusion
Protocol, WebRACE supports the exclusion of particular domains and URL’s. To implement the
exclusion protocol, WebRACE provides a BlockDomain hash table, which contains all domains and
URL’s that should be blocked.

The URLFetcher uses the HT'TP support provided by the JDK 1.2 Java class libraries, which
enables the crawler to specify how long a socket can remain open “waiting” for the Web server to re-
spond, through its Socket.setSoTimeout () method. In the current java.net.Socket-class imple-
mentation, however, socket objects are not reusable. Therefore, we had to modify the java.net.Socket
implementation, adding an extra “reset (String host, int port)” method that enables the reuse
of a socket object for a different host. Thus, we managed to reduce significantly the overhead of
continuously constructing and destructing socket objects.

In addition to handling HTTP connections, the URLFetcher processes the documents it down-
loads from the Web. To this end, it invokes methods of its URLFEztractor and normalizer sub-
component. The URLExtractor extracts links (URL’s) out of a page, disregards URL’s pointing to
uninteresting resources, normalizes the URL’s so that they are valid and absolute and, finally, adds
these links to the URLQueue. The URL-extractor is exposed to all kinds of URL links that point
to media types which may not be interesting for a particular, specialized crawl.

As shown in Figure 4, the URLExtractor and normalizer works as a 6-step pipe within the
URLFetcher. Extraction and normalization of URL’s works as follows: in step 1, a fastfind()
method identifies candidate URL’s in the web-page at hand, removes internal links (starting from
“#7), mailto links (“mailto:”), etc, and extracts the first URL that is candidate for processing.
The efficient implementation of fastfind is challenging due to the abundance of badly formed HTML
code on the Web. As an alternative solution we could reuse components such as Tidy [23] or its
Java port, JTidy [17], to transform the downloaded Web page into well-formed HTML, and then

extract all links using a generic XML parser. This solution proved to be too slow, in contrast to our
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http.URL = ‘“‘http:’’ ‘°//’? host [ ‘‘:’’ port ] [ abs_pathl]
host = < A legal Internet host domain name or IP address
(in dotted-decimal form), as defined by Section 2.1 of RFC 1123 >
port = *DIGIT
abs_path = Absolute path of the resource starting from ¢‘/’’

Table 2: Valid URL Syntax.

fastfind () method which extracts links from a 70K B web page in approximately 80ms.

In step 2, a Proactive Link Filtering (PLF) method is invoked to disregard links to resources that
are of no interest to the particular crawl. PLF uses the /conf/ignore.types configuration file of
WebRACE to determine the file extensions that should be blocked during the URL extraction phase.
Deciding if a link should be dropped takes less than 1ms and saves WebRACE of the unnecessary
effort to normalize a URL, add it to the URLQueue, and open an HTTP connection, just to see
that this document has a media type that is not collected by the crawler.

Step 3 deals with the normalization of the URL at hand. To this end, we use our URL-normalizer
method, which alters links that do not comply to the scheme-specific syntax of HTTP URL’s, as
defined in the HTTP RFCs (see Table 2) [3, 10]. The URL-normalizer applies a set of heuristic correc-
tions, which give on the average a 95% of valid and normalized URL’s. For each Web page processed,
the URL-normalizer made extensive use of the java.net.URL library while checking the syntactic
validity of the normalized URL. Nevertheless, this library creates numerous objects that cannot be
reused, resulting to excessive heap-memory consumption, an increased activity of the garbage collec-
tor, and significant performance degradation. Therefore, we implemented webrace.net.fastURL,
a streamlined URL class that enables the reuse of URL objects via its reparse() method. This
optimization achieves twofold and threefold improvements of the normalization performance under
Solaris and Windows NT respectively. This can be seen from Figure 5, where we present the results
of a java.net.URL vs. webrace.net.fastURL performance benchmark. In this benchmark, we

evaluated webrace.net.URL by instantiating up to 108 new URL objects. The benchmark ran on a
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Sun Enterprise E250 Server with 2 UltraSPARC-II processors at 400M H z, with 512M B memory,
running the Solaris 5.7 operating system. The URL-normalizer took on the average 200ms for 100
URL'’s.

