
DIVa: Decentralized Identity Validation for Social
Networks

Amira Soliman∗, Leila Bahri†, Barbara Carminati†, Elena Ferrari† and Sarunas Girdzijauskas∗
∗Electrical Engineering School

KTH - Royal Institute of Technology, Sweden
Email: {aaeh, sarunasg}@kth.se

†STRICT SociaLab
Insubria University, Italy

Email: {leila.bahri, barbara.carminati, elena.ferrari}@uninsubria.it

Abstract—Online Social Networks exploit a lightweight pro-
cess to identify their users so as to facilitate their fast adoption.
However, such convenience comes at the price of making legiti-
mate users subject to different threats created by fake accounts.
Therefore, there is a crucial need to empower users with tools
helping them in assigning a level of trust to whomever they
interact with. To cope with this issue, in this paper we introduce
a novel model, DIVa, that leverages on mining techniques to find
correlations among user profile attributes. These correlations are
discovered not from user population as a whole, but from individ-
ual communities, where the correlations are more pronounced.
DIVa exploits a decentralized learning approach and ensures
privacy preservation as each node in the OSN independently
processes its local data and is required to know only its direct
neighbors. Extensive experiments using real-world OSN datasets
show that DIVa is able to extract fine-grained community-aware
correlations among profile attributes with average improvements
up to 50% than the global approach.

Keywords. Community-aware Identity Validation, Ensem-
ble Learning, Privacy-preserving Learning, Decentralized On-
line Social Networks.

I. INTRODUCTION

Online Social Networks (OSNs), such as Facebook, Twit-
ter, or LinkedIn, have attracted millions of users and have
put online virtual interactions at the same level of importance
of offline ones. However, current OSNs still lag behind in
providing completely safe and secure online services and are
subject to a variety of security threats, such as spam, malware,
and phishing attacks [1], [2], [3]. For example, Facebook
recently announced that the portion of fake and duplicate
accounts is between 5.5% and 11.2% [4].

Furthermore, OSNs incentivize users to share their news
in their public space, yet users do not have a clear idea
of who accesses their personal information. In addition to
users’ friends, these pieces of information can be accessi-
ble by third-party applications, data aggregators, or external
applications [5]. Therefore, several research initiatives have
tried to increase users’ awareness towards security breaches
in OSNs, and some research and open-source communities
have implemented and deployed Decentralized Online Social
Networks (DOSNs) operating without a centralized provider,

such as Diaspora,1 and Jappix2. The main objectives behind
decentralization are preserving users privacy in both shared
content and communication, and the complete freedom from
any form of censorship, tracking, or profiling.

However, the lightweight process for obtaining identities
to join either OSNs or DOSNs (e.g., confirming a valid
email address) underpins the vulnerability of such networks
to undergo different attacks. Moreover, users are given the
complete freedom to fill up the records of their profiles without
validating them. Thus, malicious users can provide misleading
information or they can easily claim to be someone else
[6], [7], making the networking environment unsafe. Several
researchers have addressed this issue either though techniques
for fake accounts detection [8], [9], [10], or from an identity
management and validation perspective. For instance, [11]
suggests to evaluate an identity on a given network based
on feedback of its connections on another one. Cai et al.
[12] suggest people to people recommendations by relying
on collaborative filtering. In [13], users are suggested to be
identified from their typing patterns; whereas chatting patterns
are exploited in [14]. More recently, [15] suggests identifying
users across networks based on geo-location and time-stamp
information of their posts. All these pieces of work rely on
using users’ sensitive data that might hinder their privacy.
Moreover, there is no framework for users to evaluate the
perceived trustworthiness of their new online contacts.

Into a step towards the automation of identity validation,
few works have addressed the issue using profile information
only. For example, by introducing game theoretical models,
Squicciarini et al. [6] describe providers/users interaction as
a two-players game by which identities are validated based
on the assessment of trade-offs between benefits against risks
of allowing them to join the network. Sirivianos et al. [11]
propose the same model with the validation part being per-
formed via feedback of new user’s direct friends regarding the
trustworthiness of provided information.

More recently, [16] suggests validating profiles based on
correlations between their attributes. The authors demonstrate
that existing correlations between profile attributes can be
reliably used to estimate a profile’s identity trustworthiness
from its attribute values only. For example, a user who specifies

1https://www.joindiaspora.com/
2https://jappix.com/

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

383ASONAM '15, August 25-28, 2015, Paris, France
© 2015 ACM. ISBN 978-1-4503-3854-7/15/08 $15.00
DOI: http://dx.doi.org/10.1145/2808797.2808861

her occupation as a computer science student is expected to be
attending a university that offers such major. More precisely,
the authors suggest a two phase system. In the first one,
they exploit a supervised crowd-based learning strategy to
extract profile attribute correlations that are meaningful from
an identity validation perspective. They do this by gathering
human feedback from a group of trusted users on a centralized
profiles training dataset. Once these correlations are identified,
they are used in the second phase, that also engages users’
feedback, to estimate the identity trustworthiness of a target
profile.

Although profile exploitation approach is very promising,
there are several challenges that hinder its success in terms
of practicality. First, and given the number of users in current
OSNs, it is not realistically scalable to rely on trusted users
feedback for the learning of attribute correlations. Besides, col-
lecting the data centrally violates DOSNs privacy constraints
as it is often not allowed to move users’ data outside their
direct connections. Furthermore, it is hard to identify who the
trusted users are to ensure the accuracy of learning attribute
correlations. Finally, relying on users’ feedback introduces
privacy risks and is not applicable for DOSN models.

