
International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

(Volume 17, Number 1)

Towards Pattern-based Reasoning for Friendly Ontology Debugging

Mustafa Jarrar

HPCLab, University of Cyprus
STARLab, Vrije Universiteit Brussel

mjarrar@cs.ucy.ac.cy

Stijn Heymans

DERI, University of Innsbruck, Austria
stijn.heymans@deri.org

Reasoning with ontologies is a challenging task specially for non-logic experts. When checking
whether an ontology contains rules that contradict each other, current description logic reasoners can
only provide a list of the unsatisfiable concepts. Figuring out why these concepts are unsatisfiable,
which rules cause conflicts, and how to resolve these conflicts, is all left to the ontology modeler him-
self. The problem becomes even more challenging in case of large or medium size ontologies, because
an unsatisfiable concept may cause many of its neighboring concepts to be unsatisfiable.

The goal of this article is to empower ontology engineering with a user-friendly reasoning mech-
anism. We propose a pattern-based reasoning approach, which offers 9 patterns of constraint contra-
dictions that lead to unsatisfiability in Object-role (ORM) models. The novelty of this approach is not
merely that constraint contradictions are detected, but mainly that it provides the causes and sugges-
tions to resolve contradictions. The approach is implemented in the DogmaModeler ontology engineer-
ing tool, and tested in building the CCFORM ontology. We discuss that, although this pattern-based
reasoning covers most of contradictions in practice, compared with description logic based reasoning,
it is not complete. We argue and illustrate both approaches, pattern-based and description logic-based,
their implementation in the DogmaModeler, and conclude that both complement each other from a
methodological perspective.

Keywords: Ontology Engineering; Reasoning; Satisfiability; Model Verification; Debugging; Ontol-
ogy Tools; Object Role Modeling; ORM;

1. Introduction and Motivation
In many domains the ontology building process is difficult and time consuming. Typically,
this is because it is difficult for domain experts to understand and use ontology languages.
Current ontology languages (and tools) require an understanding of their underpinning
logic. The limitation of these types of ontology languages and tools is not that they lack
expressiveness or logical foundations. Instead, it is in their capability to be used by subject
matter experts.

Furthermore, reasoning on ontologies is a difficult task not only for non-logic experts,
but even for ontology engineers themselves. For example, when checking whether an on-
tology contains rules that contradict each other, current description logic reasoners can
only provide a list of the unsatisfiable concepts?,?,?,?. Figuring out why these concepts are
unsatisfiablea, which rules cause conflicts, and how to resolve these conflicts, are all left to

aWe say that a concept is unsatisfiable in case this concept cannot be instantiated, e.g. because of some contradic-

1

2 Mustafa Jarrar and Stijn Heymans

the ontology engineers themselves. The problem becomes even more challenging in case
of large or medium size ontologies, because an unsatisfiable concept may cause many of
its neighboring concepts to be unsatisfiable.

In previous research?,?,?,?,?, we have proposed the use of the ORM conceptual model-
ing method as a graphical notation for ontology modeling. As we shall explain in the next
section, the graphical expressiveness, the well-defined semantics, and the methodological
and verbalization capabilities of ORM make it a good candidate as a graphical notation for
modeling and representing ontologies. With this, non-IT trained industrial experts will be
able to build axiomatized theories (such as ontologies, business rules, etc.) in a graphical
manner, without having to know the underpinning logic or foundations.

The goal of this article is to empower ORM with a user-friendly reasoning mechanismb.
We propose a pattern-based reasoning approach, which offers 9 patterns of constraint con-
tradictions that lead to unsatisfiability. The novelty of this approach is not merely to de-
tect constraint contradictions, but also to provide a clear explanation about: the detected
contradictions, the causes, and suggestions on how to resolve these contradictions. In other
words, our approach is motivated by the requirement that reasoning should be very friendly
for non-logic experts, and should be easily implemented in interactive modeling.

This approach is implemented in the DogmaModeler ontology engineering tool, and
tested in building the CCFORM ontology (a medium size legal ontology about customer
complaints), which has been built by many lawyers. We shall illustrate (in section 4) how
DogmaModeler guides ontology modelers to quickly detect unsatisfiability in early phases
and does not require these modelers to have any background knowledge about logic or
reasoning. One of the interesting lessons we have learned in the CCFORM project is that
lawyers were able to intuitively understand their modeling mistakes and how to avoid it
for next time. Some of them even admitted that they understood some logics from their
experience in using DogmaModeler.

As we shall discuss in section 4.1, although our approach covers the most common
unsatisfiability cases in practice, it cannot be complete. In other words, from a theoretical
viewpoint there is no absolute guarantee that by passing all of the 9 patterns it means
that the schema is strongly satisfiable. However, this is not the goal of this article. For
complete reasoning, DogmaModeler also support description logic based reasoning using
Racer, which acts as a background reasoning engine. We shall come back to this issue in
section 4 and argue that the two (pattern-based and DL-based) approaches complement
each other from a methodological viewpoint.

The need to trace the causes of contradictions is realized by several researchers in the
context of debugging OWL ontologies?,?, and in the context of ontology evolution?. Some
researchers suggested to modify the internals and the tableau algorithms of the reasoning
engines, which is called glass box. Other researchers suggested not to add this overhead
to the reasoners internals, but a black box approach that analyze the reasoner’s responses
to allocate the sources of unsatisfiability. However, none of these approaches yields a user-
friendly reasoning, and none is proven to be complete as they are mainly based on heuristics
or certain types of conflicts. We shall comeback to this issue in section 6.

The remainder of the paper is organized as follows. In section 2 we give a background
introduction about ORM, its formal semantics, and the types of satisfiability. In section
3, we introduce the 9 patterns of constraint contradictions that lead to unsatisfiability of
ORM models. Section 4 presents the implementation of the patterns in DogmaModeler.
Our experience and the lessons we learned during the CCFORM project are presented in

tions in the ontology. We shall explain unsatisfiability in the next sections.
bThe approach presented in this paper can be fully applied for other ontology languages, such as OWL.

Pattern-based Reasoning 3

Section 4.1. Section 5 discusses related work from the DL and the ORM communities.
Finally, section 6 presents our conclusions and directions for future work.

2. Object-Role Modeling (ORM)
ORM is a conceptual modeling method that allows a semantics of a universe of discourse
to be modeled at a highly conceptual level and in a graphical manner. ORMc has been
used commercially for more than 30 years as a database modeling methodology, and has
recently becoming popular not only for ontology engineering but also as a graphical no-
tation in other areas such as the modeling of business rules?,?,?,?, XML-Schemes?, data
warehouses?, requirements engineering?,?, web forms?,?, web engineering?, etc.