Step 4 filters out links that belong to domains that are blocked or excluded by the Robot
Exclusion Protocols. Steps 1 through 4 are executed repeatedly until all links of the document
at hand have been processed. Step 5 logs the URL’s that failed the normalization process for
debugging purposes. Finally, at step 6, all extracted and normalized URL’s are collectively added
to the URL-Queue and stored to the Meta-Info Store. Caution is taken to drop duplicate URL’s.

The URL extraction and normalization pipe requires an average of 300ms to extract the links
from a 70K B HTML page and to normalize them appropriately, when executed on our Sun En-
terprise E250 Server. To evaluate the overall performance of the URLFetcher, we ran a number of
experiments, launching many concurrent fetchers that try to establish TCP connections and fetch
documents from Web servers located on our 10/100Mbits LAN. Each URLFetcher pre-allocates
all of its required resources before the benchmark start-up. The benchmarks ran on a 360MHz
UltraSPARC-IIi, with 128MB RAM and Solaris 5.7. As we can see from Figure 6, the throughput
increases with the number of concurrent URLFetchers, until a peak P is reached. After that point,
throughput drops substantially. This crawling process took a very short time (3 minutes with only
one thread), which is actually the reason why the peak value P is 40. In this case, URLQueue
empties very fast, limiting the utilization of URLFetcher’s near the benchmark’s end. Running the
same benchmark for a lengthy crawl we observed that 100 concurrent URLFetcher’s achieve optimal

crawling throughput.
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5 The Object Cache

The Object Cache is the component responsible for managing documents cached in secondary storage.
It is used for storing downloaded documents that will be retrieved later for processing, annotation
and subsequent dissemination to eRACE users. The Object Cache, moreover, caches the crawling
state in order to coallesce similar crawling requests and to accelerate the re-crawling of WWW
resources that have not changed since their last crawl.

The Object Cache is comprised of an Indez, a Meta-Info Store and an Object Store (see Figure 1).
The Index resides in main memory and indexes documents stored on disk; it is implemented as a
java.util.HashTable, which contains URL’s that have been fetched and stored in WebRACE. That
way, URLFetcher’s can check if a page has been re-fetched, before deciding whether to download its
contents from the Web. The Meta-Info Store collects and maintains meta-information for cached
documents. Finally, the Object Store is a directory in secondary storage that contains a compressed

version of downloaded resources.

5.1 Meta-Info Store

The Meta-Info Store maintains a meta-information file for each Web document stored in the Object
Cache. Furthermore, a key for each meta-info file is kept with the Index of the Object Cache to

allow for fast look-ups. The contents of a meta-info file are encoded in XML and include:
e The URL address of the corresponding document;

e The IP address of its origin Web server;



A

webrace:url>http: //www.cs.ucy.ac.cy/"epl121/< /webrace:url>

A

webrace:ip>194.42.7.2< /webrace:ip>

A

webrace:kbytes>1< /webrace:kbytes>
< webrace:ifmodifiedsince>989814504121< /webrace:ifmodifiedsince>
<webrace:header>
HTTP/1.0 200 OK
Server: Netscape-FastTrack/2.01
Date: Fri, 11 May 2001 13:50:10 GMT
Accept-ranges: bytes
Last-modified: Fri, 26 Jan 2001 21:46:08 GMT
Content-length: 1800
Content-type: text/html
< /webrace:header>
<webrace:links>
http://www.cs.ucy.ac.cy/Computing/labs.html
http://www.cs.ucy.ac.cy/

http://www.cs.ucy.ac.cy/helpdesk

< /webrace:links>

Table 3: Example of meta-information file.

e The document size in KiloBytes;
e The Last-Modified field returned by the HTTP protocol during download;
e The HTTP response header, and all extracted and normalized links contained in this document.

An example of a meta-info file is given in Table 3. Meta-information is used to accelerate the re-
crawling of visited Web sites as follows: Normally, a URLFetcher executes the following algorithm

to download a Web page:
1. Retrieve a QueueNode from the URLQueue and extract its URL.

