Parallel Processing Letters
& world scienti ¢ Publishing Company

FAILURE MANAGEMENT IN GRIDS:
THE CASE OF THE EGEE INFRASTRUCTURE

KYRIAKOS NEOCLEOUS, MARIOS D. DIKAIAKOS
Department of Computer Science, University of Cyprus
1678 Nicosia, Cyprus
f kyriacos,mdd g@cs.ucy.ac.cy

and

PARASKEVI FRAGOPOULOU, EVANGELOS P. MARKATOS
Institute of Computer Science, Foundation of Research and T echnology-Hellas
1385 Heraklion-Crete, Greece
f fragopou,markatos g@ics.forth.gr

Received March 2007
Revised September 2007
Communicated by S.G. Akl

ABSTRACT

The emergence of Grid infrastructures like EGEE has enabled the deployment of
large-scale computational experiments that address chall enging scienti ¢ problems in var-
ious elds. However, to realize their full potential, Grid i nfrastructures need to achieve
a higher degree of dependability, i.e., they need to improve the ratio of Grid-job requests
that complete successfully in the presence of Grid-compone nt failures. To achieve this,
however, we need to determine, analyze and classify the caus es of job failures on Grids.
In this paper we study the reasons behind Grid job failures in the context of EGEE, the
largest Grid infrastructure currently in operation. We pre sent points of failure in a Grid
that a ect the execution of jobs, and describe error types an d contributing factors. We
discuss various information sources that provide users and administrators with indica-
tions about failures, and assess their usefulness based on error information accuracy and
completeness. We describe two real-life case studies, describing failures that occurred on
a production site of EGEE and the troubleshooting process fo r each case. Finally, we
propose the architecture for a system that could provide fai lure management support to
administrators and end-users of large-scale Grid infrastr uctures like EGEE.

Keywords : Grid, failure, EGEE, failure management

1. Introduction

Recent experimental studies have shown that jobs submittedby users to large-
scale, multi-institutional Grid infrastructures often fa il to complete successfully.
For example, data collected and analysed by the WISDOM projet [14], which
submits tens of thousands of jobs to the EGEE infrastructure[1] in the context

Parallel Processing Letters

of a drug-design e ort [12], indicate that only the 65% of sulmitted jobs executed
successfully. In the case of a Grid-job failure it is up to theend-user or the Grid
administrator to detect the failure, to identify its cause, to re-submit the job, and to

try to x the problem(s) that caused the failure. Detecting a nd managing failures
is an important step toward the goal of a dependable Grid. Thes is an extremely
complex task, however, as it currently relies on ad-hoc mondring and manual

intervention. Automating this task seems di cult due to int rinsic characteristics
of the Grid environment: Grids are not administered centrally and, therefore, it

is hard to access the remote sites in order to monitor failure; also, Grid systems
are complex and extremely large; thus, it is di cult to acqui re and analyze failure
feedback.

In our work, we investigate the reasons behind Grid-job failires, in order to gain
an insight on how to build a more reliable Grid infrastructur e. We concentrate on
the problem of Grid reliability by focusing on jobs that fail to complete successfully,
either providing no output or providing incorrect output. T his study is conducted in
order to unmask the root causes of such failures within the Gd system. We use the
term Grid reliability as an indication of the extend to which Grid components behae
in the way expected by their peers (Grid clients and services In general, a reliable
system is by no means an error-free system; failures would wioubtedly still occur.
A reliable system must anticipate and be able to handle failwes in various ways, such
as by failure detection, masking, tolerance,and recovery. The handling of failures
is particularly complex in large distributed environments such as the Grid, since a
lot of components are involved and some may fail while othergontinue to function
properly. A reliable Grid system should fail in predictable ways; if a component
fails, the rest of the system must be able to adapt to the changd conditions (such
as the lack of a service that has crashed, or the erroneous/aoherent information
provided by a faulty service) and maintain an acceptable stae; if that is impossible,
it should at least be able to recover from the failure and retun to the last known
correct state.

In the next section, we provide an overview of the architectue, the job-execution
model, and the operations of the large-scale Grid infrastrature of EGEE [1]. EGEE
is currently the largest Grid infrastructure in operation, comprising 250 sites world-
wide with more than 36,000 CPUs, 5PB of storage, supporting eer 80 Virtual
Organizations. In Section 3, we present possible points ofaflure in EGEE and
describe grid error types and contributing factors. In Secton 4, we discuss various
services of the EGEE infrastructure that provide error information about failures of
Grid components, and assess their usefulness based on erinformation accuracy
and completeness. We also present two case studies, desanidp representative fail-
ures that occurred on the University of Cyprus production site of EGEE (CY01),
with an accompanied analysis and troubleshooting proces®f each case. In Section
5 we discuss the challenges and requirements for a Failure Magement System
that could support Grid administrators and end users. We clcse by drawing some
conclusions and discussing future work.

2. Grid Computing and EGEE

Computing Grids are usually very large scale services that mable the sharing

Failure Management in Grids: The Case of the EGEE Infrastruc ture

=]

]
|©|
O %%

Fig. 1. Grid architecture

O
L

_

of heterogeneous resources (hardware and software) over apen network such as
the Internet. A Grid is organised in Virtual Organisations (VOs) [20], collections
of computational and storage resources, application softare, as well as individuals
(end-users) that usually have a common research area. Accedo Grid resources
is provided to VO members through the Grid middleware, which exposes high-
level programming and communication functionalities to application programmers
and end-users, enforcing some level of resource virtualisan [24]. VO membership
and service brokerage is regulated byaccess and usage policieagreed among the
infrastructure operators, the resource providers, and theresourse consumers.

The European project Enabling Grids for E-sciencE (EGEE) curently supports
the largest grid infrastructure in the world, with more than 250 participating sites,
36,000 CPUs and 5PB disk storage. EGEE uses the LHC Computatinal Grid
(LCG) middleware [5], while the new generation gLite middlevare [2] is already
being deployed at several sites. An overview of the EGEE ardtecture is presented
in Figure 1

Within EGEE there exist several Virtual Organisations (VOs). Users registered
within a speci ¢ VO obtain credentials for single Grid sign-on [15] that enables them
to have access to the entire set of resources within (belongg to) that particular
VO, despite the fact that such resources span di erent Grid stes across di erent
countries.

