A Query Formulation Language for the Data Web

Mustafa Jarrar and Marios D. Dikaiakos, Member, IEEE Computer Society

Abstract—We present a query formulation language (called MashQL) in order to easily query and fuse structured data on the web. The main novelty of MashQL is that it allows people with limited IT skills to explore and query one (or multiple) data sources without prior knowledge about the schema, structure, vocabulary, or any technical details of these sources. More importantly, to be robust and cover most cases in practice, we do not assume that a data source should have—an offline or inline—schema. This poses several language-design and performance complexities that we fundamentally tackle. To illustrate the query formulation power of MashQL, and without loss of generality, we chose the Data web scenario. We also chose querying RDF, as it is the most primitive data model; hence, MashQL can be similarly used for querying relational databases and XML. We present two implementations of MashQL, an online mashup editor, and a Firefox add on. The former illustrates how MashQL can be used to query and mash up the Data web as simple as filtering and piping web feeds; and the Firefox add on illustrates using the browser as a web composer rather than only a navigator. To end, we evaluate MashQL on querying two data sets, DBLP and DBPedia, and show that our indexing techniques allow instant query formulation.

Index Terms—Query formulation, semantic/data web, RDF and SPARQL, indexing methods.

1 INTRODUCTION AND MOTIVATION

Allowing end users to easily search and consume structured data is a known challenge that receives recently a great attention from the Web 2.0 and the Data web communities. The rapid growth of structured data on the web has created a high demand for making this content more reusable and consumable. Companies are competing not only on gathering structured content and making it public, but also on encouraging people to reuse and profit from this content. Many companies such as Google Base, Yahoo Local, Freebase, Upcoming, Flicker, eBay, Amazon, and LinkedIn have made their content publicly accessible through APIs. In addition, companies have also started to widely adopt web metadata standards. For example, Yahoo started to support websites embedding RDF and microformats, by better presenting them in the search results; MySpace also started to adopt RDF for profile and data portability; Google, Upcoming, Slideshare, Digg, the Whitehouse, and many others started to publish their content in RDFa, a forthcoming W3C standard for embedding RDF inside webpages so that content can be better understood, searched, and filtered.

This trend of structured data on the web (Data web) is shifting the focus of web technologies toward new paradigms of structured-data retrieval. Traditional search engines cannot serve such data as the results of a keyword-based query will not be precise or clean, because the query itself is still ambiguous although the underlying data are structured. To expose the massive amount of structured data on the web to its full potential, people should be able to query these data easily and effectively. Formulating queries should be fast and should not require programming skills.

1.1 Challenges

The main challenge is that, before formulating a query, one has to know the structure of the data and the attribute labels (i.e., the schema). End users are not expected to investigate “what is the schema” each time they search or filter information. In many cases, a data schema might be even dynamic, i.e., many kinds of items with different attributes are often being added and dropped. Other sources might be schema free, or if it exists, the schema might be inline the data (e.g., RDF). Allowing end users to query structured data flexibly is a challenge, especially when a query involves multiple sources.

Example. Fig. 1 shows two RDF sources,1 Example1.com and Example2.com. Suppose a web user wants to retrieve “Lara’s articles after 2007” from both sites. These sources do not only disagree on property labels (e.g., Year and PubYear), but also on data semantics. For example, while the rdf:Type in Example1 tells us that A1 and A2 are Articles, we do not know whether B1 and B2 in Example2 are articles, books, or songs.

It is not necessary in RDF that data adhere to a certain schema or ontology. RDF data are queried using SPARQL [42]. The query in the right-hand side retrieves “the titles of the items that are written by Lara after 2007.” Query conditions in SPARQL are called triple patterns, and

1. RDF represents data as a directed labeled graph. A graph is a set of triples of the form <Subject, Predicate, Object>. Subjects and Predicates must be URIs, an Object can be either a URI or a Literal.
evaluated as pattern filling [41], rather than truth evaluation if compared with SQL. This is a robust way for querying schema-free data, as changes to data do not cause queries to break; however, it poses hard query formulation challenges. Before writing a query, one has to be fully aware of the property labels and data structures. Unlike formulating SQL, query requires one to manually investigate the data itself before querying it. This issue becomes challenging in the case of large data sets; and even more complex when querying multiple sources, as predicates have to be explicitly unioned (see Fig. 1).

As discussed in Section 2, allowing people to easily query and consume structured data is a known challenge in different areas. However, in an open environment, as the Data web, for a query formulation language to be practically sound, it should address the assumptions below:

1.2 Overview of Contributions
We propose an interactive query formulation language, called MashQL. The novelty of MashQL (compared with related work) is that it considers all of the above assumptions together. Being a language not merely an interface and, at the same time, assuming data to be schema free is one of the key challenges addressed in the context of MashQL design and development. Without loss of generality, this paper focuses on the Data web scenario. We regard the web as a database, where each data source is seen as a table. In this view, a data mashup becomes a query involving multiple data sources. To illustrate the power of MashQL, we chose to focus on querying RDF, which is the most primitive data model; hence, other models—as XML and relational databases—can be easily mapped into it [4].

We give a bird’s-eye view of MashQL in Fig. 2 which shows the same query as in Fig. 1 written in MashQL. The first module specifies the query input, the second module specifies the query body, and the output is piped into a third module (not shown here) that renders the results into HTML or XML, or as RDF input to other queries.

Each MashQL query is seen as a tree; the root is called the query subject. Each branch is a restriction on a property of the subject. Branches can be expanded to allow subtrees (Fig. 4), called query paths, which allows one to navigate through the underlying data set and build complex queries. Formulating a query is an interactive process: first, the editor queries a given data set (as a black box) to find the main concepts, from which the query subject can be selected (e.g., Anything, Article). The editor then finds the possible properties for this subject (e.g., Title, Author, Year). The user selects a property and restricts it using a function (e.g., MoreThan) and value (e.g., 2007); and so on (Section 4). In this way, users can navigate and query a data source without any prior knowledge about it. The symbol “\” indicates a projection, i.e., appear in the results. When querying multiple sources, two properties (or two instances) are considered the same if and only if they have the same URI. To help end users not seeing cryptic URI, the editor normalizes URIs by detecting different namespaces of same properties and optionally combines them together (Section 6). In case of different namespaces and property labels (e.g., S1:Year and S2:PubYear), the user can choose the union operator “\” to combine them.

Although MashQL can be used, in a sense, for data integration, but this is not a goal per se. Data integration requires not only syntax, but also semantic integration, which is not supported in MashQL. MashQL allows people to spot different labels of same properties (as they navigate through data sets) and manually combine them, as shown in the previous example.

Summary of Contributions:
- Query language (Section 3). The notational system and constructs that make MashQL an expressive and yet intuitive query language, supporting all constructs of SPARQL.
- Query formulation algorithm (Section 4). This algorithm is used by the MashQL editor. Its novelty is that it is one to navigate through and query a data graph(s) without assuming the end user to know the schema or the data to adhere to a schema.
- Graph-signature (GS) index (Section 5). Because of assumption 2 (data are schema free), the previous algorithm has to query the whole data set in real time, which can be a performance bottleneck because such queries may involve many self-joins. Hence, the interactivity of MashQL might be unacceptable. Thus, we propose a new way of indexing RDF, which we call the Graph Signature. The size of a Graph Signature is typically much smaller than the original graph, yielding fast response-time queries.