2. Retrieve the URL and analyze the HTTP-header of the response message. If the host server
contains the message “200 Ok,” proceed to the next step. Otherwise, continue with the next

QueueNode.
3. Download the body of the document and store it in main memory.
4. Extract and normalize all links contained in the downloaded document.

5. Compress and save the document in the Object Cache.



6. Save a generated meta-info file in the Meta-Info Store.
7. Add the key (hashCode) of the fetched URL to the Index of the Object Cache.

8. Notify the Annotation Engine that a new document has been fetched and stored in the Object
Cache.

9. Add all extracted URL’s to the URLQueue.

To avoid the overhead of the repeated downloading and analysis of documents that have not
changed, we alter the above algorithm and use the Meta-Info Store to decide whether to download
a document that is already cached in WebRACE. More specifically, we change the second and third

steps of the above crawling algorithm as follows:

2. Access the Index of the Object Cache and check if the URL retrieved from the URLQueue

corresponds to a document fetched earlier and cached in WebRACE.
3. If the document is not in the Cache, download it and proceed to step 4. Otherwise:

e Load its meta-info file and extract the HTTP Last-Modified time-stamp assigned by the
origin server. Open a socket connection to the origin server and request the document
using a conditional HTTP GET command (if-modified-then), with the extracted time-

stamp as its parameter.

e If the origin server returns a “304 (not modified)” response and no message-body,
terminate the fetching of this particular resource, extract the document links from its

meta-info file, and proceed to step 8.

e Otherwise, download the body of the document, store it in main memory and proceed to

step 4.

If a cached document has not been changed during a re-crawl, the URLFetcher proceeds with crawling
the document’s outgoing links, which are stored in the Meta-Info Store, and which may have changed.

To assess the performance improvement provided by the use of the Meta-Info Store, we conducted
an experiment with crawling two classes of Web sites. The first class includes servers that provide
content which does not change very frequently (University sites). The second class consists of
popular news-sites, search-engine sites and portals (cnn.com, yahoo.com, msn.com, etc.). For these
experiments we configured WebRACE to use 150 concurrent URLFetchers and ran it on our Sun
Enterprise E250 Server, with the Annotation Processor running concurrently on a Sparc 5.

The diagram of Figure 7 (left) presents the progress of the crawl and re-crawl operations for the
first class of sites. The time interval between the crawl and the subsequent re-crawl was one hour;

within that hour the crawled documents had not changed at all. The delay observed for the re-crawl
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Figure 7: Crawling vs. re-crawling in WebRACE.

operation is attributed to the HT'TP “if-modified-since” validation messages and the overhead of the
Object Cache. As we can see from this diagram, the employment of the Meta-Info Store results to
an almost three-fold improvement in the crawling performance. Moreover, it reduces substantially
the network traffic and the Web-servers’ load generated because of the crawl.

The diagram of Figure 7 (right) presents our measurements from the crawl and re-crawl opera-
tions for the second class of sites. Here, almost 10% of the 993 downloaded documents change be-
tween subsequent re-crawls. From this diagram we can easily see the performance advantage gained
by using the Meta-Info Store to cache crawling meta-information. It should be noted, however, that
within the first 100msecs of all crawl operations, crawling and re-crawling exhibit practically the
same performance behavior. This is attributed to the fact that most of the crawled portals reply
to our HT'TP GET requests with “301 (Moved Permanently)’’ responses, and re-direct our crawler
to other URL’s. In these cases, the crawler terminates the connection and schedules immediately a
new HTTP GET operation to fetch the requested documents from the re-directed address.

Finally, in Figure 8, we present measurements from a longer crawl that took 30mins to complete

and produced 11669 documents. This crawl was conducted on our departmental Web server.