ORM has an expressive and stable graphical notation. It supports not only n-ary re-
lations and reification, but also a fairly comprehensive treatment of many “practical”
and “standard” business rules and constraint types. These include identity, mandatoriness,
uniqueness, subsumption, totality, exclusivity, subset, equality, exclusion, value, frequency,
symmetry, intransitivity, acyclicity, derivation rules, and several others. Furthermore, com-
pared with, for example, EER or UML, ORM’s graphical notation is more stable since it
is attribute-free; in other words, object types and value types are both treated as concepts.
This makes ORM immune to changes that cause attributes to be remodeled as object types
or relationships. Figure 1 shows an example of an ORM diagram. Concepts (also called

Fig. 1. Example of an ORM Schema.

object-types) are represented as ellipses, and relations are represented as rectangles. Each
relation in ORM consists of one or more roles. For example, the relationship between the
concepts Person and Account consists of the two co-roles, Owns and OwnedByd. In de-
scription logic, this relation can be formalized as (Person v ∀Owns.Account, Account v
∀OwnedBy.Person, OwnedBy v Owns−). The thick arrow between Manager and Person
denotes a subsumption relation (Manager v Person). The dot (•) on the line connect-
ing Person and Name represents a mandatory constraint (Person v ∃Has.Name). The (U)
represents an external uniqueness, meaning that a person can be uniquely denoted by the
combination of his Name and Birthdate. The arrow between the relationships WorksFor/

cMany commercial and academic tools that support ORM solutions are available, including the ORM solu-
tion within Microsoft’s Visio for Enterprise Architects?, VisioModeler?, NORMA?,CaseTalk?, Infagon?, and
DogmaModeler?. DogmaModeler and its support for reasoning will be presented in section 4
dNotice that the notion of role in ORM means an argument/component of a relationship. This is unlike e.g.
description logics, where the notion of role means a binary relation. Furthermore, relationships in ORM do not
have names, but at least one of its roles should have a linguistic label.

4 Mustafa Jarrar and Stijn Heymans

and Manages/ represents a subset constraint (Manages v WorksFor), which means that
if a person manages a company then this person must be employed by that company. The
double-headed arrow between WorksFor/ and AffiliatedWith/ represents an equality con-
straint (WorksFor ≡ AffiliatedWith), which means that each person who works for a com-
pany is also affiliated with that company and vice versa. The (⊗) between the two OwnedBy
roles is an exclusion constraint that means: an account cannot be owned by a company and
a person at the same time (OwnedBy.Person v ¬OwnedBy.Account). The dot (¯) on the two
OwnedBy roles is called a disjunctive mandatory, it means each account must be owned by
at least a company or a person (Account v ∃OwnedBy.Person t ∃OwnedBy.Person).

ORM diagrams can be automatically verbalized into pseudo natural language sentences,
i.e., all rules in a given ORM diagram can be translated into fixed-syntax sentences. For ex-
ample, the mandatory constraint in Figure 1 is verbalized as: “Each Person Has at least
one Name”. The subset constraint is verbalized as: “If a Person Manages a Company then
this Person WorksFor that Company”, etc. Additional explanation can be found in ? and
? which provide sophisticated and multilingual verbalization templates. From a method-
ological viewpoint, this verbalization capability simplifies the communication with non-IT
domain experts and allows them to better understand, validate, or build ORM diagrams.
It is worthwhile to note that ORM is the historical successor of NIAM (Natural Language
Information Analysis Method), which was explicitly designed (in the early 70’s) to play
the role of a stepwise methodology, that is, to arrive at the “semantics” of a business appli-
cation’s data based on natural language communication.

ORM Formal Semantics. ORM’s formal specification and semantics are well-
defined?,?,?,?,?. The most comprehensive formalization in first-order logic (FOL) was car-
ried out by Halpin? in 1989. Later on, some specific portions of this formalization were
re-examined, such as subtypes?, uniqueness?, objectification?, and ring constraints ?.

Since reasoning on first-order logic is undecidable?, the above formalizations do not
enable automated reasoning on ORM diagrams, which comprises services such as detec-
tion of constraint contradictions (i.e. satisfiability), constraint implications, or inference.

ORM Satisfiability. Satisfiability checking (to detect constraint contradictions) is an
important service in ontology modeling. Given a concept/role in a schema, is there a model
(an interpretation/population of the schema that satisfies all constraints) such that the con-
cept/role has a non-empty population. From a practical perspective, such reasoning proce-
dures help the developer in analyzing the validity of the constructed schema for the domain.
In particular, it allows to detect concepts and roles in a schema that always have an empty
population, symptoms of a faulty model: there are too many constraints or constraints are
too harshe.

To illustrate such contradictions, consider Figure 2, stating that Students and Employ-
ees are types of Persons where no Student can be an Employee (and vice versa), and a
PhD Student is both a Student and an Employee. Thus, the PhDStudent type cannot be
populated. Otherwise, a PhD Student would be both a student and an employee which con-
tradicts with the fact that Student and Employee need to be disjoint types (by the exclusion
constraint). Although there are types in the schema in Figure 2 that cannot be satisfied,
there is a formal model satisfying the global schema: e.g. let PhDStudent have an empty
population, Student and Employee disjoint populations, and Person some superset of the
union of the populations of Student and Employee.

eWe assume the universe of discourse (UoD) itself is consistent, such that faults in the model have their origin in
the modeling and not in the UoD.

Pattern-based Reasoning 5

Fig. 2. Unsatisfiability of ORM Schema.

Types of Satisfiability. Formally, there are three types of satisfiability of an ORM
schema?. First, schema satisfiability checking of an ORM schema is checking whether
there exists a model of the schema (or less abstract, some population for the schema) as
a whole. A satisfiable ORM schema does not need to satisfy any concepts or roles per se,
as exemplified in Figure 2. The only condition is that all constraints are satisfied by the
(possibly empty) populations. Second, concept satisfiability checking amounts to checking
whether all concepts (i.e. object-types) are satisfied (can be populated) by a model (by a
population) of the schema. Concept satisfiability is thus stronger than schema satisfiabil-
ity as a model of the schema that satisfies all concepts is, by definition, also a model of
the schema. Finally, role satisfiability checking amounts to checking whether there exists a
model of the schema that satisfies (populates) all roles in the schemaf . This is the strongest
form of satisfiability checking as it implies concept satisfiability: if a role is satisfied, the
corresponding concept that plays the role is also satisfied. Given these implications (role
then concept then schema satisfiable), we refer to role satisfiability as strong satisfiabil-
ity and to schema satisfiability as weak satisfiability. Notice that role satisfiability implies
concept satisfiability only when all concepts are connected to roles.

In this context, we are particularly interested in strong satisfiability: checking whether
all roles in the schema are satisfiable: since a weakly satisfiable model may contain empty
roles, problems with contradictory constraints are not necessarily detected. Note that if the
schema does not contain roles we will also look at concept satisfiability.

3. Unsatisfiability Patterns in ORM Conceptual Schemes
This section presents the 9 patterns of constraint contradictions that lead to unsatisfiability
in an ORM conceptual schemag. Each pattern is explained by example, formal definition,
and a Java-like algorithm that generates a message explaining the detected contradiction, its
causes, and suggestions to resolve the contradiction. We adopt the ORM formalization and
syntax as found in ?,?, except three things. First, although ORM supports n-ary predicates,
only binary predicates are considered. Second, our approach does not support objectifica-
tion, or the so-called nested fact-types in ORM. Finally, our approach does not support the
derivation constraints that are not part of the ORM graphical notation.

fFigure 5 shows an ORM schema where all concepts are satisfiable (and thus the schema as a whole is satisfiable)
but it fails because of role unsatisfiability (because role r3 cannot be satisfied).
gThe first version of this work appeared in ?. The second version? was presented at the IFIP.26 conference 2006,
and at the Belgian-Dutch Database Day 2006. This version extends the previous versions in many directions, and
benefits from the discussions and encouragements we received from many colleagues.