Fig. 1. SPARQL query over two RDF data sources.

http://example1.com
A 1 : rdf:type bibo:Article
A 1 : Title "Data Web"
A 1 : Author "Bob Hacker"
A 1 : Year 2007
A 2 : rdf:type bibo:Article
A 2 : Title "Semantic Web"
A 2 : Author "Tom Lara"
A 2 : Year 2005

http://example2.com
B 1 : Title "Linked Data"
B 1 : Author "Lara T."
B 1 : Publisher "Springer"
B 2 : Title "Data on the Web"
B 2 : Author "Abiteboul S."

SPARQL Query:
PREFIX s1:<http://example1.com>
PREFIX s2:<http://example2.com>
SELECT ?Article
FROM <http://example1.com>
FROM <http://example2.com>
WHERE {

 (?x1 s1:Title ?Article)
 UNION
 (?x2 s2:Title ?Article)
 UNION
 (?x1 s1:Author ?x1)
 UNION
 (?x2 s2:Author ?x2)
 FILTER regex (?x1, "Lara")
 FILTER (?x2 > 2007)
}

Results:
| Article/Title | Data Web | Linked Data |

Fig. 2. The same SPARQL query in Fig. 1, but in MashQL.

<table>
<thead>
<tr>
<th>Position Statement</th>
<th>How to allow people with limited IT-skills to query structured data, assuming that:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The user does not have to know the schema.</td>
<td>(1)</td>
</tr>
<tr>
<td>2. The data might be schema-free.</td>
<td>(2)</td>
</tr>
<tr>
<td>3. A query may involve multiple data sources.</td>
<td>(3)</td>
</tr>
<tr>
<td>4. The query method is sufficiently expressive. (i.e., not merely a single-purpose user interface)</td>
<td>(4)</td>
</tr>
</tbody>
</table>
Implementation and evaluation (Sections 7 and 6). We present two implementations of MashQL: a server-side mashup editor, and a Firefox add-on extension. We evaluate the response time of MashQL on two large data sets: DBLP and DBPedia; and compare it with Oracle’s Semantic Technology. We will show queries can be answered instantly, regardless of the data size.

A preliminary version of MashQL appeared in [23], [24] presenting only the general intuition of MashQL. This paper is substantially different:

1. the intuition is revised; it also includes
2. the formal syntax and semantics of MashQL and its mapping into SPARQL,
3. the query formulation algorithm,
4. the graph-signature index,
5. the evaluation, and
6. the implementation.

2 RELATED WORK

Query formulation is the art of allowing people to easily query a data source (e.g., relational database, XML, or RDF). In the background, queries are translated into formal languages (e.g., SQL, XQuery, or SPARQL). This section reviews the main approaches to query formulation and how they relate to the novel contributions of MashQL.

Query-by-form. It is the simplest querying method, but it is neither flexible nor expressive. For each query, a form needs to be developed; and changes to a query imply changing its form. Although some methods have been proposed to semiautomate form generation [28] and modification [29] they generally fail with assumptions 2-4.

Query-by-example. A known approach in databases, where users formulate queries as filling tables [50]. However, it requires the data be schematized and the users to be aware of the schema (fails with assumptions 1 and 2).

Conceptual queries. As many databases are modeled at the conceptual level using EER, ORM, or UML diagrams, one can query these databases starting from their diagrams. Users can select part of a given diagram, and their selection is translated into SQL (ECR [14], [41], RIDL [16], LISA [21], ConQuer [11], and Mquery [17]). These approaches assume that data have a schema and users have a good knowledge of the conceptual schema (fails with assumptions 1, 2, 3, and some with 4).

Natural language queries. They allow people to write their queries as natural language sentences, and then translate these sentences into a formal language (e.g., SQL [44], XQuery [33]). Hence, people are not required to know the schema in advance. The main problem is that this approach is fundamentally bounded with the language ambiguity—multiple meanings of terms and the mapping between these terms and the elements of a data schema (fails with assumptions 2, 3, and relatively 4).

Visualize queries. Several Semantic Web approaches (Isparql [2], RDFAuthor [46], GRQL [9], and Nitelight [45]) propose to formulate an SPARQL query by visualizing its triple patterns as ellipses connected with arrows, so that one would need less technical skills to formulate a query. Similarly, some tools had been also proposed to assist formulating XQueries graphically (Altova XMLSpy [1], Stylus Studio [2], Bea XQuery Builder [10], XML-GL [12], and QURSED [42]). Although these approaches vary in their intuitiveness they all intend to assist developers—rather than end users, as they require technical knowledge about the queried sources and their Schemas/DTDs (fail with assumptions 1 and relatively with 2 and 4). In fact, they are close to the query-by-example approaches as they are studio-based query builders, but for semistructured data.

Mashup editors and visual scripting. Some mashup editors (e.g., Yahoo Pipes [7], Popfly [19], and sMash [15]) allow people to write query scripts inside a module, and visualize these modules and their inputs and outputs as boxes connected with lines. However, when a user needs to express a query over structured data, she has to use the formal language of that editor (e.g., YQL for Yahoo). Two approaches in the Semantic Web community (SparqlMotion [6] and DeriPipes [48]) are inspired by this visual scripting. For example, Tummarello et al. [48] allow people to write their SPARQL queries (in a textual form) inside a box and link this box to another, in order to form a pipeline of queries. All of these visual scripting approaches are not comparable with MashQL, as they do not provide query formulation guide in any sense. They are included here, because MashQL is also inspired by the way Yahoo Pipes visualizes query modules. However, the main purpose of MashQL is not to visualize such boxes and links, but rather, to help formulating what is inside these boxes (Section 6). Hence, it is worth noting that the examples of this paper cannot be built using Yahoo pipes. Yahoo allows a limited support of XML mashups, using scripts in YQL.

Interactive queries. The closest approach to MashQL is Lorel [18], which was developed for querying schema-free XML, and without assuming a user’s knowledge about a schema. The difference between them: first, Lorel partially handles schema-free queries. Like using the Graph Signature in MashQL, Lorel uses a summary of the data (called DataGuide). However, unlike the Graph Signature, the DataGuide groups unrelated items as they extrinsically use same property labels, which lead to incorrect query formulation. In authors’ words, “we have no way of knowing whether O is a publication, book, play, or song. Therefore, a DataGuide may group unrelated objects together.” To resolve this issue, the authors proposed the notion of Strong DataGuide; but the problem is that the size of a Strong DataGuide can grow exponentially in case the data is graph shaped (rather than tree shaped), thus can be larger than the original graph: “the worst case running time is exponential in the size of the database, and for a large database, even linear running time would be too slow for an interactive session.” Second, Lorel does not support querying multiple sources (assumption 3) and third, its expressivity is basic (assumption 4). MashQL supports path conjunctions, disjunctions, and negation, variables, union, reverse properties, among many others.

Another related approach suggests a highly user interactive searching box [37]: a user can write a keyword, the system then smartly and quickly suggests to autocomplete this keyword. We found this approach intuitive as it is simple and does not assume any prior knowledge about the schema indeed (assumption 1). However, unlike MashQL, the existence of a data schema is fundamental to this approach, and this is what makes it highly interactive. The problem also is that this approach cannot play the role of a query language (fails with assumptions 2-4). Being, at the same time, expressive, intuitive, and highly interactive
query language (over multiple, large, and schema-free data sources) is a very difficult challenge indeed. We refer to a recent usability study [30] that investigated several query formulation scenarios that the casual users prefer. It concluded that a query language should be close to natural language, it should be graphically intuitive, and should not assume prior knowledge about the data. Another recent study [26] has specified similar querying challenges and requirements for making relational database systems usable for web-based applications.