6 The Annotation Engine (AE)

The Annotation Engine processes documents that have been downloaded and cached in the Ob-
ject Cache of WebRACE. Its purpose is to “classify” collected content according to user-interests
described in eRACE profiles. The meta-information produced by the processing of the Annotation

Engine is stored in WebRACE as annotation linked to the cached content. Pages which are irrelevant
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Figure 8: Performance of a longer crawl.

to user-profiles are dropped from the cache.

Personalized annotation engines are not used in typical Search Engines [5], which employ general-
purpose indices instead. To avoid the overhead of incorporating a generic look-up index in WebRACE
that will be updated dynamically as resources are downloaded from the Web, we designed the AE so
that it processes “on the fly” downloaded pages. Therefore, each time the Annotation Engine receives
a ‘‘process(file,{users})’’ request through the established socket connection with the Mini-
crawler, it inserts the request in the Coordinator, which is a SafeQueue data structure (see Figure 9).
Multiple Filtering Processors remove requests from the Coordinator and process them according to
the Unified Resource Descriptions (URD’s) of eRACE users contained in the request. Currently, the
annotation engine implements a simple pattern-matching algorithm looking for weighted keywords

that are included in the user-profiles.

6.1 URD’s and ACTI’s

URD is an XML-encoded data structure that encapsulates source information, processing directives
and urgency information for Web services monitored by eRACE. A typical URD request is shown
in Table 4. The explanation of the URD scheme is beyond the scope of this paper.

URD’s are stored in a single XML-encoded document, which is managed by a persistent DOM
data manager (PDOM) [15]. The Annotation Engine fetches the necessary URD’s from the PDOM
data manager issuing XQL queries (eXtensible Query Language) to a GMD-IPSI XQL engine [15, 21].
The GMD-IPSI XQL engine is a Java-based storage and query application developed by Darmstadt

GMD for handling large XML documents. This engine is based on two key mechanisms: a) a
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Figure 9: WebRACE Annotation Engine.

<urd>
<uri timing= “600000” lastcheck = “97876750000” port= “80 >”
http://www.cs.ucy.ac.cy/default.html < /uri>
<type protocol= “http” method= “pull” processtype= “filter”/ >
<keywords>
<keyword key= “ibm” weight= “1” / >
<keyword key= “research” weight= “3” />
<keyword key= “java” weight= “4” / >
<keyword key= “xmlp4j” weight= “5" / >
< /keywords>
<depth level= “4”/ >
<urgency urgent= “1”/ >
< [urd>

Table 4: A typical URD.




public Element get(String id) {
String query = "//urd[@id= -~ " + id + ~ ¥";
XQLResult r = XQL.execute(query, doc);

Element urd = (Element) r.getItem(0);

}

Table 5: Retrieving a URD-XML node from PDOM.

persistent implementation of W3C-DOM Document objects [1]; b) a full implementation of the XQL
query language. GMD-IPSI provides an efficient and reliable way to handle large XML documents
through PDOM, which is a thread-safe and persistent XML-DOM implementation. PDOM supports
main-memory caching of XML nodes, enabling fast searches in the DOM tree. A PDOM file is
organized in pages, each containing 128 DOM nodes of variable length. When a PDOM node is
accessed by a W3C-DOM method, its page is loaded into a main memory cache. The default cache
size is 100 pages (12800 DOM nodes). Documents are parsed once and stored in Java serialized
binary form on secondary storage. The generated document is accessible to DOM operations directly,
without re-parsing. The XQL processor is used to query PDOM files. Table 5 illustrates the use of
an XQL command to extract a URD-XML node out of PDOM.

The output of a filtering process in the Annotation Engine is encoded in XML and called an
ACI (Annotated Cached Information) [28]; ACI’s are stored in an XML-ACI PDOM database. ACI
stands for Annotated Cached Information and is an extensible data structure that encapsulates
information about the Web source that corresponds to the ACI, the potential user-recipient(s) of
the “alert” that will be generated by eRACE’s Content Distribution Agents according to the ACI,
a pointer to the cached content, a description of the content (format, file size, extension), a classi-
fication of this content according to its urgency and/or expiration time, and a classification of the
document’s relevance with respect to the semantic interests of its potential recipient(s). The XML
description of the ACT’s is extendible and therefore we can easily include additional information in
it without having to change the architecture of WebRACE. Table 6 gives an example of a typical
ACT snippet. A more detailed description of the ACI scheme is beyond the scope of this paper.