6 Mustafa Jarrar and Stijn Heymans

3.1. Pattern 1 (Top Common Supertype)
In this pattern, subtypes that do not have a top common supertype are detected. In ORM,
all object-types are assumed by definition to be mutually exclusive, except those that are
subtypes of the same supertype. Thus, if a subtype has more than one supertype, these su-
pertypes must share a top supertype; otherwise, the subtype cannot be satisfied. In Figure
3 the object-type C cannot be satisfied because its supertypes A and B do not share a com-
mon supertype, i.e., A and B are mutually exclusive.

Fig. 3. Subtype without a Top Common Supertype.

Definition 1 Given a subtype T , let {DirectSuper1 , ...,DirectSupern} be the set of all and
only the direct supertypes of T . Let Supers(DirectSuperi) be the set of all possible super-
types of the i-th direct supertype of T , where 1 ≤ i ≤ n. If Supers(DirectSuper1)∩ . . .∩
Supers(DirectSupern) = {}, then the object-type T cannot be satisfied.

Algorithm-1: For each subtype T[x] {
Let T[x].DirectSupers = The set of all and only the direct supertypes of T[x]
n = T[x].DirectSupers.size
If (n Â 1){
For (i = 1 to i = n){
Let T[x].DirectSupers[i].Supers = the set of all possible supertypes of T[x].DirectSupers[i]}
// if the intersection of all T[x].DirectSupers[i].supers is not empty,
// then the composition is not satisfiable.
if (Intersection(T[x].DirectSupers[1].supers, T[x].DirectSupers[n].supers)) is empty {
Satisfiability = false
Message=(Contradiction!! Nothing can be an instance of T [x], because nothing can be a
T [x].UpperType[1] (..and a T [x].UpperType[n]) at the same time, which are the supertypes of
T [x]. These supertypes are disjoint by definition as they don’t share a common top supertype.
Either you introduce a new top supertype, or you remove some of the supertypes of T [x] }}}

3.2. Pattern 2 (Exclusive Constraint between Types)
In this pattern, subtypes of mutually exclusive supertypes (caused by an exclusive con-
straint) are detected. Figure 4 shows a case where D cannot be satisfied because its super-
types are mutually exclusive. The set of instances of D is the intersection of the instances
of B and C, which is an empty set according to the exclusive constraint between B and C.

Definition 2 For each exclusive constraint between a set of object-types {T1, . . . , Tn}, let
Subs(Ti) be the set of all possible subtypes of the object-type Ti, 1 ≤ i ≤ n. For every i
and j, let X = Subs(Ti) ∩ Subs(Tj), where i 6= j. If X 6= {}, then all objects-types in X
cannot be satisfied.

Algorithm-2: For each exclusive constraint Exv[x] {
Let Exv[x].T = the set of the object-types participating in Exv[x].
//For each pair of object-types participating in the exclusion constraint:

For (i = 1 to i = Exv[x].T.size) {

Pattern-based Reasoning 7

Fig. 4. Subtype with Exclusive Supertypes.

For (j = 1 to j = Exv[x].T.size) {
If (i not equal j) {
Let Exv[x].T[i].Subs = the set of subtypes of the object-type Exv[x].T[i].
Let Exv[x].T[j].Subs = the set of subtypes of the object-type Exv[x].T[j].
X = X + (IntersectionOf(Exv[x].T[i].Subs, Exv[x].T[j].Subs))}}}

If (X is not empty) {
Satisfiability = false
Message=(Contradiction!! The concept(s) X[1] (.., and X[n]) cannot be instantiated because
of the exclusive constraint between (its/their) upper types. Either some subtype links should
be dismissed, or the exclusive constraint should be remove.)}}

3.3. Pattern 3 (Exclusive-Mandatory)
In this pattern, contradictions between exclusion and mandatory constraints are detected.
In Figure 5, we show three examples of unsatisfiable schemes. In the first case (a), the
role r3 will never be played. The mandatory and the exclusion constraints restrict that each
instance of A must play r1 and the instance that plays r1 cannot play r3. In the second
case (b), both r1 and r3 will never be played. According to the two mandatory constraints,
each instance of A must play both r1 and r3. At the same time, according to the exclusion
constraints, an instance of A cannot play r1 and r3 together. Likewise, in the third case (c),
r3 and r5 will never be played. As B is a subtype of A, instances of B inherit all roles and
constraints from A. For example, if an instance of B plays r5, then this instance, which is
also instance of A, cannot play r1 or r3. However, according to the mandatory constraint,
each instance of A must play r1 and, according to the exclusion constrain, it cannot play
r1, r3 and r5 all at the same time. In general, a contradiction occurs if an object-type plays
a mandatory role that is exclusive with other roles played by this object-type or one of its
subtypes.

Fig. 5. Subtype with Exclusive Supertypes.

Definition 3 Given an exclusion constraint between a set of single roles {r1, ..., rn}. Let

8 Mustafa Jarrar and Stijn Heymans

Ti be the object-type connected to the role ri (where 1 ≤ i ≤ n); and, Subs(Ti) be the set
of all possible subtypes of Ti. For every (ri, rj) where i 6= j and ri is a mandatory role, if
(Ti = Tj) or (Tj ∈ Subs(Ti)) then rj cannot be satisfied.

Algorithm-3: For each exclusion constraint Exs[x] between a set of single roles {
Let XRoles = the set of all roles participating in Exs[x].
Let ManRoles = the set of all mandatory roles in XRoles.
If (ManRoles is not empty)
For (i=1 to ManRoles.Size){
Let ManRoles[i].T = the object-type that plays the role ManRoles[i]
Let ManRoles[i].T.Subs = the set of all subtypes of ManRoles[i].T
For (j=1 to XRoles.Size) {
Let XRoles[j].T = the object-type that plays the role XRoles[j]
If ((ManRoles[i].T = XRoles[j].T) OR (In(XRoles[j].T, ManRoles[i].T.Subs)) AND (i 6= j)
X = X + XRoles[j]} }

If (X is not empty){
Satisfiability = false
Order(X) //the super of the object types playing X first, then the mandatory roles, etc.
Message=(Contradiction!! between the exclusion and mandatory constraints. While the

exclusion means that an instance of a X[1].T that is X[1] a X[1].T2 cannot be X[2] a X[2].T2

(,.. and cannot be X[n] a X[n]) at the same time, the Mandatory means that this instance
must be X[1] a X[1].T2 (,.. and must be X[n] a X[n].T2). This implies that role(s) X[1]

(,.. and X[n]) will never be played. Either the exclusion or the mandatory constraints
should be dismissed.)}}

3.4. Pattern 4 (Frequency-Value)
In this pattern, contradictions between value and frequency constraints are detected. In
Figure 6, the role r1 cannot be populated. If the frequency constraint FC(3 − 5) on r1 is
satisfied, each instance of A must play r1 at least three times, and thus three different in-
stances of B are required. However, there are only two possible instances of B, which are
declared by the value constraint {x1, x2}.