3 THE DEFINITION OF MASHQL

This section defines the data model, the syntax, and the semantics of MashQL. The discussion on how to formulate a query follows in the next section.

3.1 The Data Model

MashQL assumes the queried data set is structured as (or mapped into) a directed labeled graph, similar to but not necessarily the exact RDF syntax. A data set G is a set of triples $\langle S, P, O \rangle$, where $S \in I$, $P \in I$, and $O \in I \cup L$.

Definition 1 (Data Set). A data set G is a set of triples, each triple t is formed as $\langle S, P, O \rangle$, where $S \in I$, $P \in I$, and $O \in I \cup L$.

The only difference with the RDF model is that we allow an identifier to be any form of a key (i.e., weaker than a URI). Allowing this would simplify the use of MashQL for querying databases. Relational databases (or XML) can be mapped easily to this primitive data model. Fig. 3 shows a simple example of mapping (or viewing) a database into a graph. The primary key of a table is seen as a subject, a column label as a predicate, and the data entry in that column as an object. Foreign keys represent relationships between data elements across tables. Mapping from relational database and XML into RDF is a mature topic for web-based applications.

3.2 The Intuition of MashQL

A MashQL query Q is seen as a tree. The root tree is called the query subject $Q(S)$, which is the subject matter being inquired (see Definition 4 in Table 1). A subject can be a particular instance I or a user variable V (see Definition 5). Each branch is a restriction R, on a property of the subject. Branches can be expanded to allow subtrees, called query paths. In this case, the value of a property is the subject of subquery. This allows one to navigate through the underlying data set and build complex queries. As will be explained later, each level a query is expanded, it costs a join when this query is executed; thus, the deeper the query path is, the execution complexity increases.

Example 2. To illustrate query paths, we use the data in Fig. 3 and seek to retrieve the recent articles from Malta. That is, we retrieve the title of every article that has an author, this author has an affiliation, this affiliation has a country, and the article is published after 2007. This query path can be easily formed and understood in MashQL, as shown in Fig. 4.

3.3 The Syntax and Semantics of MashQL

MashQL queries are not executed directly; instead, they are translated into SPARQL queries, which are submitted for execution. Hence, the semantics of MashQL follow the semantics of SPARQL [43]. Table 1 presents the formal definition of the MashQL constructs, and Table 2 presents their SPARQL interpretation.

Similar to SPARQL, when evaluating a query $Q(S)$, only the triples that satisfy all restrictions (see Definition 6) are retrieved, such that: 1) If a restriction is not prefixed with a modal operator, $(R := \langle empty, P, O \rangle)$, the truth evaluation of the restriction is considered true if the subject S, the predicate P, and the object filter O are matched (see the first two restrictions in Fig. 5). This case is mapped into a normal graph pattern in SPARQL (see rule 3). 2) If a restriction is prefixed with the modality “maybe” $(R := \langle maybe, P, O \rangle)$, its truth evaluation is always true (see the third restriction in Fig. 5). This case is mapped into an optional graph pattern in SPARQL (see rule 4). 3) If a restriction is prefixed with the modality “without” $(R := \langle without, P, O \rangle)$, its truth evaluation is considered true if the subject S and the predicate P do not appear together in a triple (see the last restriction in Fig. 5). Notice that there is no such a construct in SPARQL.
Furthermore, since RDF is a subject/object instead of the subject/object itself (see Fig. 4). To formulate queries at the type level, the construct "Any" hides joins, which is close to the intuition people use in their natural language communication. For example, the query in Fig. 4 means, retrieve the article that has an Author that: has a title, has the artist Shakera, possibly has an Album, and does not have a Song (call this thing a Copyright). In other words, when evaluating this query, we retrieve all triples that have same subject and:

1. with a predicate Title,
2. with a predicate Artist and the object identifier is Shakera,
3. maybe with a predicate Album, and
4. should not have the predicate Copyright.

As shown in Definition 7, MashQL supports nine forms of object filters: Equals, Contains, MoreThan, LessThan, Between, OneOf, Not, and query paths. Not all of these functions have a direct support in SPARQL but we emulate them (see rules 6–13). MashQL also supports a union between objects, properties, subjects, and queries (see Definition 8, and rules 14-17). In addition, to allow people formulate queries at the type level, the construct "Any" before a subject or object retrieves the instances of this subject/object instead of the subject/object itself (see Fig. 4). Furthermore, since RDF is a directed graph, it is helpful for a user to explore this graph backward. This is supported by the Reverse construct (see Definition 10 and rule 20).

Table 1

The Formal Definition of MashQL

Table 2

MashQL-to-SPARQL Mapping Rules

Example. The query in Fig. 5 means: retrieve everything (call this thing a Song) that: has a title, has the artist Shakera, possibly has an Album, and does not have a Copyright. In other words, when evaluating this query, we retrieve all triples that have same subject and:

1. with a predicate Title,
2. with a predicate Artist and the object identifier is Shakera,
3. maybe with a predicate Album, and
4. should not have the predicate Copyright.

but in MashQL, we emulate it with an optional pattern and the object O should not be bound (see rule 5).

Rule-1: The symbol \exists before a variable means that it will be returned in the results; i.e., included in the SELECT part.

Rule-2: if a subject, predicate, or object in a MashQL query is prefixed with \forall it is as expressive as SPARQL variable, i.e. prefixed with \forall.

Rule-3: If S is a subject, R is a predicate, O is an object, the mapping: $(S: P: O)$.

Rule-4: if S is a subject and $R = \text{<name>, } P, O$, the mapping is: $(\text{OPTIONAL(S: P: O)})$.

Rule-5: if S is a subject and $R = \text{< without, } P, O$, the mapping is: $(S: P: O. \text{FILTER } \{\text{bound}()\})$.

Rule 6. If $O = \text{<O, Equals(X, D, I),>}$:
- Append the mapping with: FILTER $(O = X)$
- If $D = \text{Null}$: Append the mapping with: FILTER $(\text{datatype}(D) = \text{D})$
- If $I = \text{Null}$: Append the mapping with: FILTER $(\text{lang}(I) = \text{L})$

Rule 7. If $O = \text{<O, Contains(X, D, I),>}$:
- Append the mapping with: FILTER regex (O, X)
- If $D = \text{Null}$: Append the mapping with:
- If $I = \text{Null}$: Append the mapping with: FILTER $(\text{lang}(I) = \text{L})$

Rule 8. If $O = \text{<O, MoreThan(X, D),>}$:
- Append the mapping with: FILTER $(O > X)$
- If $D = \text{Null}$: Append the mapping with: FILTER $(\text{datatype}(D) = \text{D})$

Rule 9. If $O = \text{<O, LessThan(X, D),>}$:
- Append the mapping with: FILTER $(O < X)$
- If $D = \text{Null}$: Append the mapping with: FILTER $(\text{datatype}(D) = \text{D})$

Rule 10. if $O = \text{<O, Between(X, Y, D),>}$:
- Append the mapping with: FILTER $(O \text{ >= X })$ & FILTER $(O \text{ <= Y})$
- If $D = \text{Null}$: Append the mapping with: FILTER $(\text{datatype}(D) = \text{D})$

Rule 11. If $O = \text{<O, OneOf(V),>}$:
- Append the mapping with: FILTER $(O = V)$
- If V is a regex-ed literal, the predicate OneOf(V) should be replaced with: FILTER Regex (O, V)

Rule 12. If $O = \text{<O, Notaille>,>}$:
- filter is generated as above, but with a negation.