Users have access to a User Interface (Ul) node for submittip jobs to the Grid,
for requesting job status and resources information, and foobtaining the output
from completed jobs. In brief, a Grid job is usually a set of iput les (the input

Parallel Processing Letters

sandbox and an executable that processes the given input on a set of @& resources,
according to the user requirements set forth in the Job Desdption Language (JDL)
le that accompanies every Grid job submission. The Job Destdption Language
(JDL) is a user-oriented language for describing jobs [16]rrd the information ob-
tained from a JDL le is taken into account by the Grid Workloa d Management
System (WMS) [22] components in order to schedule and submia job. A job can
have particular user-de ned requirements for the resourcs it needs, such as compu-
tational capacity, physical memory capacity, the proximity (network latency-wise)
of certain les that will be used as input, and the availability of specic appli-
cation software. Grid jobs can be classi ed as CPU-intensie and data-intensive,
depending on the type of work performed.

Jobs are submitted from the Ul to a Resource Broker (RB), a ceftral (global)
Grid service. The RB is a component of the distributed Workload Management
System (WMS) of a Grid infrastructure [23] which performs matchmaking by iden-
tifying a set of resources that satisfy the job requirements The matchmaking is
done based on data received by querying an Information Indexanother central
service that complements the WMS by providing up-to-date information about the
state of Grid resources, usually spanning several sites.

If the matchmaking is successful, the job is sent from the RB 6 the matching
Computing Element (CE) for execution. A Computing Elementis at site level and it
is comprised of the Grid Gate node and several Worker Nodes (Ws). The services
running on the Grid Gate node are primarily responsible for aithenticating users,
accepting jobs, and performing resource management and jobcheduling (the last
two services comprise thebatch system). The Worker Nodes are usually powerful
machines in terms of processing power and memory capacity,na are responsible
for executing jobs arriving at the site, as dictated by the bach system on the Grid
Gate. If a job successfully completes execution, the resuis then sent back to the
Resource Broker and the user is able to access it from there g the User Interface.
A UML diagram depicting the life cycle of a typical Grid job ca n be seen in Figure 2.

During job scheduling and execution, if any input les are necessary, they are
either sent by the user during submission (included in theinput sandbox), or they
are already resident on a Storage Element (SE) and the user rels only to specify
their location. This brings us to the central Data Managemert services: the Replica
Catalog holds information about the location of various redicas of a le held at
the Storage Elements of various sites, and the File TransfeService is responsible
for replicating les across di erent Storage Elements that are close to Computing
Elements, as needed by various jobs.

In general, the output sandbox contains the result of a job after it has run on
a CE, and contains a set of les that were specied by the user €.g. a le that
contains what would be the output of the console if a job was runing on the
user's computer). The entire set of output les from a completed job can either be
transferred onto the RB (as part of the output sandboX that the user will collect
using the User Interface. Alternatively, the output les ca n be saved onto a Storage
Element and registered with the Replica Catalog so the useran access them in the
future (most probably these will be very large les of intermediate results that will
serve as input to another job).

Failure Management in Grids: The Case of the EGEE Infrastruc ture

Fig. 2. Life-cycle of a typical Grid job

For more e cient project management, EGEE is divided into di erent federa-
tions/regions, and into each such federation resides a Regnal Operations Centre
(ROC) that is responsible for supporting and monitoring a sé of EGEE-participating
Grid sites, the Resource Centres (RCs). Division into fedeations is typically dic-
tated by geographic proximity; as an example, the South EastEurope (SEE) fed-
eration has a Regional Operations Centre based in Greece argkveral production
sites (Resource Centers or RCs) in Bulgaria, Cyprus, Greegdsrael, Romania, Ser-
bia, and Turkey. Apart from ROCs and RCs there is also the EGEEwide Grid
Operations Centre (GOC), responsible for coordinating andmonitoring the oper-
ation of the Grid infrastructure, and a total of four Core Inf rastructure Centres
(CICs) which provide monitoring and operational troubleshooting services, acting
as second-level support to ROCs. It is also worth mentioningthat usually there
is one Certi cation Authority (CA) for every participating country (any country
that contributes resources to the project). The CA is resporsible for issuing X.509
certi cates for grid users, hosts, and services. There arelao optional Registration
Authorities (RAs) at each site so the CA can delegate some ofts management
functions [15].

3. Failures in EGEE

In order to realize the full potential of a large-scale Grid infrastructure such as
EGEE, the infrastructure needs to be madedependable As a measure of depend-
ability we use the ratio of successfully ful lled job requegs over the total number
of jobs submitted to the resource brokers of the infrastructire. Two large scale

Parallel Processing Letters

computational experiments (the FlexX and Autodock data challenges) conducted
by the WISDOM [14] project over EGEE in August 2005, showed that only the 65%
of submitted jobs executed successfully. Additionally, ina recent nine-month long
characterization study based on South-Eastern-Europe resurce brokers, we found
that only 48% of the submitted jobs completed successfully]9]. Consequently, the
dependability of large-scale Grids needs to be improved subantially. Detecting

and managing failures is an important step toward this goal. Currently, this is an

extremely complex task that relies on ad-hoc monitoring anduser intervention. The
main components of the Grid architecture where errors that bad to job failures may
occur, are presented below:

The Resource Broker, the Grid node that is used to nd an apprgriate set
of resources (at a Grid site) to execute the job. This node hals the user's
input sandbox when the job has been submitted, and also the aput sandbox
after the job has terminated, until the user retrieves this output (or until the
sandbox expires, depending on how the system was con gured)A failure at
this point can result in delays for users to retrieve job staus information or
their job output, or even corruption or permanent loss of job output.

A part of the Computing Element of the site selected for job execution. The
Computing Element consists of the Grid Gate node - often cakd CE, meaning
"CE head' - and the Worker Nodes, which are also CE nodes. Pdis of
failure here are the Grid Gate and the speci c Worker Nodes that have been
allocated for the job. It is worth mentioning here that Grid G ate unrecoverable
failures are rare and we have not witnessed any on our site dimg the four-
year operation of EGEE, so far; on the occasions that the GridGate crashed
or had to be restarted due to heavy load or abnormal CPU or harddrive
temperatures, no job was lost as we noted upon restarting thanachine (it
recovered all job information from the WNs and started new job manager
processes for each job). In contrast, WN failures are horm&} unrecoverable
and resubmission is needed.