Fig. 6. Contradiction between value and frequency constraints.

Definition 4 For each fact-type (ArB), let c be the number of possible values of B that
can be calculated from its value constraint, and let FC(n−m) be a frequency constraint on
the role r. If c < n, then r cannot be satisfied, as the value and the frequency constraints
contradict each other.

Algorithm-4: For each frequency constraint F[x] {
Let F[x].min = the lower bound of the frequency constraint F[x].
Let T = the object-type that is played by the role holding F[x].
Let T2.Values = the value constraint on the object-type related to T.
// if there is no value constraint on T, then T.Values = null
If (T2.Values is not null) and (T2.Values.size < F[x].min) {
Satisfiability = false.

Pattern-based Reasoning 9

Message=(Contradiction!! between the frequency and the value constraints. The value constraint
implies that T should T.r1 at least F [x].min different T2(s), but there are only T2.V alues.size

possible values of T2. In other words, there is no enough T2(s) to fulfill the frequency constraint.
Either the frequency or the value constraints should be changed or maybe dismissed.)}}

3.5. Pattern 5 (Value-Exclusion-Frequency)
In this pattern, contradictions between value, exclusion, and frequency constraints are de-
tected. Figure 7 shows a particular contradiction between those three constraints. Due to the
frequency constraint, there should be at least two different values to populate r1. In order to
populate r3, we need, by the exclusion constraint, a value different from the two for role r1.
In total, we thus need three different values in order to be able to populate both r1 and r2,
but this contradicts with the value constraint on object-type A: we only have 2 values at our
disposal. Note that any combination with only two of the three constraints does not amount
to unsatisfiability; we explicitly need the combination of the three of them. A special case

Fig. 7. Contradiction between value, exclu-
sion, and frequency constraints.

Fig. 8. Contradiction between value and ex-
clusion constraints.

occurs in the absence of frequency constraints, e.g., Figure 8: according to the exclusion
constraint, there should be at least 3 different values of A to play r1, r2 and r3. However,
according to the value constraint, there are only two possible values of A.

Remark: An exclusion constraint between n roles (where n > 2) can be split into
n(n− 1)/2 separate exclusion constraints between two roles (see ?). For example, the ex-
clusion constraint in Figure 8 is the compact form of three different exclusion constraints:
between r1 and r3, r3 and r5, and r1 and r5. In this article, we assume that exclusion con-
straints are always in their most compact form.

Definition 5 For each exclusion constraint, let r = {r1, . . . , rn} be the set of roles par-
ticipating in this constraint. With each of those roles ri, we associate the inverse role si,
and we let fi be the minimum of the frequency constraint on si (if there is no frequency
constraint on si, we take fi equal to 1). Let T be the object-type that plays all roles in
r. Let C be the number of the possible values of T , according to the value constraint. C
must always be more than or equal to f1 + . . . + fn. Otherwise, some roles in r cannot be
satisfied.

Note that this pattern is actually a generalization of the previous pattern where there are no
exclusion constraints. However, the current pattern explicitly focuses on the exclusion con-
straints attached to a role, taking into account the frequency constraints, to decide whether
some roles are unsatisfiable. As pattern 4 does not contain exclusion constraints, a similar
strategy would not work.

Algorithm-5: For each exclusion constraint Exs[x] between a set of single roles {

10 Mustafa Jarrar and Stijn Heymans

Let XRoles = the set of roles participating in the exclusion Exs[x].
Let InvRoles = the set of inverse roles of XRoles.
For (1 to InvRoles.size) {

If (InvRoles[i].frequency is not Null) F = F + InvRoles[i].frequency.min.
else F = F+1; }

Let T = the object-type that plays all roles in XRoles.
Let T.Values = the value constraint on T.
// if there is no value constraint on T, then T.Values = null
If (T.Values is not null) and (T.Values.size < F) {
Satisfiability = false.
If (T.Values is not null) Message =(Contradiction!! between the value, the exclusion, and the

frequency constraints. In order to fulfill the frequency and the exclusion constraints, at least
F different values of T are needed, However there are only T.V alues.size values of T are
available according the value constraint. Either the value, the exclusion, and/or the
frequency constraints should be changed.)

else Message =(Contradiction!! between the value and the exclusion constraints. In order to
fulfill the exclusion constraints, at least F different values of T are needed, However there are
only T.V alues.size values of T are available, according to the value constraint. Either the
value and/or the exclusion constraints should be changed.)}}

3.6. Pattern 6 (Set-comparison constraints)
In this pattern, contradictions between exclusion, subset, and equality constraints are de-
tected. These three kinds of constraints are called set-comparison constraints. Figure 9
shows a contradiction between the exclusion and the subset constraints. This contradiction
implies that both relations cannot be populated. The exclusion constraint between the two

Fig. 9. Contradiction between subset and exclusion constraints.

roles r1 and r3 means that their populations should be distinct. However, in order to sat-
isfy the subset constraint between the relations (r1, r2) and (r3, r4), the populations of
r1 and r3 should not be distinct. In other words, the exclusion constraint between roles r1

and r3 implies an exclusion constraint between the relations (r1, r2) and (r3, r4) ?, which
contradicts any subset or equality constraint between both predicates.

Figure 10 shows the implications for each set-comparison constraint that might be de-
clared between roles or relations. These implications are taken into account when reason-
ing for contradictions between the three set-comparison constraints. In addition, an equality
constraint is equivalent to two subset constraints opposing each other. Hence, we shall refer
to a path of subset or an equality constraint as a SubsetPath. In the following we provide
a formal definition of this pattern, which is divided into two definitions, one in case the
exclusion constraint is declared between two roles, and the other between to relations.

Definition 6’: For each exclusion constraint between two roles, there should not be any
Role-SubsetPath between them, neither (ri ⇒ rj) nor (rj ⇒ ri). Otherwise, these roles
are unsatisfiable. A Role-SubsetPath between two roles (ri ⇒ rj) is a directed edge that is
constructed as the following:

Pattern-based Reasoning 11

Fig. 10. Implications between the set-comparison constraints.

• If there is a subset constraint between them explicitly, such that (ri → rj); or
implicitly through another role rh, such that (ri → rh) and (rh → rj).

• If there is an explicit subset constraint between the relations including them, such
that (Ra(ri, rx) → Rb(rj , ry)); or implicitly through another relation Rc(rh, rz),
such that (Ra(ri, rx) → Rc(rh, rz)) and (Ra(rh, rz) → Rb(rj , ry)), where ri, rj

and rh have the same type.
• If there is an equality constraint between them explicitly, such that (ri ↔ rj); or

implicitly through another role rh, such that (ri ↔ rh) and (rh ↔ rj).
• If there is an explicit equality constraint between the relations including them,

such that (Ra(ri, rx) ↔ Rb(rj , ry)); or implicitly through another relation
Rc(rh, rz), such that (Ra(ri, rx) ↔ Rc(rh, rz)) and (Ra(rh, rz) ↔ Rb(rj , ry)),
where ri, rj and rh have the same type.