Rule 13. If $O = \text{<O, Q}()\text{>,>}$:
- Repeat all mapping rules to generate Q0.

Rule 14. Given O_i, if $n > 1$ and $O_i \text{ in } 1$: The mapping in rules 3-4 will be: $(\{S: P: O\} \text{ UNION } \dots \text{ UNION } (S: P: O_i))$

Rule 15. Given P_i, if $n > 1$ and $P_i \text{ in } 1$: The mapping in rules 3-4 will be: $(\{S: P: O\} \text{ UNION } \dots \text{ UNION } (S: P_i: O))$

Rule 16. Given S_i, if $n > 1$ and $S_i \text{ in } 1$: Regenerate the query n times, each time with S_i as a root, and with a UNION between the queries.

Rule 17. Given Q, if $n > 1$: Add UNION between the n queries.

Rule 18. if a subject S is prefixed with "Any": $(S \text{ rdf:type }:S)$

Rule 19. if an object O is prefixed with "Any": $(O \text{ rdf:type }:O)$

Rule 20. If S is a subject and $R = \text{<P, O>,}$, the mapping is: $(O: P: S)$.
you would like to ask: “Give me the list of all stores that sell parts of the iPhone mobile, and that are located in Rome”; or “Which cinemas are located in San Francisco, offer a movie called Avatar and will be played between 20:00 and 23:00.” Notice that apart from some terms (such as giving me the list of all, which, that are), all of these inquiries can be directly converted into MashQL queries.

4 QUERY FORMULATION ALGORITHM

We present a novel query formulation algorithm, by which the complexity and the responsibility of understanding a data source (even if it is schema free) are moved from the user to the query editor. It allows end users to easily navigate and query an unknown data graph(s). That is, people learn the content and the structure of a data set while navigating it. The algorithm does not require the data to contain specific information or tags, except being syntactically correct RDF, as discussed in the query model (Section 3.1). Fig. 6 shows a query formulation demo.

1. If \(S \in S_T \), such as \(\text{Article} \), the list will be the set of all properties that the instances of this subject type have (e.g., \(\text{Title}, \text{Author}, \text{Year} \)).
2. If \(S \in S_i \), such as \(\text{A1} \), the list will be the set of all properties that this particular instance(s) has.
3. If the subject is a variable \(S \in V \), the list will be the set of all properties in the data set.
4. Users can also choose the property to be a variable by introducing their own label.

The formalization of these four options are:

(1) \(S \in S_T : \pi_0(\sigma_{\text{Title}}(G)) \)
(2) \(S \in S_i : \pi_0(\sigma_{\text{Title}}(S)) \)
(3) \(S \in V \)

Users can also manually union between properties, in the same way subjects are unioned, such as \(\text{Year}\backslash\text{PubYear} \).

1. If \(S \in S_T \), then \(\{ \text{Title}, \text{Author}, \text{Year} \} \).
2. If \(S \in S_i \), then \(\{ \text{Title}, \text{Author}, \text{Year} \} \).
3. If the subject is a variable \(S \in V \), then \(\{ \text{Title}, \text{Author}, \text{Year} \} \).
4. Users can also choose the property to be a variable by introducing their own label.

The formalization of these four options are:

(1) \(S \in S_T : \pi_0(\sigma_{\text{Title}}(G)) \)
(2) \(S \in S_i : \pi_0(\sigma_{\text{Title}}(S)) \)
(3) \(S \in V \)

Users can also manually union between properties, in the same way subjects are unioned, such as \(\text{Year}\backslash\text{PubYear} \).

1. If \(S \in S_T \), then \(\{ \text{Title}, \text{Author}, \text{Year} \} \).
2. If \(S \in S_i \), then \(\{ \text{Title}, \text{Author}, \text{Year} \} \).
3. If the subject is a variable \(S \in V \), then \(\{ \text{Title}, \text{Author}, \text{Year} \} \).
4. Users can also choose the property to be a variable by introducing their own label.
Further, 3) users can also choose to expand the property P to declare a path on it (as Author in Fig. 6D). In this case, the value X of the property Author, which is a variable, will be the subject of the subquery, i.e., a left join. The possible properties of this subject in the second level will be determined as described in step 2, taking into account all previous selections. The general case of an n-level property and n-level object (i.e., $n-1$ joins) are presented below (14-17) for the cases where the root is a subject type or a certain instance.

General Cases

<table>
<thead>
<tr>
<th>The n-level paths properties and objects, in case ($S \in S$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14) $P \in \mathcal{R} \times_{\mathcal{R}, \mathcal{A}, \mathcal{O}} \mathcal{O}1 \mathcal{G} \times{\mathcal{O}, \mathcal{G}} \mathcal{G} \times_{\mathcal{O}, \mathcal{G}} \mathcal{G}$</td>
</tr>
<tr>
<td>(15) $P \in \mathcal{O}1 \mathcal{O}2 \mathcal{G} \times{\mathcal{O}, \mathcal{G}} \mathcal{G} \times{\mathcal{O}, \mathcal{G}} \mathcal{G} \times_{\mathcal{O}, \mathcal{G}} \mathcal{G} \times_{\mathcal{O}, \mathcal{G}} \mathcal{G}$</td>
</tr>
<tr>
<td>(16) $P \in \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \mathcal{O}_5 \mathcal{O}_6 \mathcal{O}_7 \mathcal{O}_8 \mathcal{O}9 \mathcal{O}{10}$</td>
</tr>
<tr>
<td>(17) $P \in \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \mathcal{O}_5 \mathcal{O}_6 \mathcal{O}_7 \mathcal{O}_8 \mathcal{O}9 \mathcal{O}{10}$</td>
</tr>
</tbody>
</table>

Step 4.

The symbol ⊗ before a variable is used to indicate that it will be returned in the results (i.e., projection).

End

This algorithm illustrates how users interact with the MashQL editor and formulates the “background queries” that need to be executed in each interaction. In this way, users can navigate and query a data graph without prior knowledge about it, even if it is schema free. Section 6 implements this algorithm in two different editors, and discusses implementation issues to further enhance the query formulation process in the case of large and cryptic data. Next, we focus on the performance of this algorithm.

5 Graph Indexing: The Graph Signature

One of our key assumptions for querying the Data web is that data are schema free. This is indeed a challenging requirement for query formulation as the editor’s background queries need to be executed on the whole data set and in real time, because there is no offline schema that can be used instead. In such a user-interaction setting, the response time is an important factor that needs to be taken into consideration and which should be small, preferably within 100 ms [35]. Achieving such a short interaction time for background queries with graph-shaped data is even more challenging, because the exploration of a graph stored in a relational table $G(S,P,O)$ can be expensive as this table needs to be self-joined many times [8]. A query with n levels involves $n-1$ joins. Precomputing and materializing all possible MashQL’s background queries is not an option since the space requirements are too high; thus, an efficient RDF indexing is needed. Several approaches have been proposed to index RDF, such as Oracle3 [13], C-Store4 [8], and RDF3X5 [39]. Although these approaches have shown good performance—a query with a medium complexity costs some seconds—however, this performance is unacceptable for an interactive query formulation session, especially in the case of large graphs.