The Storage Element (SE) holding input les that are necessay for the job
is another point of failure, in the cases that the particular SE crashes, has no
network access, or its lesystem is corrupted. In such an ewd, if there are
no replicas (copies) of the necessary les on di erent SEs aththe user has no
local copies to upload, we can talk about an unrecoverable faure; however
it is usually the case that if a le is only on one SE, it has probably been
generated by a job and the user can resubmit that job to generge it again.
Still, this wastes CPU and end-user time.

The Information Index (II), which collects and publishes the status of Grid
resources. The information published by the 1l is used and upated by other
subsystems, like the WMS and the CE. Any failure of the Information Index
results to a collapse of the RB and to a serious malfunctionig of the overall
Grid infrastructure. Furthermore, a failure of the Il to upd ate its cached
information on time may result to suboptimal decisions taken by other Grid
components and eventually to the failure of jobs due to mismé&hes between
job requirements and allocated resource status.

The underlying network: any failures in the network infrastructure (links,

Failure Management in Grids: The Case of the EGEE Infrastruc ture

services, etc) that interconnects Grid sites and services ay result to discon-
nections between di erent Grid components and, thus, to faiures of the Grid
infrastructure.

The factors that can cause a failure in the aforementioned amponents and a
Grid-job disruption are the following:

Hardware faults: if the job is running on the speci ed machine at the time
of an unrecoverablehardware error, e.g. a hard drive burns (most common),
RAM or motherboard failures, power supply failure, etc.

O/S miscon guration: this relates mainly to operating system services that
are not properly con gured. One common example is implemering rewall
changes on a site. This can lead to closing ports that are need for site
inter-node communication, or blocking site hosts from commnicating with
each other altogether. The Grid Gate may lose communicatiorwith a worker
node (WN) running a user job, or a WN may lose communication wih the
site Storage Element (or with another site's Storage Elemet) and be unable
to make necessary data transfers. A closely related issue the inability to
run MPI [8] jobs when “inter-worker-node' communication is blocked.
Network access disruption/miscon guration: a factor that can lead to
job failure (or more accurately in this case, leading to CPU ime being wasted),
is a site losing Internet access. The rewall example mentioed above also
applies to network miscon guration, if the changes are impemented on the
network “perimetric’ rewall. A user waiting for too long to retrieve the job
output may decide to resubmit the job, rendering the previous one useless
when the site recovers from network access failure, if we assie that the
previous job was still running while the network was down.

Security breaches/attacks: Computing Element, Storage Element or Re-
source Broker takeover by an unauthorized user (commonly kawn as a “cracker’)
can result to malicious acts like corruption of job data, job termination, sand-
box deletion etc. Such attacks are usually related to secuty holes of the
operating system and Grid middleware, weak root passwordsrad inappropri-
ate rewall con guration. Denial of Service (DoS) attacks may also disrupt
job completion or temporarily prevent access to job output by cutting a site o
the Resource Broker that has delegated the job and is waitindor the output.
Note that discussing actual security incidents related to the EGEE infras-
tructure is not possible under most circumstances, since tis could provide
potential attackers with useful information.

Middleware miscon guration: attempts to correct problems or perform
updates on a Grid site can lead to job failure or a more generaervice disrup-
tion. This relates to Grid site administrator errors, as well as to bugs in new
releases of the middleware that introduce unwanted con guation. According
to [17], a large number of service disruption occurrences ithe direct result of
a regular performance or security software upgrade that leds to con guration
errors. Some examples of miscon guration: setting too shdra wallclock time
for a job queue and as a result jobs die before completigrpublishing wrong

this implies altering the queue wallclock time while jobs ar e running

Parallel Processing Letters

resource data and matchmaking results in accepting a job wité no compatible
resources exist to satisfy it, causing bandwidth loss and ading overhead to
the overall time needed for serving the user; killing the wrang job by issuing
a scheduler or resource manager command (as root on the Gridae node).
Middleware bugs: Grid job failures can result from bugs in middleware
code; for instance, failures relating to the grid Workload Management System
(WMS), including the components residing on the Resource Boker and the
submitting User Interface nodes, observed in [12]. Furtheinformation can be
given on this particular type of failures once the appropride experiments are
conducted on the EGEE grid infrastructure and the aborted jobs are analysed.
User mistakes: such failures can result from (a) JDL le problems, for
example the user may include an inaccurate speci cation ofgb requirements
that will result in the job failing to start; (b) user softwar e can cause errors
during job execution leading to the job being terminated abrormally; and (c)
problems with user certi cate proxies attached to the job, most commonly
the absence of a valid proxy during submission, as well as thexpiration of an
originally valid proxy while the job is running. All the case s mentioned here
are under user control and have nothing to do with the malfundioning of other
components of the system, so corrective action can only be asmed on part
of the user, and not by any form of automatic job resubmissionmechanisms.

4. Error information sources for EGEE

The following main sources can be used to retrieve informatin about errors on
the EGEE testbed:

(a) Site Availability Monitoring (SAM) report web site (for merly known as Site
Functional Tests (SFTs)).

(b) Grid Statistics (GStat) web site.

(c) GGUS and EGEE-SEE ticketing systems.

(d) CIC broadcasts and GOC entries for site downtime.

(e) Machine logs, diagnostic commands output, and database

These sources are analysed below, while at the end of this sEm we make an
assessment of the usefulness of each one of these sourcesetan the accuracy and
completeness of the error information provided.

4.1. Analysis of error information sources

A. Site Availability Monitoring (SAM) report web site. EGEE main-
tains a central \reporting web site" [9] (restricted certi cate-based access) for pub-
lishing test-job results for all sites of the infrastructure, primarily serving Grid
managers and administrators. From there, authenticated ugrs can further access
detailed reports for each site that show the last few entrieof the SAM tests. SAM
pages show the results of tests performed automatically, gmoximately every 1 to
3 hours, and the results of extra tests submitted by the adminstrators of Resource
Centres (RCs) or responsible Regional Operations Centre (RC) managers and
administrators.