Definition 6”: For each exclusion constraint between two relations, there should not be
any Relation-SubsetPath between them, neither (Ri ⇒ Rj) nor (Rj ⇒ Ri). Otherwise,
these relations (and thus their roles) are unsatisfiable. A Relation-SubsetPath between two
relations (Ri ⇒ Rj) is a directed edge that is constructed as the following:

• If there is a subset constraint between them explicitly, such that (Ri → Rj); or
implicitly through another relation Rh, such that (Ri → Rh) and (Rh → Rj).

• If there is an equality constraint between them explicitly, such that (Ri ↔ Rj); or
implicitly through another relation Rh, such that (Ri ↔ Rh) and (Rh ↔ Rj).

Algorithm-6: For each exclusion constraint Exs[x] between roles or relations {
If (Exs[x] between relations) {
Let XRelations = the set of all relations participating in Exs[x].
//For each pair of relations participating in the exclusion
For (i = 1 to i = XRelations.size)
For (j = 1 to j = XRelations.size)
If (i 6= j)
If (Relation-SubsetPath(XRelations[i], XRelations[j]) is not Null) {

Satisfiability = false.
Message=(Contradiction!! between the exclusion and the subset/equality constraints. In

order to fulfill the exclusion constraint, the XRelations[i].T that XRelations[i]

a XRelations[i].T2 must be different from the XRelations[i].T that XRelations[j] that
XRelations[j].T2.However the subset/equality constraint implies that this XRelations[i].T

should be the same. Either the exclusion or the subset/equality constraints should be
dismissed. }}

Else { // then the Exs[x] is between roles
Let XRoles = the set of all roles that are participating in Exs[x].
// For each pair of roles participating in the exclusion constraint
For (i = 1 to i = XRoles.size)

12 Mustafa Jarrar and Stijn Heymans

For (j = 1 to j = XRoles.size)
If (i 6= j)
If (Role-SubsetPath(XRole[i], XRole[j]) is not Null) {

Satisfiability = false.
Message=(Contradiction!! between the exclusion and the subset/equality constraints. In

order to fulfill the exclusion constraint, the XRole[i].T that XRole[i] a XRole[i].T2 must
be different from the XRole[i].T that XRole[j] a XRole[j].T2. However the subset/equality
constraint implies that this XRole[i].T should be the same. Either the exclusion or the
subset/equality constraints should be dismissed.}}}

3.7. Pattern 7 (Uniqueness-Frequency)
In this pattern, all occurrences of a uniqueness constraint that contradicts with a frequency
constraint on the role are detected. E.g., in Figure 11 the uniqueness constraint indicates
that the role r1 should be played by at most one element, while the frequency constraint de-
mands that there are at least 2 and at most 5 participants in the role (denoted as FC(2− 5)).
It is thus impossible to populate r1.

Fig. 11. Unsatisfiability of frequency and uniqueness constraint.

Definition 7 Given a role r with a frequency constraint FC(n −m) and a uniqueness con-
straint on it at the same time, if n > 1 then r cannot be satisfied.

Algorithm-7: For each frequency constraint F[x] on a role{
Let F[x].min = the lower bound of the frequency constraint F[x].
Let r = the role on which the F[x] is placed.
If (r.uniqueness is not Null) and (F[x].min > 1) {
Satisfiability = false
Message= (Contradiction!! between the frequency and the uniqueness constraints. The frequency
implies that r.T should r at most F [x].min and at least F [x].max r.T2(s). However, the
uniqueness implies that r.T should r at most one r.T2. Either the frequency or the uniqueness
constraints should be changed.)}

3.8. Pattern 8 (Ring constraints)
ORM allows ring constraints to be applied to a pair of roles that are connected directly to the
same object-type in a fact-type, or indirectly via supertypes. Six kinds of ring constraints
are supported by ORM: antisymmetric (ans), asymmetric (as), acyclic (ac), irreflexive (ir),
intransitive (it), and symmetric (sym)?,?. For example, Figure 12 shows an example of two
ring constraints (symmetric and acyclic) placed on the Manages role. These constraints
contradict each other because the symmetric implies that if person A manages person B,
then person B also manages person A. However, the acyclic implies that a person cannot
be directly (or indirectly through another person) a manager of himself.

The relationships between the six ring constraints are formalized by ? using the Euler
diagram as shown in Figure 13. This formalization indeed helps to visualize the implication
and incompatibility between the constraints. For example, one can see that acyclic implies
reflexivity, intransitivity implies reflexivity, the combination between antisymmetric and
irreflexivity is exactly asymmetric, and acyclic and symmetric are incompatible, i.e. their
combination leads to unsatisfiability.

Pattern-based Reasoning 13

Fig. 12. the role Manages is unsatisfiable

Fig. 13. Relationships between ring constraints.

In general, a role is unsatisfiable if it has two ring constraints, and these constraints
are disjoint in the Euler diagram. Notice that there are only three combinations of ring
constraint that are disjoint, and that lead to unsatisfiability, which are (symmetric, antisym-
metric), (symmetric, asymmetric), and (symmetric, acyclic).

Definition 8. Given a role r with a set RC of ring constraints on it, if (sym ∈ RC ∧ ans ∈
RC) ∨ (sym ∈ RC ∧ as ∈ RC) ∨ (sym ∈ RC ∧ as ∈ RC) then the role r cannot be
satisfied.

Algorithm-8: For each role r with more than two ring constraint {
Let r.RC = the set of ring constraints on r. Let Temp be an empty set.
if (sym ∈ r.RC) {

if (ans ∈ r.RC) Temp.add(”antisymmetric”).
if (as ∈ r.RC) Temp.add(”asymmetric”).
if (ac ∈ r.RC) Temp.add(”acyclic”).
if (Temp is not Null) {
Satisfiability = false.
Message= (Contradiction!! between the ring constraints. The symmetric implies that

if r.T A r r.T B, then r.T B also r r.T A. However, this symmetry contradicts the
Temp[1] (.., Temp[n]) constraint(s). Either the symmetric or the other ring constraints
should be dismissed.) } } }

3.9. Pattern 9 (Loops in Subtypes)
As Subtypes in ORM are proper subtypes, the subtype relationship is acyclic. In other
words, the population of a subtype is a strict subset (but not equal) of the population of
its supertype?, loops are illegal in ORM. Otherwise, one would have that a population is a
strict subset of itself, which is not possible. In Figure 14, none of the object-types A, B, or

14 Mustafa Jarrar and Stijn Heymans

C can be satisfied since they form a loop.
Notice that there is no analogous pattern for subset constraints; no strict subset relation

is required for subset constraints, such that loops in subset constraints imply equality of the
involved roles but do not lead to unsatisfiability in generalh.

Fig. 14. Loop in subtypes.