In this section, we present the Graph Signature, a novel approach for indexing RDF graphs, which is a complementary rather than an alternative to the approaches mentioned above. Our goal is not to optimize any arbitrary RDF query, but rather to enhance the performance of the background queries presented in the previous section. Next, before presenting the Graph Signature, we generalize the background queries into one query model. The rest of the section shows how this query model is significantly optimized using the Graph Signature.

5.1 The Query Model

As one may notice, each of the 17 background queries formalized earlier is a query path, i.e., a linear-shaped query. Star-shaped and tree-shaped queries are not needed in query formulation. We define a query path as an expression of the form: $\{O_1, P_1, O_2, P_2, \ldots, P_n, O_n\}$, where O_i is a node, and P_i is an edge. Both nodes and edges can be variables. A variable node is denoted as $?O_i$ and a variable edge as $?P_i$. A query can return either a node or an edge. For query formulation, we only need to retrieve the last node/edge in the path; that is, we need to retrieve either the edge P_n or the node O_n. Hence, the query model is formed as: $O_n|P_n|\{O_1, P_1, O_2, P_2, \ldots, P_n, O_n\}$. For example, the query $P:\{B2 \text{ Author} \ ?O1 \ ?P \ ?O2\}$ retrieves the properties of the authors of B2; and $O:\{B2 \text{ Author} \ ?O1 \text{ Affiliation} \ ?O\}$ retrieves the affiliations of the authors of B2. Each of the 17 background queries in the previous section is a special case of this query model; hence, optimizing the query model is an optimization of all background queries.

5.2 The Intuition of the Graph Signature

The idea of the Graph Signature is to summarize a given RDF graph, so that the background queries can be answered from this summary. Because the size of the summary is smaller than the original graph, queries can be faster. Given an RDF graph G, its Graph Signature S is a twofold summary: the O-Signature S_O and the I-Signature S_I. S_O is a summary of the original graph such that nodes that have the same outgoing paths are grouped together. S_I summarizes a graph by grouping nodes that have the same incoming paths, which is analogous to the 1-index [36].

Example.

Fig. 7 provides an example of an RDF graph and its O/I-signatures. In this example, $\{A2, A3\}$ are grouped in the S_O because they have the same outgoing paths until the end. $A1$ is not part of this grouping as it does not have the path Affiliation.Student. In the I-Signature, $A4$ is not grouped with $\{A1, A2, A3\}$ as it has different incoming paths, e.g., Student. Each of the two summaries is computed and stored separately, but they are jointly used to produce precise answers, as will be discussed shortly.

3. Oracle suggested in [13] to build a subject-property matrix materialized join views on the RDF table, such that all direct and nested properties for a group of subjects are materialized. This approach (called Semantic Technology) has been released as part of Oracle 10g and 11g.

4. C-Store [8] suggested partitioning the RDF table vertically, into n two-column tables, where n is the number of unique properties in the data.

5. RDF3X [39] to only build many B*-Tree indexes, and a “careful optimization of complex join queries.”
Let us now query these signatures, and compare their results with the results obtained from the original graph G. We call the answer of G, the target answer. Fig. 8 shows examples of queries and their answers.

As shown in Fig. 8, each part of the Graph Signature produces the correct answer and some more results, called false positives. That is, the target answer is equal to or a subset of the answer of each part. Hence, the intersection of the S_0 and S_1 answers equals or is a small superset of the target answer. We shall show in Section 5.8 how false positives (if any) are eliminated, in order to always achieve precise answers. Hence, instead of evaluating the background queries on the original graph, we evaluate them on the Graph Signature. Because the size of the graph signature is much smaller than the original graph, querying it is much faster. Section 5.9 positions the novelties of the Graph Signature w.r.t. related work. In Section 7, we present an evaluation of MashQL’s background queries over the Graph Signature of large data sets (DBLP and DBPedia), and show that it yields to an instant user interaction, regardless of the complexity of the background queries.

In the next sections, we turn our focus to formally define the Graph Signature and its construction and storage. We shall come back again (Section 5.8) to discuss how the background queries are evaluated on the Graph Signature.

5.3 The Notion of Bisimilarity

Since each node in the Graph Signature is in fact an equivalent class of some nodes in G, one way to compute the Graph Signature is a full traversal of G. For example, we take every node in G, compute all outgoing paths from this node, and compute all incoming paths into this node. Then, we construct the O-Signature by grouping the nodes having the same outgoing paths; and similarly the I-Signature. This way is called trace equivalence [20]. Unfortunately, this way is computationally expensive and known to be PSPACE-complete [46]. The solution (as suggested in [32]) is to use the notion of bisimilarity, which is extensively discussed in the literature of process algebra [20], [40] and which implies trace equivalence. The idea of bisimilarity, in RDF terms, is to group nodes having the same properties, and then iterate; at each iteration step, we split a group of nodes if it violates bisimilarity. We repeat until our groupings are stable. Next, we adopt the typical definition of bisimilarity [40] and modify it to suite RDF graphs.

Definition (O-Bisimilarity \approx_O). O-Bisimilarity is a symmetric binary relation \approx_O on G. Two nodes S_1 and S_2 are O-bisimilar ($S_1 \approx_O S_2$), if and only if:

1. The set of the property labels of S_1 equals the set of the property labels of S_2. In RDF terms, there exists $(S_1 P_1 O) \ldots (S_1 P_m O)$, and $(S_2 P_1 O) \ldots (S_2 P_n O)$, such that, the distinct set of properties of $S_1\{P_1, \ldots, P_m\}$ equals the distinct set of properties of $S_2\{P_1, \ldots, P_n\}$.
2. If S'_1 is a successor of S_1 through a property $P_i(S'_1 P_i \rightarrow S'_1)$, and S'_2 is a successor of S_2 through a property $P_i(S'_2 P_i \rightarrow S'_2)$, then $S'_1 \approx_O S'_2$, and $S'_2 \approx_O S'_1$.

Definition (I-Bisimilarity \approx_I). I-Bisimilarity is a symmetric binary relation \approx_I on G. Two nodes S_1 and S_2 are I-bisimilar ($S_1 \approx_I S_2$), if and only if:

1. The set of the property labels into S_1 equals the set of the property labels into S_2. That is, there exist $(O P_1 S_1) \ldots (O P_m S_1)$, and $(O P_1 S_2) \ldots (O P_n S_2)$, such that, the set of properties into $S_1\{P_1, \ldots, P_m\}$ equals the set of properties into $S_2\{P_1, \ldots, P_n\}$.
2. If S'_1 is a predecessor of S_1 through a property $P_i(S'_1 P_i \rightarrow S'_1)$ and S'_2 is a predecessor of S_2 through a property $P_i(S'_2 P_i \rightarrow S'_2)$, then $S'_1 \approx_I S'_2$, and $S'_2 \approx_I S'_1$.

5.4 The Definition of the Graph Signature

Definition (Graph Signature). Given an RDF graph G, its Graph Signature S is comprised of two summaries: O-Signature S_0 and I-Signature S_1. In short, $S = <S_0, S_1>$.