Failure Management in Grids: The Case of the EGEE Infrastruc ture

v g, —
@ |2 ¥ H
'c 5| E s
= 50 3| g s0 E
w E||w E
v Al v k-
= gl = g
5 il| S B
0 3 0 2
18:00 00: 00 06: 00 sun Tue Thu
@ giisentry W giisold giisEntry M giisold
giisEnt max: 84,00 avg: 84,00 cur: 84,00 giisEnt max: 86,00 avg: 73 cur: 84,00
9iis0ld max: 0.00 avg: 0.00 cur: 0.00 g1is01d max: 0.00 avg: 0.00 cur: 0.00
3 — HI H
T 2l b M <
g 50 3| & 50 . 3
& g||w E
wn 2| E
= | | = g
s 0 L8| ot b
Feb Mar Apr Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar apr
[giisEntry M giisold [giisEntry W giisold
giisEnt max: 85.40 avg: 73.09 cur: 84,00 giisEnt max: 84.70 avg: 48.61 cur: 84,70
giis0ld max: 0.00 avg: 00 cur: 0.00 giis01d max: 38,88 avg: 0.79 cur: 0.00

Fig. 3. GStat GIIS entries at site CYO1

Test jobs are short jobs designed to check the health of the various Gd compo-
nents of a site. This testing is done using the DTEAM Virtual O rganisation, which
exists mainly for running such internal tests on the entire infrastructure. It is worth
noting here that DTEAM jobs are typically short, around 10 mi nutes of CPU time,
unlike production-VO jobs that usually take several hours to complete. A SAM test
probe consists of several subtests, checking Grid aspectsch as the operational sta-
tus of the Workload Management System of a site, the middlewee version and the
version of the Certi cation Authority RPMs (Linux software packages) installed.

B. Grid Statistics (GStat) web site. GStat is an application that monitors
the \health" of the Grid Information System [3]. From the mai n GStat web page’
Grid administrators can navigate to retrieve information collected for every EGEE
Resource Center. The most interesting point there is the grphs showing error
(alert) levels and various other metrics, usually going as dr back as the last 12
months. From these graphs one can examine the stability of a &d site, and possibly
how long an error lasted.

An example of such graphs is given in Figure 3, which shows theumber of local
Grid Index Information Server (GIIS) entries that reveal site resources (hardware,
services, supported software environments, policies, etdor site \CY01." A site's
GIIS normally runs on the Grid Gate and collects information about all resources
present at the site [18]. GIIS entries are requested by the Gi&t server by running
an LDAP [6] search command every few minutes; the data retured to GStat is the
reply from the GIIS of the corresponding Grid Gate.

The data in Figure 3 consists of a number of “normal’ (up-to-date) entries in-
dicated with the light-coloured line. The number of entries found varies from time
to time due to the dynamic nature of the Grid (more speci cally resulting from
site con guration changes and changes of the software envanment installed by the
various VOs on the site). This means the number of normal enties can uctuate
and the site's information system could still be considerecerror-free and up to date;
on some occasions however, the entries abruptly drop to zerfr quite lower than
the current value), perhaps due to some network fault that caises timeouts or even

Yhttp://goc.grid.sinica.edu.tw/gstat/

Parallel Processing Letters

g 30 k

= !

2 20 k

o

=3 !

i 10k

4] 0] i ; -
2 18100 00: 00 06: 00 i
O giisTime

giisTim max: 28.99 kK avg: .01 k cur: 4,70 k

Fig. 4. GStat GIIS response time for site CY01

disconnections or a failure of the GIIS daemons running on th Grid Gate. For

example, in the top-right graph of Figure 3, the two occurrerces of a sudden fall
followed by the immediate sudden rise are indications of suterrors. In the bottom

graphs, the timeline is even wider, 3 months for the bottom-éft and a year for the

bottom-right, so traces of such errors disappear completgl

The other type of GIIS entries found on the same graph (Figure3) are so-called
“old' entries, meaning the information system of the site mg not be up to date
(the timestamp is older than 10 minutes). Such entries are sbwn on the graphs
with the darker line. For a site to pass testing, old entries nmust not exist, and the
darker line should be at zero; an example of a problem with olcentries can be seen
on the bottom-right graph (between May and July), during a period in which the
site su ered major network problems, indicated by the rise d the darker line above
zero.

Other points of interest in GStat pages are total and per-VO CPU and job
statistics, storage space reporting, as well as estimatednal actual response time for
each supported VO. All this information is given in the form of graphs except the
latest values which are given as numbers.

It is also worth mentioning here the SmokePing network latercy monitoring
tool [10], which provides network monitoring metrics for EGEE sites. These metrics
give additional insight to site administrators and they are particularly useful when
combined with GStat measurements or SAM results, in order tonarrow down the
set of components that may be responsible for a failure. Forxample, if GStat shows
increased response time for GIIS as in Figure 4, the SmokeRingraph can indicate
whether this is a general problem with the site's network. Asshown in Figure 5, this
was indeed the case: notice that the network latency shows anrder of magnitude
increase during the same interval that the GIIS response tine displayed a similar
increase. Suppose on the other hand that GIIS showed high rpsnse time (above
the usual range of 2-15 s) but SmokePing graphs showed normétency (usually
around 40 ms¥ in such a case, the fault origin would most probably lie on tre CE,
due to heavy load, abnormal CPU or hard drive temperature etc

C. GGUS ticketing systems. The third error information source under eval-
uation consists of the Global Grid User Support (GGUS) and 2rd-level ticketing
systems for each federation of the project. The ticketing sgtems in EGEE are used

Zfrom our own observations these are the normal values during error-free periods

Failure Management in Grids: The Case of the EGEE Infrastruc ture

Last 10 Days

500 m
450 m
400 m
350m
300 m
250 m
200 m
150 m
100 m
50m = |

o o P N e PR D e W i
0

Seconds

Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu
Median Ping RTT (34.2 ms avg) D0 m1/20 W2/20 W3/20 W4/20 m10/20 m19/20
Packet Loss: 4.28 % average 100.00 % maximum 0.00 % current

Probe: 20 ICMP Echo Pings (56 Bytes) every 300 seconds created on Thu Jun 1 13:44:10 2006