Definition 9. Given a subtype T , let Supers(T) be the set of all supertypes of T . If
T ∈ Supers(T), then the object-type T cannot be satisfied.

Algorithm-9: For each subtype T {
T.Supers = the set of all super types of T .

If (T ∈ T.Supers) {
Satisfiability = false.
Message= (Contradiction!! There is a loop of subtypes, which implies, e.g. that T is a subtype

of T . One of the subtype links in this loop should be removed.) }}}

4. Implementation: DogmaModeler and the CCFORM case study
This section illustrates the DogmaModeler’s implementation of all patterns in interactive
modeling. As an empirical usability experiment, we report our experience in applying
the patterns during the development of the customer complaint ontology, and the lessons
learned from the lawyers who built this ontology. At the end of this section, we compare
this pattern-based reasoning approach with the description logic-based reasoning that we
also support in DogmaModeler, and we argue that the two approaches complement each
other from a methodological viewpoint.

DogmaModeler is a software tool for modeling and engineering ontologies. The phi-
losophy of DogmaModeler is to enable non-IT experts to model ontologies with little or no
involvement of an ontology engineer. This challenge is tackled in DogmaModeler through
well-defined methodological principles: the double-articulationi and the modularizationj

hFurthermore, unlike ORM, subtypes in most of the specification languages (e.g. OWL) are not proper subtypes,
thus loops imply equality of the involved concepts.
iThe ontology double-articulation principle suggests that an application axiomatization should be build in terms
of (i.e. commits to) a domain axiomatization. While a domain axiomatization focuses on the characterization of the
intended meaning (i.e. intended models) of a vocabulary at the domain level, application axiomatizations mainly
focus on the usability of this vocabulary according to certain application/usability perspectives. An application
axiomatization is intended to specify the legal models (a subset of the intended models) of the application(s)
interest. For simplicity, one can imagine WordNet as a domain axiomatization, and ORM schema as an application
axiomatization, where all terms/object-types in the schema are linked with terms/synsets in WordNet. The idea
here is to enable: reusability of domain knowledge and usability of application knowledge, interoperability of
applications, etc. See ?,? for more details.
jThe ontology modularization principle suggests that application axiomatizations be built in a modular manner.
Application axiomatizations (e.g. ORM schemes) should be developed as a set of small modules and later com-
posed to form, and be used as, one modular axiomatization. DogmaModeler implements a well-defined composi-
tion operator for automatic composition of modules. It combines all axioms introduced in the composed modules.
See ?,? for more details.

Pattern-based Reasoning 15

principles. Furthermore, DogmaModeler supports the use of ORM as a graphical notation
for ontology modeling; the verbalization of ORM diagrams into pseudo-natural language
(supporting flexible verbalization templates for 11 human languages, including English,
Dutch, German, French, Spanish, Arabic, Russian, etc.) that allows non-experts to check,
validate, or build ontologies; the automatic composition of ontology modules, through a
well-defined composition operator; the incorporation of linguistic resources in ontology
engineering; the automatic mapping of ORM diagrams into the DIG description logic in-
terface and reasoning using Racerk; and many other functionalities.

Ontology validation in DogmaModeler is made simple and user friendly. Although
users can use Racer for complete formal reasoning on ORM diagrams, also non-IT/logic
experts are supported with an easy to understand reasoning approach (using the patterns),
which explain them constraint contradictions, the cause of these contradictions, and sug-
gestions of how to resolve these contradictions. DogmaModeler implements all patterns

Fig. 15. DogmaModeler’s support of patten-based reasoning.

described in this paper. Figure 15 displays these patterns as a menu in the DogmaMod-
eler Validator Settings window. Users can choose to enable or disable the enforcement of
these validation patterns when reasoning about the satisfiability of an ORM schema. The
DogmaModeler typically implements the satisfiability algorithms that we have presented in
section 3.One can see, from these algorithms, that not only unsatisfiability is detected, but
also, some details about the detected problems (through the generated message), including
which constraints cause the unsatisfiability, the problems with the other constraints, and

kRacer is a description logic based reasoning engine.

16 Mustafa Jarrar and Stijn Heymans

some suggestions to resolve the problem. Figure 16 and 17 illustrate unsatisfiable ORM
diagrams and the result of the reasoning. When a user reason about an ORM schema, Dog-
maModeler first runs the pattern-based approach, if the schema passes all patterns and no
problems are catched, then it runs the DL-based approach (using Racer) for completeness.
DogmaModeler calls these patterns not only while a modeling mistake is made by a on-

Fig. 16. An example of a satisfiable schema from the CCFORM project.

tology modeler, but also when an ORM diagram is composed with another. As we shall
report shortly, the main source of unsatisfiability problems is when two incompatible ORM
diagrams are composed with each other.

Although it is developed as a research prototype? DogmaModeler has been used in
many projects for ontology and business rule modeling, including CCFORM, FFPOIROT,
InnovaNet, and SCOPE. In the following we present our experience in using DogmaMod-
eler (focusing on the application of the pattern-based reasoning) in the CCFORM project.

4.1. The CCFORM case study
CCFORM is an EU funded project (IST-2001-38248) with the aim of studying the foun-
dation of a central European customer complaint portal. The idea is that any consumer
can register a complaint against any party about any problem in one portal. This portal
should: support 11 languages, be sensitive to cross-border business regulations, dynamic,
and can be extended by companies. To manage this dynamicity and to control companies’
extensions, a customer complaint ontology (CContology) has to be built as the basis of
the CC portal. In other words, the complaint forms are generated based on the ontologyl.

lSee ? for DogmaModeler’s support of generating web forms automatically out of a given ORM schema.

Pattern-based Reasoning 17

The CContology? comprises classifications of complaint problems, complaint resolutions,
complainant, complaint-recipient, “best-practices”, rules of complaint, etc. The main uses
of this ontology are 1) to enable consistent implementation (and interoperation) of all soft-
ware complaint management mechanisms based on a shared background vocabulary, which
can be used by many stakeholders. 2) to play the role of a domain ontology that encom-
passes the core complaining elements and that can be extended by either individual or
groups of firms; and 3) to generate CC-forms based on its ontological commitments and
to enforce the validity (and/or integrity) of their population. More information about the
CContology, including the ontology content itself, can be found in ?,?,?.

The CContology is developed in 11 human languages, and it is a result of six groups
(about 55 experts), including lawyers, consumer-affairs and e-business experts. None of
these experts was really aware of what an ontology is or how it can be used. Our role in
the project was to lead the ontology (and the multilingual) engineering tasks. We trained
about 10 of those experts on how to use DogmaModeler and build ontologies. The training
was done in two sessions, each of 3 hours. We basically focused on explaining the ORM
notation that was easily understood. We have found that the verbalization of the ORM
rules was a great mechanism to communicate with these experts. To enable collaborative
development (and also improve the reusability), the CContology was developed as a set
of 7 modules. Each module focuses on a certain subject matter, such as classifications of
complaint problems, classifications of complaint resolutions, etc.