Definition (O-Signature). Given an RDF graph G, its S_0 is a directed labeled graph, such that, each node in S_0 is an equivalent class (\approx_O) of some nodes in G; and each edge p in S_0 from u to $v (u^p \rightarrow v)$ iff G contains an edge p from a to $b (a^p \rightarrow b)$ and $a, b \in v$.

Definition (I-Signature). Given an RDF graph G, its S_1 is a directed labeled graph, such that, each node in S_1 is an equivalent class (\approx_I) of some nodes in G; and each edge p in S_1 from u to $v (u^p \rightarrow v)$ iff G contains an edge p from a to $b (a^p \rightarrow b)$ and $a, b \in v$.

5.5 Construction of the Graph Signature

To compute the Graph Signature, we use the standard algorithm for computing bisimilarity [40]. We modify this algorithm to suit RDF graphs, for computing both the O-Signature and the I-Signature (see Fig. 9). The input in each
5.7 The Size of the Graph Signature

The space cost to store each part of the Graph Signature consists of the space of the signature and the space of its extent. The size of each part of the Graph Signature is at most as large as the data graph; but in practice, it is much less, as our evaluations show. The size of the extent is exactly the number of unique nodes in the data graphs. In the following, we present some techniques that yield a significant reduction of the overall size of the Graph Signature:

1. **Literal nodes** can be excluded, as they are not used in query formulation. We assign literal nodes to null before computing the Graph Signature.
2. **Annotation properties** can be excluded. There are several types of properties in RDF that are not intended to represent data, but rather, to describe data, such as rdf:Description, rdf:comment, rdfs:label, rdf:about, or rdf:seeAlso.
3. **Synonym properties** can be joined. Because of different namespaces and conventions, it is likely that different properties have the same semantics (e.g., foaf:FirstName and foaf:GivenName, foaf:mbox and :email). Such properties can be joined by replacing them with a chosen label.
4. **Equivalence properties** can be normalized. Certain properties indicate that the subject and object in a triple are equal, such as rdf:SameAs and rdf:Redirect. Normalizing these properties can be done by assigning the subject and the object the same URI.
5. **Certain properties** can be excluded. We may wish to exclude some properties that are not likely to be queried, such as LongAbstract in DBPedia.

Before computing the graph signature, we process a configuration file, which we have built for the properties to be excluded, joined, or normalized.

A special case property is the rdf:Type. As this property is likely to be used in query formulation, it should be well indexed. For this, we extend the lookup table, which we use to store the extents. Instead of having the lookup table as ext(SoID, SiID, Node), we have ext(Type, SoID, SiID, Node). Hence, we can look up not only the group of a node, but also the node(s) and the group(s) of a certain type.

5.8 Evaluating Queries with the Graph Signature

As discussed earlier, the answer obtained from the O-Signature—and similarly the I-Signature—is always a superset or equals the target answer (the answer obtained from the data graph). In case the answer of the O/I-signature equals the target answer, we call it a precise answer; otherwise, it is called a safe answer, since it equals the target answer and some false positives. The intersection of the answers of both the O-Signature and the I-Signature is a smaller superset or equals the target answer. The following theorems state when the Graph Signature produces precise and safe answers; the proofs are sketched in the Appendix.

Theorem 1. Given a query, the answer of the O-Signature is always safe; and similarly the answer of the I-Signature.

Theorem 2. Given any query retrieving edge labels, the answer of the O-Signature is always precise.

Theorem 3. Given a query, with all nodes variables, the answer of the I-Signature is always precise.

Theorem 4. Given a query, if the answer of the O/I-Signature is empty or the intersection of both is empty, then this answer is always precise.

Based on these theorems, the flowchart in Fig. 10 depicts the evaluation scenario. Given a background query Q, if P_n is projected (i.e., the last edge label is retrieved), it can be precisely answered from the O-Signature, as stated in
The novelty of our graph index is: 1) the bisimilarity algorithm is adapted to suite RDF graphs, s.t. it is not necessary for a node to have unique outgoing edges, as in XML; 2) unlike the F&B approach that generates one large incoming-and-outgoing index in order to generate less false positives, we store the incoming-and-outgoing indexes separately, but they are jointly used, thus achieving small indexes and less false positives at the same time; and 3) a query model and an evaluation scenario for RDF query paths is proposed, which is different from XML paths, as property labels, not only node labels, can be retrieved.

6 IMPLEMENTATION

We implemented MashQL in two scenarios: an online server-side query and mashup editor, and a browser-side
Firefox add-on editor. The former is illustrated in Figs. 11 and 12. Its functionality comprises:

1. the MashQL language components;
2. the user interface;
3. a state machine dispatching the “background queries” in order to support query formulation during the interactive exploration of RDF data sets;
4. a module that translates a formulated MashQL query into SPARQL and submits this for execution or debugging; the formulated MashQL query is serialized and stored in XML;
5. a module that retrieves, merges, and presents the results of the submitted SPARQL query.

MashQL queries can be materialized and published if needed. Each published query is given a URL, and its output is seen as a concrete RDF source.

When a user specifies an RDF data source(s) as input, it is bulk loaded into an Oracle 11g, and its Graph Signature is constructed. Subsequently, the MashQL Editor uses AJAX to dispatch background queries and the SPARQL translation of formulated MashQL queries for execution by the Oracle 11g. We chose Oracle 11g because of its support for native RDF queries and storage.

As one may notice, MashQL’s GUI follows the style Yahoo Pipes visualizes feed mashups, and uses the Yahoo Pipes’ open-source Java-Script libraries. Our choice of following this style is to illustrate that MashQL can be used to query and mash up the Data web as simple as filtering and piping web feeds. It is worth noting also that the examples of this paper cannot be built using Yahoo pipes, as it does not support querying structured data. Yahoo allows a limited support of XML mashups, but this is neither graphical nor intuitive; as one have to write complex scripts in YQL, the Yahoo Pipes’ query language. In fact, Yahoo Pipes, as well as Popfly and sMash, is motivating for—rather than solving—the problem of structured-data retrieval.

In an alternative implementation, we developed the MashQL editor as an add on to the Firefox browser. This extension has the same functionalities of the online editor. However, no databases or RDF indexing are used for storing, indexing, and querying the data sources, but rather, the SPARQL queries are executed inside the browser, using the JENA SPARQL query libraries. Hence, the size of the input sources is limited to the client’s memory. The goal of this Firefox extension is to allow querying and fusing websites that embed RDFa. In this way, the browser is used as a web composer rather than only a navigator.

We refer the reader to technical report [25] for more technical details and MashQL use cases.

6.1 Implementation Issues

6.1.1 URI Normalization

As RDF data may contain unwieldy URLs, MashQL queries might be inelegant. Thus, the editor normalizes URIs and displays the normalization instead; for example, Type instead of http://www.w3.org/1999/02/22-rdf-syntax-ns#type. In addition, if one moves over Type, its URI is displayed as a “tip.” Internally, the editor uses only the long URIs. In case of different URIs leading to the same normalization, we add a gray prefix to distinguish them (e.g., 1:Type, 2:Type). The normalization is based on a repository that we built for the common namespaces (e.g., rdf, rdfs, WOL, and FOAF). In case a URI does not belong to these namespaces, the editor uses heuristics. For example, takes the last part after “#. If “#” does not exist, then the part after “/.” The result should be at least three characters and start with a letter; otherwise, we take the last two parts of the URL, and so on. We have evaluated this on many data sets and found it covering the extreme majority of cases. However, there is no guarantee to always produce elegant normalization.