Fig. 5. SmokePing network latency for site CYO1

NEW SEARCH: Support Unit - User - Keyword Keyword: |Cy01 in | al w | Tickets
Invalved Supporter - Ticket-100
& tickets found. Criteria: searchstring=CY01 status=all
Ticket-I0 irt. Oriy. Reszp. Unit Status Drate Infor
none RCC_SE salvedd 2003-11-18 replication failed (CY01-LCG2)
atlas ROC_SE solved 2005-11-02 replication failed
atlas ROC_SE salvedd 2005-10-21 SEE WO user with SEE-GRID CA cedificate cannot 5.
atlas RCC_SE salved 2003-06-29 JS - Cannot read JobWrapper output ...
none ROC_SE zolved 2005-05-24 =il using 1xn1178 instead of leg-bdi cetn.ch
none GlobalGridlser Support solvedd 2005-05-04 Testing to make sure R-GhA is working correctly on...
nong ROC_SE =olved 20-04-052 unstable CE information
none ROC_SE zolvedd nfa Replication from bnt183.cern.chto the default SE..

Fig. 6. GGUS Search Interface { Searching for tickets by keyw ord

in other organisations to e ciently manage tasks and requegs. A ticket corresponds
to a task-request and has various attributes such as the namand e-mail of the ticket
submitter (initiator), the name of the responsible federation, the name and e-mail
of the person who is assigned to the task, the ticket status (pen, pending, solved,
etc), and a log that shows the reason for opening the ticket, he work done, and
how the problem was solved. To give an example, all tickets tht were created for
site CY01 from the beginning of the EGEE project in April 2004 up to the end of
January 2006 are shown in Figure 6.

As far as grid operational support is concerned, the ticketing systems are mainly
used to report component failures as well as needed updatesrfsites. GGUS tickets
are typically opened because of an error that appears in the AM (Site Availability
Monitoring) reports or the GStat monitoring website; such tickets are opened by on-
duty Core Infrastructure Centre (CIC) personnel. Once a GGUS ticket is opened, it
is also visible to the a ected federation's ticketing system, and intermediate updates
are done there, but everything is also visible in the GGUS sytem, including the
solution, the full log, and the ticket closing time and date. For this reason, a
combination of both global and regional helpdesks is not nezssary to make more
sense of this type of error information, i.e. we only need to ecess the GGUS entries.
Note that federation-level tickets can be opened also, andni such cases GGUS has
no corresponding entries, but these tickets mostly relate & needed updates (and

Parallel Processing Letters

not failures) that each federation has chosen to handle intmally.

D. CIC broadcasts and GOC entries for site downtime. Site managers
are required to broadcast information related to site downime events through the
Core Infrastructure Centre (CIC) web site; this informatio n is subsequently e-mailed
to all a ected parties. CIC e-mails often contain informati on related to the error
that caused the site manager to set the site in maintenance nae; at other times,
downtime events are associated with performance or secuyitupgrades and are not
related to errors. Frequently the downtime announcements éllow a series of SAM
failures and a resulting ticket prompting the site to x the e rrors; at other times
the administrator declares the site down before the operatins support has the time
to open a ticket.

Site managers must also declare downtime in the Grid Operatins Centre (GOC)
website, in order to place the site's status inmaintenance modeinstead of produc-
tion. Such entries are typically one short phrase, e.g. \CE hard dive burned," and
also contain the start and end dates and times of the downtimeevent. As it was
previously mentioned, the entire list of downtime events isvisible from the GStat
website.

E. Machine logs and diagnostic commands' output. The last category of
error information sources used in EGEE consists of data fouth on the nodes of a
Grid site:

(2) The machine logs, such asnessages and /var/log/globus-gatekeeper.log , found
in /var/log/ . Information stored inside these logs is usually produced ¥ Op-
erating System or middleware-speci ¢ sensors and, in someases, is made
available through distributed monitoring systems like GridICE [4].

(b) The output of various diagnostic commands executed on tle machines that
are involved in the error (while the error persists), such asps aux, diagnose -j,
checkjob -v <jobID >; and

(c) The Logging and Book-keeping Service (LBS) database rexds found on the
Resource Broker (RB), which can reveal detailed error infomation spanning
many sites of many di erent countries, usually an entire regon.

4.2. Case studies

In this section we present some of the more interesting casduslies involving
error detection, analysis and correction. These studies we conducted between
December 2005 and February 2006 on the University of Cyprus 6EE Grid site
(\CYO01"), in parallel to standard maintenance operations. The analysis was aided
by diagnostic commands and log information, and the output d the diagnostic
commands was recorded while the failures persisted.

Case study 1: DTEAM VO jobs queued inde nitely. As mentioned in
section 2, the DTEAM VO is used for testing the EGEE infrastru cture. Standard
test jobs are automatically submitted every three hours to dl EGEE sites, and
the results are published on the website of the Site Availaldity Monitoring system
(SAM). Other DTEAM jobs can also be submitted manually by sit e administrators,
for running non-standard tests on the infrastructure.

Failure Management in Grids: The Case of the EGEE Infrastruc ture

At one point, there was a series of DTEAM jobs queued on site \(Y01" that
for some reason (unknown at the time) failed to start. This was a mixture of SAM-
related jobs and DTEAM jobs coming from other sites of the feceration that were
testing a Grid service. By the time this was noticed by \CY01" site administrators,
the number of jobs had reached 30 (the normal is usually 1 to 2w&h jobs), and
they were all in status "queued’, while there were enough fiee resources to execute
4 of them immediately. This caused several SAM entries to fdi

This problem persisted for several days, and we had to deal wh it at rst by
manually forcing the queued jobs to run on idle processors.tlwas then discovered
that the problem was caused by an erroneous job scheduler angsource manager
con guration (site administrators' responsibility). The se components are somewhat
complicated, and their con guration non-intuitive, especially in the case of Maui
[7,21], the middleware component responsible for handlingpb scheduling on a large
number of EGEE sites. The need for recon guring Maui and the wnderlying resource
manager (Torque [13]) became evident, but this involved moe than a few hours of
work, so we had to make a quick workaround to x the problem, mimicking our
actions of manually starting queued jobs: this was a fairly émple script that read
the output of the job queue every 4 hours, and detected which geued jobs belonged
to DTEAM,; the script was then forcing jobs to start execution (whenever possible,
based on the free resources), while logging the output of théorce-run command.