Although the CContology is a medium size ontologym, it illustrates the value of the
pattern-based reasoning in interactive modeling. We have found that the experts did many
modeling mistakes (i.e. constraint contradictions) at the beginning, but the final version of
ontology did not contain any contradiction indeed. As constraint contradictions are detected
in DogmaModeler during the modeling process and in an interactive manner, we found that
this interaction is a self-learning mechanism. In other words, one of the interesting lessons
we have learned in this project is that the implementation of the patterns (in an interactive
manner during the ontology modeling process) enabled the lawyers to learn how to avoid
such mistakes the next time. Some of them even admitted that they understood some logics
from their experience in using DogmaModeler.

The source of these mistakes was mostly due to the lack of ORM understanding, which
is natural in our opinion. Figure 17 is an example of such a mistake. In this diagram, the
lawyers intended to model that a complainant cannot register a complaint against him-
self, so instead of placing an exclusion constraint between the two relationships regis-
ters/made by and receives/made against, they place it between the two roles made by and
made against. This mistake was discovered by DogmaModeler as it contradicts the manda-
tory constraints (see pattern 3). The second source of contradictions is the autonomous
development of modules. When composing modules, the resulted composition might be
unsatisfiable due to contradicting constraints among these modules. This is true although
each module individually is satisfiable. Figure 16 was an example of this mistake. In one
module the ’Information Problem’ was a subtype of ’content’ and in the second module
it was also a subtype of ’negotiation of terms’. The resulted composition of these two
modules, where ’Information Problem’ became subtype of two disjoint concepts, which
generates unsatisfiability.

The coverage of the patterns for the CContology was sufficient. Although the lawyers
did many modeling mistakes but all of these mistakes were discovered by DogmaModeler.
In fact, we found only 4 patterns were violated, which are: pattern 1, pattern 2, pattern 3,
and pattern 4. Pattern 2 was the most violated pattern in general. However, we also found

mabout 220 concepts and 300 relations

18 Mustafa Jarrar and Stijn Heymans

Fig. 17. Another example of a satisfiable schema from the CCFORM project.

that Pattern 3 was the most violated pattern during the modeling processes, and pattern 2
was still the most violated during the composition. Pattern 4 was violated only two times,
which is due to limited use of the value constraint in the CContology.

The messages that DogmaModeler generates when a problem is discovered was un-
derstandable. Although such messages cannot always be grammatically correct, as they
depend mostly on the linguistic labels used the schema, but we did not face any unclear
message. The suggestions provided in each message -on how to resolve the contradiction-
were always correct, from a logic viewpoint. However, from a methodological viewpoint,
one cannot really know what is the best solution to resolve the problem. For example, al-
though the message in figure 17 says “Either the exclusion or the mandatory constraint
should be relaxed”, which is true from a formal viewpoint, but the real reason of this con-
tradiction was the incorrect placing of the constraint. For such reasons, we try to make the
message as clear and expressive as possible so that users can spot (i.e. between the lines)
their real mistakes.

4.2. Pattern-based verses DL-based reasoning in DogmaModeler
As we have mentioned earlier, we have also tackled the ORM satisfiability problem in
another way. We have mapped ORM into both the DLR? and the SHOIN /OWL? de-
scription logics, which are powerful and decidable fragments of first order logic. Based
on these mapping, DogmaModeler maps? ORM diagrams automatically into DIG, which
is a description logic interface (XML-based language) that most reasoners (such as Racer,
FaCT++, etc) support. DogmaModeler is integrated with the Racer description logic rea-

Pattern-based Reasoning 19

Fig. 18. DogmaModeler’s support of description logic-based reasoning.

soning server, which acts as a background reasoning engine. Figure 16 shows a screen shot
of this implementation. The first window shows an ORM diagram, while the second win-
dow shows the reasoning results on this diagram. The results indicate that the role Reviews
cannot be satisfied.

This mappingn into description logics provides a complete reasoning support for ORM
schemes, i.e. users are able to check (strong and weak) satisfiability of an ORM schema by
satisfiability checking of the corresponding DL knowledge base.

When a user reason about an ORM schema, DogmaModeler first calls the pattern-based
approach, if all patterns passed and no problems are catched, then DogmaModeler calls
Racer (the DL-based approach) for complete reasoning.

On comparison between pattern detection approaches and a complete reasoning pro-
cedure in description logic, we find that both approaches complement each other. Pattern
detection approaches are easy and cheap to implement, which allows speedy reasoning in
interactive modeling tools. More importantly is that unsatisfiability/contradiction messages
can be customized for the ease of non-IT domain experts, explaining the sources of the un-
satisfiability, and offering solutions to these contradictions. On the other side, description
logic based reasoning offer complete solutions, so that it is guaranteed at least theoretically
that there are no undiscovered contradictions. However, these complete solutions cannot
offer more than a list of the unsatisfiable concepts. In DogmaModeler, even in the presence

nSome ORM constrains cannot be mapped into description logic or they are not yet supported by any DL reasoner,
such as external uniqueness, ring, multiple-role frequency, etc. Please refer to ?,?,? for the details.

20 Mustafa Jarrar and Stijn Heymans

of a complete reasoner, the patterns are used to quickly detect any “trivial” inconsistencies,
before calling the more expensive (but complete) procedure.

In the next section we discuss some efforts by other researchers who tried to modify the
internals of DL reasoners for generating unsatisfiability messages in an easy to understand
way and to propose solutions.

5. Related Work
Related Work in description logics
As we have mentioned before, the need to trace the causes of unsatisfiability and conflicts
has recently been realized by several research communities. In the context of debugging
OWL ontologies, a group from the university of Manchester has developed a software?

based on heuristics for identifying the sources of unsatisfiability for OWL ontologies. This
software is based on a list of common errors and mistakes that have been gathered? by a
group of researchers during tutorials and courses. The authors claimed that this system is
independent of any particular reasoner, they call it “Black Box”.

A “Glass Box” approach to debug OWL ontologies and diagnose inconsistencies has
been proposed? by a group from the university of Maryland. This approach suggests to
modify the internals of the Pellet reasoner, which is developed by the same group. This
approach offers browse-able messages to help users identify the sources of the inconsis-
tencies themselves. The authors of this approach explained the fundamental challenge of
computing the sources of unsatisfiability for an unsatisfiable ontology, and concluded that
only some situations can be improved, which are: “inconsistency of assertions about indi-
viduals”, “individuals related to unsatisfiable concepts”, “defects in class axioms involving
nominals”. Related to this approach, another methods?,? have been proposed to explain
some reasoning on ontologies, but these approach are mainly concerned with explaining
subsumptions. It also worth to note that identifying the causes of conflicted is becoming
an important goal in evolution management?,?. However these approaches are not in its
infancy and are not concerned with explaining messages to users.

Compared with our approach, we have found that none of the above mentioned is con-
cerned with providing suggestions to resolve unsatisfiability. Furthermore, as the screen-
shots, from the above cited articles show, the results are not convenient for a non-IT domain
experts. In terms of completeness, neither our approach, nor the above approaches can be
complete, which is due the nature of the problem. In addition, one cannot also compare
the comprehension of the approaches to each other, because of the disparities between the
OWL and the ORM constructs. For example, many of the common errors in OWL? are
considered syntax violations and thus detected by the ORM parser before any reasoning.