6.1.2 Verbalization

To further improve the elegance of MashQL, we use a verbalize/edit modes. When a user moves the mouse over a restriction, it gets the edit mode and all other restrictions get the verbalize mode. That is, all boxes and lists are made invisible, but their content is verbalized and displayed instead (see Fig. 6). This makes the queries readability closer to natural language, and guides users to validate whether what they see is what they intended.

6.1.3 Scalable Lists

In case of querying large data sets, the usual drop-down list becomes unscalable. We have developed a scalable and friendly list that supports searches, autocomplete, and sorting based on Rank and Asc/Desc. If Rank is selected, we order items/nodes based on how many nodes point to them. This knowledge is precomputed, from the Graph Signature. Our list supports also scalable scrolling. The first 50 results are displayed first, but one can scroll to go to the next, arbitrarily middle, or last 50. Each time, the editor sends an AJAX query to fetch only those 50.

7 Evaluation

This section presents three types of evaluations: 1) the scalability of the Graph Signature, 2) the time cost of formulating a MashQL query using the Graph Signature,
Fig. 13. Statistics about the experimental data.

Fig. 14. The O-Signature for all partitions.

and compare it with using the Oracle Semantic Technology; and 3) the usability of the MashQL editors.

7.1 Data Sets and Experimental Settings

Our evaluation is based on two public data sets: 1) DBLP and 2) DBPedia. The DBLP (700 MB size) is a graph of eight million edges. We partitioned this graph into three parts: A8 is the whole DBLP; A4 is four million triples from A8; and A2 is two millions. No sorting is used before the partitioning. Fig. 13 shows some statistics. The DBPedia (6.7 GB) is a graph of 32 million edges, which is an RDF version of the Wikipedia. Similarly, DBPedia is partitioned into three parts. We choose these data sets in order to illustrate the scalability of our Graph Index in case of homogenously and heterogeneously structured graphs. DBLP is more homogenous, as most of its nodes have similar paths. However, DBPedia is known to be a noisy collection of RDF triples. Each of the six partitions is loaded into a separate RDF model in Oracle 11g, which was installed on an server with 2 GHz dual CPU, 2 GB RAM, 500 GB HHD, and 32-bit Unix OS.

7.2 Scalability Evaluation

We built an O-signature and I-Signature for each partition (see Fig. 14). As one can see, the time cost to build the S_D and S_I is linear with respect to the data size. For example, for S_D, B2 (2M triples) costs 48 seconds, the time is almost doubled when the data size is doubled.

What is more scalable is the behavior of the index with respect to the number of the triples. For example, the whole DBLP A8 (8M triples) is summarized in S_D by only 34K triples; this number is larger when the data are smaller, 190K for A4. This is because (although we did not apply any sorting before partitioning the data, but) more similarities were found when the whole data are put together. In other words, some nodes in A4 are grouped in several places whereas they are not grouped together in A4; it is found that these nodes have the same paths. This implies that the size of the Graph Signature does not necessarily increase if more triples are added to the data graph. The size of the O-Signature reflects the homogeneity of a graph. For example, the O-Signature for A8 (34K) is smaller than the O-Signature for B8 (244K), as DBLP is more homogenous. Nevertheless, for both data sets, the generated O/I-signatures fit in a small memory, thus joining it many times still yields fast querying as we show next.

The I-Signature happens here to be smaller than the O-Signature. The reason is that root nodes (which are many in DBLP and DBPedia) are all grouped together in one equivalent class.

7.3 Response-Time Evaluation

This section evaluates the response time of the MashQL editor’s user interaction. In other words, we are not interested to evaluate the execution of a MashQL query itself, as this is not the purpose of this paper; but rather, the execution of the queries that the editor performs in the background to generate the “next” drop-down list (see Section 4). In the following, we present three MashQL queries. We identify the set of background queries, and evaluate them on both: 1) Oracle’s Semantic Technology, which is the native RDF index in Oracle 11g [13]; and 2) the Graph Signature index (as described in Section 5.8). We also store the Graph Signature in Oracle 11g as described in Section 5.6.

Experiment 1. To formulate the query in Fig. 15 on DBLP, the user first selects the query subject from a list. The query that produces this list is annotated by 1. The user then selects a property of this subject from a list. The query that produces this list is annotated by 2, and so on. These queries are executed on each partition of the DBLP, using both: the Graph Signature and Oracle Semantic Technology. The cost7 (in seconds) is shown in Fig. 16.

As shown by this experiment, the time cost for each query remains within few milliseconds using the Graph Signature, regardless of the data size and complexity of the query. This is because the size of the Graph Signature is

6. As described earlier, Oracle [13] stores RDF triples in one table G(s,p,o); thus, a query with n-levels implies joining the table n – 1 times. To improve the querying performance, Oracle proposed to build several B-tree indexes on G, as well as to build subject-property materialized views on G, such as $V_1(s,p_1,p_2,...,p_n)$. A tuple in V_1 is a subject identifier x, and the value of the column p_i is an object y. In this way, data are transformed—-somehow—from a graph form into a relational form; thus, less number of joins when executing a query. These subject-property views are seen as auxiliary, rather than core, indexes. This is because there are no general criteria to know which subjects and which properties to group. Oracle uses statistics to find possibly good groupings (i.e., views); otherwise, queries are executed on the original G data graph; hence, queries with many joins remain a challenge.

7. To avoid the I/O dominance, we did not include GROUP-BY and ORDER-BY, and only the top 10,000 rows are retrieved.
small, if compared with the Oracle’s Semantic Technology that scans the whole data set.

Experiment 2. Here, we show a similar evaluation on DBPedia, but with longer queries (see Fig. 17).

This experiment also shows that the time cost for all queries remains very small indeed, although the data set is larger, more heterogeneous, and the queries involve longer join-path expressions.

Experiment 3 (Extreme). This experiment might not be faced in practice; but its goal is to expose the limits of both our Graph Signature and Oracle’s index. Fig. 19 shows a query where all nodes and properties are variables. It means, what are the properties of the properties of ... (at ninth level) of properties of anything. After selecting the query subject as the variable Anything, and then move to select from the list of its properties, the user decides to make the property as a variable, at each level. The query editor, at each level, generates the list of the possible properties depending on the previous selections. For example, at the second level, the editor’s query 0: P:(?Anything ?RelatedTo1 ?O1) (?O1 P ?O2); at the third level 0: P:(?Anything ?RelatedTo1 ?O1) (?O1 ?RelatedTo2 ?O2) (?O2 P ?O4); and so on. Notice that executing such queries is very expensive as the whole index must be scanned and joined with itself $i - 1$ times, at level i.

![Fig. 18. Time cost of the background queries in Fig. 17. Queries taking more than 5,000 s were terminated and their time is not reported.](image)

7.4 Usability Evaluation

To evaluate how easy it is to use MashQL, we invited 40 people to use the MashQL editor to formulate basic and advanced queries over RDF data sets found at http://data.semanticweb.org, which contains over 80k triples about articles, people, organizations, conferences, and workshops. Twenty five participants were non-IT skilled (i.e., had only basic skills for web browsing); and other 15 were IT-skilled people—but none of them was familiar with RDF or SPARQL. A 10-min tutorial about MashQL was given before the evaluation started, illustrating examples of MashQL queries but no hands-on exercises or examples from the data sets used.