After a few days of tuning the con guration of Maui and Torque , the problem
rarely appeared; when it did, the workaround handled it suc@ssfully. DTEAM jobs
are still likely to be queued (not inde nitely but for severa |l hours) for various other
reasons; by monitoring our site over an extended period of the, we observed that
DTEAM VO members may at any point submit a large number of jobs on the site,
and the result is that the job scheduler avoids starting someof them as a result
of the fair share policy implemented (i.e. the “maximum runring jobs' limit set
for testjobs is exceeded and Maui does not allow more DTEAM jbs to run before
others terminate).

To sum up, the cause of the problem here was the lack of properesource man-
ager and job scheduler con guration, although it can be redwced to a more general
problem with abusing the DTEAM VO and using up the few available CPU slots
provided by the sites for SAM tests. The symptoms were treatd rst due to the
urgency of the matter, while the subsequent ne-tuning of the resource manager
and the job scheduler con guration addressed the root causef the problem. The
primary tool used to identify the problem was the Site Availability Monitoring re-
port website, and the tool that lead to understanding the problem wasgstat, which
is part of the middleware diagnostic commands. While the actial tool for resolving
the problem permanently is part of the middleware (i.e. con guring maui prop-
erly), the temporary patch that was applied by writing a small bash script belongs
in the UNIX toolset and it is not part of the middleware. Note t hat patching things
up in this manner is not uncommon practice for site administrators, especially for
problems where there is no other solution available.

Case study 2: Active Worker Node dies. In this case study, a Worker
Node crashed while a job was running on it, causing the job to b completely lost
and also creating a second problem with resource allocationin the following output

Parallel Processing Letters

obtained from gstat} notice production job of the LHCb experiment [11], with ID
74896.cel01. It appears to be running (Status [S] = RunningRY]).
[root@cel01 root]# gstat

Job id Name User Time Use S Queue
73933.ce101 STDIN atlas004 0 Q atlas
74896.ce101 STDIN Ihcb002 00:33:58 R Ihcb

However, the output of diagnose -j (Maui job scheduler commad) shows a

problem with this job, which is demonstrated in the log exceipt below:
[root@cel01 root]# diagnose -j

74896 Running DEF 1 DEF 3:00:00:00 1 1 Ihcb002 Inch

WARNING: active job 74896' has inactive node wn107.grid.u cy.ac.cy
allocated for 1:18:17:03 (node state: “Down’)

After checking to see what was the problem with worker node w07, we could
neither connect to the machine remotely nor ping; the machir was also inacces-
sible from its console. The WN had crashed due to hard drive cerheating. After
restarting the failed node, the job was exiting (Status = E) from the queue but this
state persisted for several minutes. This can be seen belowofn the new output of

qstat:

[root@cel01 root]# gstat

Job id Name User Time Use S Queue
73933.ce101 STDIN atlas004 0 Q atlas
74896.ce101 STDIN Ihcb002 00:33:58 E Ihcb

The output of diagnose -j erroneously showed that the job wasunning normally.
The only di erence from the previous message is that the waring on "wn107 being
down' was no longer present, which means that the job schedal was updated with
the information that the WN was started, and the server daemm (pbs_server) of
the resource manager on the CE could connect to the torque @nt (pbs_mom) on
the restarted WN. This job had to be killed manually, since the data from it being
executed on wn107 had been lost when the machine died, and itag certain that
the job could not recover. The new output of diagnose -j (afte restarting the failed
WN) can be seen below:

[root@cel01 root]# diagnose -j

74896 Rumning DEF 1 DEF 3:00:00:00 1 1 Ihcb002 Ihch

- 1:18:33:49 [NONE] [NONE] [NONE] >=0 >=0 NCO [lhcb:1] [NONE]

Another related problem was that the worker node that had crashed, was later
reserved and could not be utilized for a fresh job, despite tk fact that its CPUs
were idle. This can be seen from the output of other Maui commads, such as
showres -n and checkjohx jobID > .

As it turned out, the job stayed in the queue with “exiting' st atus, despite the
attempts to delete it (qdel), suspend it (mjobctl -s), and similar modi cations with
Torque and Maui commands. All such attempts failed because e job was at a
state that could not accept modi cations. Next, the reservation that was made on
wn107 was removed manually using Maui command releasere®kiD>, so at least
the node was free to serve another job.

The job was later removed from the queue (after spending morg¢han several
hours in “exiting' status, even persisting after a restart bllowing a middleware
upgrade) by manually deleting the resource manager job-spe c les from the Grid
Gate, and restarting the resource manager.

Xcommand of PBS Torque resource manager used to show the statu s of batch jobs

Failure Management in Grids: The Case of the EGEE Infrastruc ture

To sum up case study 2, the problem originated due to a middleware bug that
did not allow the job scheduler to "understand' that one of the worker nodes had
crashed and a job was lost, so manual modi cations by the siteadministrator were
necessary in order to clear the failed job and allow the restded worker node to be
utilised by new jobs. The primary tool used to identify the problem was part of the
middleware diagnostic commands diagnose -). The tools that lead to understand-
ing the problem were also various middleware diagnostic comands related to the
Local Resource Management System (LRMS) and the job schedet, as were the
tools for providing the actual (manual) solution. Note here that the system admin-
istrator happened to execute this particular command that resulted in detecting
the problem, and it was not through an alert created by a monitoring tool that the
detection of the problem was made. A system like Nagios wouldhave been useful
for issuing such an alert, i.e. that host wn107 had crashed. fiis alert could have
been sent through e-mail or sms, and the actions described ale would have been
assumed earlier.

4.3. Assessment of sources

Based on the analysis and the case studies presented aboveg wan derive the
following assessment on the usefulness of individual erranformation sources.

Site Availability and GStat Monitoring: From our experience, the SAM re-

ports are usually accurate in indicating Grid site problems The only drawback is

that production jobs run for much longer than test jobs, and this may cause some
errors to escape the SAM testing; also, the frequency of the AVIs may not be as

high as needed to catch all errors. For this reason we can alsmmbine some mon-
itoring information from GStat, but this is not easy to do aut omatically because
the graphs are in image format and the data used to generate t graphs are not
readily accessible.