6.2 Filtering Processor

Filtering Processor (FP) is the component responsible for evaluating if a document matches the
interests of a particular eRACE-user, and for generating an ACI out of a crawled page (see Fig-
ure 10). The Filtering Processor works as a pipe of filters: At step 1, FP loads and decompresses
the appropriate file from the Object Cache of WebRACE. At step 2, it removes all links contained

in the document and proceeds to step 3, where all special HTML characters are also removed. At



<aci owner = ‘‘csyiaztl’’ extension = ‘‘html’’ format= ‘‘html’’
relevance= ‘‘18°’ updatetime= ‘97876950000 filesize= ‘‘2000°’’>
<uri>http://www.cs.ucy.ac.cy/default.html< /uri>
<urgency urgent= ‘‘1°’/ >
<docbase>969890.gzip< /docbase>
<expired expir= ‘‘false’’ />
<summary>This is a part of the document with keywords 1)...< /summary>

< [aci>

Table 6: ACI snippet.
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Figure 10: The Filtering Processor.

step 4, any remaining text is added to a Keyword HashTable. Finally, at step 5, a pattern-matching
mechanism loads sequentially all the required URD elements from the URD-PDOM and generates
ACI meta-information, which is stored in the ACI-PDOM (step 6). This pipe requires an average
of 200 msecs to calculate the ACI for a T0K B Web page, with 3 potential recipients.

In our experiments, we have configured the SafeQueue size of the Annotation Engine to 1000
nodes, which is more than enough, since it is almost every time clear if the AE operates with 10
Filtering Processors and the Mini-crawler with 100 URL-fetchers. We have also observed that the
number of pending requests in the AE SafeQueue has reached a peak of 55 pending requests at a

particular run of our system.

7 Conclusions and Future Work

In this paper, we presented WebRACE, a World-Wide Web “agent-proxy” that collects, filters and
caches Web documents. WebRACE is designed in the context of eRACE, an extensible Retrieval
Annotation Caching Engine. eRACE collects, annotates and disseminates information from hetero-

geneous Internet sources and protocols (Web, email, newsgroups), according to XML-encoded user



profiles that determine the urgency and relevance of collected information. The main component of
WebRACE is a high-performance, distributed Web crawler and filtering processor, written entirely
in Java. Although a number of papers have been published on Web crawlers [20, 14, 7, 6, 24],
proxy services [4, 26], information dissemination systems [27, 2, 22] and Internet middleware [13, 9],
the issue of incorporating flexible, scalable and user-driven crawlers in middleware infrastructures
remains open. Furthermore, the adoption of Java as the language of choice in the design of Inter-
net middleware and servers raises many doubts, primarily because of performance and scalability
questions. There is no question, however, that Web crawlers written in Java will be an important
component of such systems, along with modules that process collected content.

In our work, we address the challenge of designing and implementing a modular, user-driven,
open, distributed, and scalable crawler and filtering processor, in the context of the eRACE mid-
dleware. We describe our design and implementation decisions, and various optimizations. Further-
more, we discuss the advantages and disadvantages of using Java to implement the crawler, and
present an evaluation of its performance. To assess WebRACE’s performance and robustness we
ran numerous experiments and crawls; several of our crawls lasted for days. Our system worked
efficiently and with no failures when crawling local Webs in our LAN and University WAN, and the
global Internet. Our experiments showed that our implementation is robust and reliable. Further
optimizations will be included in the near future, so as to prevent our crawler from overloading re-
mote Web servers with too many concurrent requests. We also plan to investigate alternative queue
designs and different crawling strategies (breadth-first versus depth-first) that have been reported
to provide improved crawling efficiency [7]. Finally, we plan to investigate the employment of Dis-
tributed Data Structures [12] to further improve the scalability and performance of mission-critical

components of WebRACE.
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