Each of the 40 participants was given six queries to formulate (listed in Fig. 21). After formulating each query in MashQL, each person was asked to manually browse the queried page(s) and compose the answer. The average time needed to formulate each query in MashQL (versus the manual navigation) was recorded and is presented in Fig. 22b.

![Fig. 19. A query with all predicates are variables.](image)

After finishing all queries, each person was asked to fill in a questionnaire that evaluated the main features of MashQL. The results are summarized in Fig. 23.

This evaluation included the MashQL editor and the Firefox add on. The evaluation conclusions for each case were almost the same; thus, they are merged here for the sake of brevity. We refer to [49] for more details about each evaluation.

We found that most of the people were generally happy and the core ideas of MashQL were appreciated. People

Fig. 21. List of queries used in the evaluation.

were able to learn MashQL quickly by practicing it; if they were to perform similar queries on other data sets, they would do it much faster next time. It is worth noting that none of the 40 people failed to formulate the given queries. We also observed that people are still not used with the Data web paradigm (i.e., dealing with structured data and the difficulty of querying it). They are used to “google” information and then manually navigate to compose answers, without noticing how much time they consume or the imprecision of the results.

Since MashQL is not intended to be used by developers (e.g., SPARQL and RDF experts), but rather, by people who are unfamiliar with these technologies, our usability study did not compare MashQL usability with SPARQL usability. However, it is worth noting that some users of the MashQL editors have used it to learn SPARQL. The tool supports a did not compare MashQL usability with SPARQL usability. are unfamiliar with these technologies, our usability study (e.g., SPARQL and RDF experts), but rather, by people who are unfamiliar with these technologies, our usability study.

8 CONCLUSIONS AND FUTURE WORK

We proposed a query formulation language, called MashQL. We have specified four assumptions that a Data web query language should have, and shown how MashQL implements all of them. The language-design and the performance complexities of MashQL are fundamentally tackled. We have designed and formally specified the syntax and the semantics of MashQL, as a language, not merely a single-purpose interface. We have also specified the query formulation algorithm, by which the

Fig. 22. (a) Manual Navigation versus MashQL. (b) IT versus non-IT.

complexity of understanding a data source (even it is schema free) is moved to the query editor. We addressed the challenge of achieving interactive performance during query formulation by introducing a new approach for indexing RDF data. We presented two different implementation scenarios of MashQL and evaluated our implementation on two large data sets.

We plan to extend this work in several directions. We will introduce a search box on top of MashQL to allow keyword search and then use MashQL to filter the retrieved results. To allow people use MashQL in a typical data integration scenario, several reasoning services will be supported, including SameAs, Subtype, Subproperty, and Part-of. Furthermore, we are collaborating with colleagues to use MashQL as a business rules language, thus include several reaction and production operators. We plan to also support aggregation functions, as soon as their semantics are defined and standardized in SPARQL. Supporting such functions in MashQL is not difficult since we only need to allow the user to select a function (e.g., sum, avg, max, etc.) before a subject, property, or object. Last but not least, we are currently extending the Graph Signature approach for general-purpose query optimization. In particular, we are seeking to extend the Graph Signature to optimize arbitrary SPARQL queries; for this, we need to extend our query model to retrieve not only the last node/edge, but any node/edge, as well as star-shaped queries. This is not difficult, because a query path is the building block for star-shaped queries. Furthermore, we plan to use our approach on keyword search. In such a scenario, we expect to have fast responses, because false positives are less important. Last but not least, we need to develop a maintenance strategy to support querying dynamic data sets.

APPENDIX

Proof of Theorem 1. Given a query \(Q(\alpha; \{p_1, p_2, p_3, \ldots, p_{n-1}, p_n, \alpha\}) \). Evaluating this query safely means the results set \(\alpha \) when evaluating \(Q \) on a data graph \(G \), is a subset of the results \(O_\alpha \) of evaluating it on the O-Signature (\(\alpha \in O_\alpha \)). Let \(p_1 \) be an edge from \(o_1 \) to \(o_2 \) in \(G \), then (by definition), its O-Signature \(S_0 \) must contain \(p_1 \) from \(O_1 \) to \(O_2 \), and for \(p_n \) from \(o_n \) to \(o_\alpha \) there is \(p_n \) from \(O_{n-1} \) to \(O_n \) (where \(o_1 \in O_1 \ldots o_n \in O_n \)). Thus for every path \((o_1^p_1 \rightarrow o_2^p_2 \rightarrow \ldots \rightarrow o_{n-1}^p_{n-1} \rightarrow o_n) \) in \(G \) there is exactly the path \((O_1^p_1 \rightarrow O_2^p_2 \rightarrow \ldots \rightarrow O_{n-1}^p_{n-1} \rightarrow O_n) \) in \(S_0 \). When evaluating \(Q \) on \(G \) we retrieve \(O_\alpha \) the set of nodes having this path into them, and similarly \(O_\alpha \) when evaluating \(Q \) on \(S_0 \). Since each \(o_1 \in O_1 \), then \((O_\alpha \in O_\alpha) \). \(\square \)

Proof of Theorem 2. Given a query \(Q(p_\alpha; \{o_1, o_2, o_3, \ldots, p_{n-1}, o_{n-1}, p_n, o_\alpha\}) \). Evaluating this query precisely means that the results set \(p_\alpha \) when evaluating \(Q \) on \(G \), is exactly the same results \(P_\alpha \) when evaluating it on the
So($p_x = P_x$). Now, let p_1 be an edge from o_1 to o_2 in G, then (by definition) its O-Signature S_O must contain p_1 from O_1 to O_2, and so for p_n from o_{n-1} to o_n there is p_n from O_{n-1} to O_n (where $o_1 \in O_1 \ldots, o_n \in O_n$). Hence for every path ($o_1p_1o_2p_2...o_{n-1}p_{n-1}o_n$) in G there is exactly the path in S_O ($O_1p_1O_2p_2...O_{n-1}p_{n-1}O_n$); and since the path ($p_1p_2...p_{n-1}$) from o_1 to o_{n-1}, is (by definition) the same path from O_1 to O_{n-1}. Then, the set of edges p_x from o_{n-1} to o_n is exactly the same set of edges P_x from O_1 to O_n.

Proof of Theorem 3. Given query $Q(o_n;\{o_1p_1o_2p_2...p_{n-1}o_{n-1}p_n\})$ where every node o is a variable. Evaluating this query precisely means retrieving all nodes O_x having the path ($p_1p_2...p_{n-1}$) into them, i.e., regardless of which previous nodes this path follows to reach them, as all previous nodes are variables. Hence, by definition, for every node in O_x, having the path ($p_1p_2...p_{n-1}$) into it in G, there is the same path ($p_1p_2...p_{n-1}$) into O_x in S_I. Since, also by definition, the nodes in O_x are exactly the nodes in O_x that have the same paths, then $O_x = O_x$.

Proof of Theorem 4. Because (as proven in theorem 1) the answer of the O/I-Signature is safe, i.e., a superset of the target answer, then if this superset is empty the target answer is empty.

ACKNOWLEDGMENTS

This research was partially supported by the SEARCHiN project (FP6-042467, Marie Curie Actions). The authors would like to thank Ala Hawash, Andreas Manoli, Anton Deik, Bilal Farraj, and Constantinatos Savvides for their support and help in the implementation of MashQL.

REFERENCES