Furthermore, SAM relies on end-to-end tests that do not always help in identi-
fying the root causes of observed Grid-component failuresAs we saw earlier, the
identi cation of the causes of failures requires the examimtion of log les and/or
the invocation of diagnostic commands.

Ticketing systems: By reading the tickets posted by end-users and Grid admin-
istrators, we can nd out noti cations of problems that aris e in EGEE, along with
human-produced commentaries on these problems. It is oftewseful to combine
information extracted from tickets (ticket timestamp, pro blem category, etc.) with
error-related information retrieved from SAM tests and logging systems in order to
detect the root causes of errors.

GOC and CIC downtime: While easy to gather and easy to separate between
\downtime due to errors" and \downtime due to standard maint enance tasks" with-
out the need to automate the process (such entries are infragent), these sources
present important drawbacks: the most important one is that the site manager or
administrator publishing this information may be covering up for other types of
failures. Furthermore, some downtime may not be announced de to negligence or
lack of motivation, since more downtime will be accounted fo that site (on some oc-
casions, short failures may pass unnoticed). This source igossibly both inaccurate
and incomplete.

Parallel Processing Letters

operator

’ 1

! v
/! \ T
’ \ 1 ' 1
, \ o
, \ [
! % monitoring |——= - -+ ' .
%% i i g‘ \! ¢ © I
E I :
__________________________________ [
! 1
! 1

.

RREEEE :
W - - - - - -ssssssse o |
— - o©o '
f‘ﬁ_a SR P
DS
Fig. 7. Failure Management in EGEE.
Machine logs, diagnostic commands output, and databases: The machine

logs and the LBS database do not rely on human intervention fo their production,
and we can therefore consider them the most accurate and congie error informa-
tion sources from the ones examined here. Processing and égrating these logs
requires extra work since they are in non-standard formats. On the other hand,
obtaining diagnostic command output of real value is also ticky, since this will
only be of use if it is obtained at the right time, i.e. while the error persists and
perhaps even before a subsequent change of the machine statet can hide the
initial error information.

5. Towards a Failure Management Infrastructure

The capability to manage failures in a large-scale Grid infastructure requires
the establishment of tools that support the discovery of falures and the detection
of their causes. Discovery and detection are both very impdant for administrators
and users: administrators can employ such tools to \debug" he infrastructure
and to reduce the mean time to repair (MTTR) between failures. Grid users can
take advantage of failure management systems in the contexbf monitoring and
debugging their jobs.

Failure detection and management in EGEE relies on a large nober of sys-
tem attributes, which are monitored or measured on a continwus basis by EGEE's
monitoring systems discussed in the previous section. Thesmonitored attributes
represent the status of components belonging to the di eretlayers of the infras-
tructure (hardware, middleware, services). They are store inside the corresponding
monitoring systems, although some of them are also kept in lp les and databases

Failure Management in Grids: The Case of the EGEE Infrastruc ture

on various Grid nodes. EGEE's monitoring systems publish orthe Web a selection
of the monitored attributes, using di erent non-standard f ormats (HTML tables,

images, etc). Additional access to monitored attributes can be achieved with the
help of diagnostic libraries, which are typically available to system administrators
with special access privileges. Higher-level failure-rated information can also be
registered by Grid users and administrators through a numbe of existing ticketing

systems; this information is also published on the Web, usully in free-text format.

An overview of the failure management mechanisms that are auwently in place in

EGEE, is shown in Figure 7.

Following the discussion in Section , it is evident that exiging error-information
sources and monitoring systems can be used by Grid users angistem administra-
tors to identify Grid components or services that are failing to operate. Neverthe-
less, individual sources do not support the investigation 6 the root causes behind
observed failures due to the following reasons:

Typically, such an investigation requires the integration of data from di erent

error-information sources. However, the integration of eror-related data pub-
lished through the Web is quite di cult and costly due to the n on-standard
encodings adopted by the di erent monitoring systems, whid render the dif-
ferent data sets syntactically and semantically incompatble. Furthermore,
most of the monitoring systems do not provide standardized mterfaces and
protocols that could be used to export their data in raw formats amenable to
integration and further processing.

Due to the scale and complexity of Grid infrastructures like EGEE, the data-
sets collected by their monitoring systems are large and coplex. Conse-
quently, the automatic identi cation of error conditions a nd component fail-
ures requires the implementation of advanced data managenmé and mining

techniques, which are beyond the scope and the capabilitiesf existing moni-
toring systems.

The information that is collected and published by EGEE's monitoring sys-
tems normally represents the status of Grid resources and rtdhe factors that

cause the failures. The identi cation of these factors ofte calls for extensive
experimentation involving the invocation of diagnostic tools and the applica-
tion of expert knowledge. Automating these processes reqrés the elicitation
of prior knowledge and its representation through arti cial intelligence tech-
nigues.

The users of a failure management system will bene t from fedback informa-
tion and guidance that is translated to their individual con text. For example,

a Grid end-user may wish to nd out the exact step where a failue occured in
the life-cycle of a failed job, in the context of Figure 2. On the other hand, a
Grid administrator would like to know which hardware or soft ware component
of his infrastructure is failing and why, in the context of Fi gure 1.

With these requirements in mind, we propose an architecturefor a Failure Man-
agement System of EGEE, which we depict in Figure 8. The propsed system con-
tains a set of wrappers that extract on a continuous basis information from various
error-information sources and monitoring systems of the E&E infrastructure. This

Parallel Processing Letters

—F

Fig. 8. Failure Management System Architecture.

information is stored in a common Integrated Error-Information Repository , which

provides a simple API for exporting selected data-sets. AnAutomatic Failure De-

tection module applies simple algorithms and models to detect mondred-attribute

values signaling the occurrence of errors in the infrastruture. The Failure Inves-

tigation Module uses various expert rules to pinpoint the possible causes @frrors
and to suggest the invocation of diagnostic commands that mg help the user to
further investigate an incident and to identify its possible causes. To this end, the
Failure Investigation Module uses also aKnowledge Basewhere information about

prior failure cases is stored. Finally, aHigh-level Reporting Module translates the
information about identi ed failures and feedback provided by the system to the
context of the user of the Failure Management System.