Related Work in ORM
In ?, 7 formation rules for constraints on ORM conceptual schemes are described. We
discuss to which extent these rules can also be used for detecting unsatisfiability of roles
and how they relate to the patterns described in section 3.

Formation rule 1 (A frequency constraint of 1 is never used (the uniqueness constraint
must be used instead)) and rule 2 (A frequency constraint cannot span a whole predicate)
prefer one syntactical form over another (rule 1) or prohibit a, from a logical perspective,
nonsensicalo frequency constraint (rule 2). Rule 1 is, however, not relevant, where we call
a rule relevant if it is relevant from an unsatisfiability detection perspective, i.e. a rule is
relevant, if in case it is violated, there is an unsatisfiable role. Regarding rule 2, as the

oNonsensical, since predicates are interpreted as sets, where each element in a set is, by definition of sets, unique
in that set.

Pattern-based Reasoning 21

population of an ORM predicate is basically a set, any frequency constraint FC(min −
max) where min is strictly greater then 1 leads to unsatisfiability. Rule 2 is, however, too
strict in the sense that a frequency constraint FC(1 − max), although redundant, does not
lead to unsatisfiability. Pattern 7 takes care of the latter case (where it is assumed, as is
implicit in ORM, that a predicate is spanned by a uniqueness constraint). Note that we
are only interested in unsatisfiability; from a modeling perspective, the formation rules are
most certainly useful, in the sense that they, e.g., avoid adding redundant constraints to the
schema.

Rule 3 (No role sequence exactly spanned by a uniqueness constraint can have a fre-
quency constraint) is again too strict by itself to be relevant for unsatisfiability. For exam-
ple, a constraint FC(1 − 5) and a uniqueness constraint on the same role do not yield an
unsatisfiable role. They are, however, equivalent with FC(1 − 1) or with a mandatory plus
a uniqueness constraint, thus, from a modeling perspective, formation rule 3 makes sense,
but it does not necessarily lead to an unsatisfiable role. We loosened up rule 3 to take this
into account in pattern 7.

Rule 4 (No uniqueness constraint can be spanned by a longer uniqueness constraint) is
again not relevant for unsatisfiability. Rule 5 (An exclusion constraint cannot be specified
between roles if at least one of these roles is marked as mandatory) is exactly pattern 3; we
made it explicit that the rule applies to subtypes as well.

Rule 6 (An exclusion constraint cannot be specified between two roles attached to
object-types one of which is specified as a subtype of the other) is not relevant for un-
satisfiability. There are ORM conceptual schemes violating rule 6, although all roles are
satisfiable (see Figure 19). For example, populate r5 with some ’a’, then ’a’, by the sub-

Fig. 19. ORM schema violating formation rule 6 but with satisfiable roles.

typing, must play one of the roles r1 or r3. It cannot play r3 due to the exclusion constraint
but nothing keeps it from playing r1.

The last formation rule, rule 7 (A frequency constraint with upper bound n cannot be
specified on a role sequence if n is less than the product of the maximum cardinalities
of the other role populations for the predicate), is covered by pattern 4 since we restrict
ourselves to binary predicatesp. The 7 ORM formation rules thus provide useful criteria for
constructing ORM schemes: in a lot of cases they avoid unsatisfiability as well as implied
(redundant) constraints. However, the rules mix both syntactical and semantical criteria,
occasionally yielding too strict criteria for detecting unsatisfiability. The constraint patterns,
described in Section 3, focus on the semantical aspect of unsatisfiability only.

In ?, the RIDL-A module of the RIDL∗ workbench, a database engineering tool based
on the NIAM methodology ?, checks whether a conceptual schema is correctly constructed.
Since NIAM is the predecessor of ORM, it is interesting to compare the criteria RIDL-
A employs to our patterns. Of particular interest in the RIDL-A module are the Validity
Analysis (rules V1-V6) and Set Constraint Analysis (rules S1 - S4) parts.

pMaximal cardinalities in ? correspond to value constraints.

22 Mustafa Jarrar and Stijn Heymans

It appears that none of the Validity Analysis rules are relevant for unsatisfiability. The
Set Constraint Analysis part contains 4 rules dealing with three types of constraints: subset,
equality, and exclusion. S1 and S3 say that a subset (resp. equality) constraint may not be
superfluous q. Although interesting from a modeling perspective, neither S1 nor S3 lead
to unsatisfiability of roles in itself. S2 (A subset constraint may not contain any loops) is
not relevant for unsatisfiability; the population of the roles would be equal but can be non-
empty. Note that we use the definition of subset constraints on predicates as in ?, i.e., a role
r1 is a subset of r2 if every element playing role r1 also plays r2. In particular, r1 does
not need to be a strict subset of r2: they may be equal. S2 is relevant for subset constraints
between subtypes since those are strict; we covered this with pattern 9.

Finally, S4 (The OTSETSr involved on an exclusion constraint may not have a common
subset) is a valid condition for detecting inconsistency. It is, however, too general, in the
sense that it is actually the definition of an exclusion constraint, and does not indicate how
the exclusion might yield unsatisfiable roles.

6. Conclusions and Further Research
We presented a pattern-based reasoning approach that offers a user-friendly reasoning
mechanism. 9 patterns of constraint contradictions that lead to unsatisfiability in ORM
models are identified. Not only detecting constraint contradictions, but also focused on pro-
viding a clear explanation about the detected contradictions, the causes, and suggestions on
how to resolve these contradictions.

We illustrated the DogmaModeler’s implementation of all patterns in interactive mod-
eling. As an empirical usability experiment, we reported our experience in applying the pat-
terns during the development of a customer complaint ontology. We compared this pattern-
based reasoning approach with the description logic-based reasoning that we also support
in DogmaModeler, and we argued that the two approaches complement each other from a
methodological viewpoint.

In the future, we intend to devise more patterns for unsatisfiability checking, e.g., check-
ing which combinations that involve more than 2 constraints lead to unsatisfiability while
leaving out one constraint would not lead to unsatisfiability (as in pattern 5). Moreover,
we intend to extend our approach to detect unsatisfiability for ORM derivation rules, asser-
tional knowledge, etc.

One may notice that our patterns can be easily translated to other knowledge repre-
sentation languages, especially for ontology and business-rules modeling tools. We plan to
apply these patterns for reasoning on OWL ontologiess.

Acknowledgment: We are indebted to Pieter De Leenheer, Robert Meersman and Olga De Troyer
for their suggestions during this research. We wish to thank specially the anonyms reviewers of this
article who give us many ideas and very helpful suggestions that turn the paper to be more precise
and mature. This research is partially supported by the SEARCHiN (MTKD-CD-2006-042467) and
the Knowledge Web (IST-2004-507482) projects.

qA constraint is superfluous -or implied- if it can be derived from other constraints.
rThe OTSET of a role corresponds, roughly, to the population of a role.
sOne of our master students aims to implement these patterns in Protg (an ontology modeling tool), as part of his
thesis on interactive ontology modeling.