6. Conclusions

Detecting and managing failures is an important step towardthe goal of a de-
pendable Grid. However, this is currently an extremely compex task due to the
complexity, the scale, and the multi-institutional span of Grid infrastructures. In
this paper, we examined the problem of failure detection andmanagement in the
context of EGEE, the largest Grid infrastructure in operati on world-wide. We iden-
ti ed the sources that provide information about errors on the EGEE Computing
Grid, and assessed these sources in terms of their usefulsesaccuracy and com-
pleteness of the error information provided. Moreover, we pesented and analyzed
the error types that can lead to Grid job failure. We presented in detail two case

Failure Management in Grids: The Case of the EGEE Infrastruc ture

studies of Grid errors by describing the problem symptoms, he root cause of the
failure, and the troubleshooting process that was used to reolve the problem.

The experiences described in this paper show that manual fhire management
in large-scale infrastructures such as EGEE is a tedious andumbersome process.
Furthermore, that current middleware systems do not provide adequate support
for handling failures and for supporting Grid dependability. Therefore, we need to
develop tools that will support system administrators and end-users to identify fail-
ures of Grid components and to investigate their route causg. These tools should
provide a higher-level representation of failures, integating information from the va-
riety of error-information sources presented earlier. Futhermore, they should ease
the troubleshooting process undergone by Grid system admistrators by automat-
ing diagnostic and corrective functions, and helping them ope with the complexity
of error-information provided by underlying monitoring sy stems through proper
abstractions and uniform user-interfaces. Also, we need talevelop systems and al-
gorithms for processing the information collected by the vaious failure-information
sources in order to support the automatic identi cation and prediction of failures,
in order to improve the dependability of the Grid's operation.

Acknowledgements

This work was supported in part by the European Commission urer projects
EGEE (Contract IST-2003-508833) and the Network of Excellexce CoreGRID (Con-
tract IST-2002-004265) of the Sixth Framework Progamme of he European Union.
The authors wish to thank Chryssis Georgiou, George Tsoulopas and Demetris
Zeinalipour-Yazti for their helpful comments and suggestons, Nicolas Jacq for in-
sights on the results of the WISDOM data challenge concernig grid reliability, as
well as Fabrizio Pacini and Zdenek Salvet for clari cations on the internals of the
Workload Management System of EGEE.

References

[1] Enabling Grids for E-SciencE project. http://www.eu-e gee.org/.

[2] gLite Middleware. http://glite.web.cern.ch/glite/ (accessed June 2006).

[3] Grid Statistics (GStat) description.
http://goc.grid.sinica.edu.tw/gstat/ Iter ~ _help.html (accessed June 2006).

[4] GridICE: a distributed monitoring tool for Grid systems . http://grid.infn.it/gridice/
(accessed June 2007).

[5] LCG Middleware. http://lcg.web.cern.ch/LCG/activit ies/middleware.html (accessed
June 2006).

[6] Lightweight Directory Access Protocol, open source implementation, website.
http://www.openldap.org (accessed June 2006).

[7] Maui Administrator's Guide.
http://www.clusterresources.com/products/maui/docs/ mauiadmin.pdf (accessed May
2006).

[8] MPI: A Message-Passing Interface Standard. http://www .mpi-forum.org/docs/mpi-
11.ps (accessed June 2006).

[9] Site Functional Tests for EGEE sites. https://lcg-sft. cern.ch/sft/lastreport.cgi (ac-
cessed June 2006).

Parallel Processing Letters

[10] SmokePing network latency measurement tool. http://o ss.oetiker.ch/smokeping/ (ac-
cessed June 2006).

[11] The Large Hadron Collider beauty experiment, homepage.
http://lhcb.web.cern.ch/lhcb/ (accessed June 2006).

[12] The WISDOM (Wide In Silico Docking On Malaria) Data Chal lenge, general statis-
tics. http://wisdom.eu-egee.fr/malaria/grid _stat.php?menu_grid=general (accessed
June 2006).

[13] Torque Administrator's Manual. http://www.clusterr esources.com/torquedocs21/ (ac-
cessed May 2006).

[14] WISDOM: Initiative for grid-enabled drug discovery ag ainst neglected and emergent
diseases. http://wisdom.eu-egee.fr/ (last accessed June 2006).

[15] Internet X.509 Public Key Infrastructure { Certicate and Certi cate Revocation List
(CRL) Pro le. http://www.ietf.org/rfc/rfc3280.txt (acc essed March 2006), 2002.

[16] Job Description Language: Attributes Speci cation.
http://edms.cern.ch/document/590869/, May 2006.

[17] Aaron Brown. Coping with human error in IT systems. ACM Q ueue magazine,
http://iwww.acmqueue.com, November 2004.

[18] Stephen Burke, Simone Campana, Antonio Delgado Peris, Flavia Donno, Patri-
cia Mendez Lorenzo, Roberto Santinelli, and Andrea Sciaba. gLite 3.0 User Guide.
https://fedms.cern.ch/document/722398/, May 2006. Docum ent Status: PRIVATE.

[19] G. DaCosta, M. D. Dikaiakos, and S. Orlando. Nine months in the life of EGEE: a look
from the South. In Proceedings of 15th IEEE International Symposium on Modeli ng,
Analysis, and Simulation of Computer and Telecommunicatio n Systems (MASCOTS
2007), October 2007.

[20] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications , 15(3):200{222,

2001.
[21] Sophie Lemaitre, Je Templon, Steve Traylen, Markus Sc hulz, and Da-
vide Salomoni. Maui Cookbook. http://grid-deployment.we b.cern.ch/grid-

deployment/documentation/Maui-Cookbook.pdf (accessed May 2006).

[22] F. Pacini. gLite Workload Management System service.
https://edms.cern.ch/document/572489/, May 2006.

[23] D. Thain and M. Livny. Grid 2: Blueprint for a New Computing Infrastructure , chapter
19: Building Reliable Clients and Services. Elsevier, Morgan Kaufmann, 2nd edition,
2004.

[24] M. Xu, Z. Hu, W. Long, and W. Liu. Grid 2: Blueprint for a New Computing Infras-
tructure, chapter 14: Service Virtualization: Infrastructure and A pplications. Elsevier,
Morgan Kaufmann, 2nd edition, 2004.