Additionally, decoupling profiles data from the semantic
of users’ connectivity during attribute correlations extraction
degrade the performance as it might result in infirm and/or
prejudiced validation. Specifically, social networks exhibit a
clustering phenomena by which users topologically cluster
into communities [17], [18]. Therefore, basing the learning
on all the profiles as a homogeneous entity might capture
generalizations that might be very generic, or on the contrary
that might only be expressed in some communities. Thus,
some users will be penalized for mismatching some validations
that could be unsuitable for the communities they want to
join. For example, occupation in scientific domains require
specific majors while it is not always the case in artistic fields.
Universal learning will enforce the correlation between job and
major, if the majority of users have scientific backgrounds,
thus smaller communities of artistic users will be penalized
for mismatching this rule.

To address these issues, in this paper we propose a De-
centralized Identity Validation framework (DIVa). The key of
DIVa’s performance lies in its ability to leverage on homo-
geneity among users’ profiles inside every existing community
instead of human-feedback based learning. DIVa employs
recently developed high performance decentralized diffusion-
based community detection strategy [19]. This allows DIVa
to extract more meaningful profile attribute correlations (i.e.,
correlated attribute sets - CAS) within communities than any
state-of-the art method. In addition, all DIVa’s components are
running node-centric algorithms (designed to never use global
knowledge), making it scalable and be the first framework,
to our knowledge, suitable for DOSNs. Although DIVa was
designed for decentralized environments, due to the nature of
its underlying node-centric algorithms it also excels in cen-
tralized settings too, in particular on current graph processing
frameworks like Graphlab [20].

Scalability: DIVa extends the ensemble learning paradigm
in distributed machine learning and works on fully distributed
datasets without collecting the data into one central location.
DIVa’s structure is a network of nodes such that each executes

a DIVa instance. DIVa instances use their local data and
generate a set of distributed models by exploiting principles of
Association Rule Mining (ARM) [21]. Before being exchanged
with neighboring nodes, such models are updated against the
local data, advancing the learning process without the need of
actual data leaving the home-node. Next, communities CASes
are computed in an incremental fashion by aggregating these
intermediate models per community. This achieves the same
predictive and analytic power in distributed fashion without
violating users’ privacy.

Privacy: to preserve users’ privacy, instances of DIVa have
access only and solely to the local data, that is available
given particular privacy settings. DIVa instances extract their
local correlations using profiles of their direct neighbors,
then exchange only the set of generated models within their
communities to agree on the community CAS. This preserves
users’ privacy as data is processed locally. Figures 1 and 2
illustrate the three phases of DIVa and interactions among
DIVa instances.

Performance: the key of DIVa’s performance relies on
successfully identifying meaningful communities, hence the
community detection algorithm that we harness goes beyond
the current state-of-the art. Majority of research in community
detection focuses on partitioning social network into disjoint
components. However, in social networks, every individual
typically belongs to more than one community, such as the
community of family members (e.g., that of friends and class-
mates, that of co-workers, etc). Furthermore, the number of
communities a user can belong to is unlimited as a person can
simultaneously associate with as many groups as he wishes.
Thus, for high quality results it is imperative that we perform
overlapping community detection. Therefore, DIVa allows
users to have multiple community memberships. Moreover,
the used community detection algorithm works in a massively
parallel manner as well as requires only the local knowledge
of nodes’ direct neighbors. Further, DIVa detects topological
changes of previously detected communities caused by newly
joining nodes and reforms the new communities and re-
computes their CASes. Therefore, DIVa can be used as online
framework that exploits incremental communities changes.

The main contributions of this work are:

• a scalable and massively parallel identity validation
model that suitably fits DOSNs and OSNs environ-
ments,

• fully automated privacy preserving identity validation
scheme,

• community-aware validation model based on extract-
ing association rules that reveals mostly frequent fine-
grained identity patterns inside each community,

• identity validation model that allows users to have
multiple community memberships, and

• incremental operation of community-aware validation
by continually updating validation rules upon newly
joining users.

We have performed several experiments, using real profile
data from Fecebook and Google+, to show the effectiveness of
our proposed identity validation model. The results show that

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

384

Fig. 1. The three phases of DIVa model. First, communities boundaries are identified by detecting densely connected regions, then every node performs
local learning, and the final step is aggregate rules per community. Meanwhile, universal learning generates the attribute pairs: (Degree, Employer), (Degree,
University) that are not expressed in all of existing communities.

DIVa extracts more validation rules than the global approach.
Most importantly, DIVa provides more effective validation
using fine-grained and community-aware correlations with
average improvements of up to 50% in Facebook and 16% in
Google+ than the general correlations extracted by universal
approach.

The rest of the paper is organized as follows. Section II
defines the DIVa model, Section III provides the security anal-
ysis, whereas Section IV presents and discusses experiments
results. Finally, Section V concludes the paper and presents
planned future work. For space limitation, further technical
details on DIVa algorithms (Section II), proofs to security the-
orems (Section III), and detailed complexity analysis (Section
IV.D) are presented in a technical report [22].

II. DIVa: DECENTRALIZED IDENTITY VALIDATION

We design DIVa based on the principle that OSNs exhibit
a clustering phenomena as users topologically cluster into
groups with intra-ties denser than inter-ties [17], [18]. Besides,
users in a group typically have high similarity to each other
sharing common identity and background trends [18]. From
this, we derive two characteristics of OSNs that we exploit
in our model: (1) OSNs cluster into socially homogeneous
communities that, (2) bind people with generally common
identity trends and patterns. Accordingly, DIVa operates in
three phases (see Figure I) to generate community specific
CASes that can be used to evaluate the integrity of profile
information of new nodes desiring to join a community.
However, the focus of this work is to learn the CASes that
can be then used in different ways for validation purposes.
Example 1 exemplifies a possible scenario for using DIVa for
identity validation.

Example 1. Assume Mike is an OSN user belonging to
community Cm only. Assume that DIVa finds that {Education,
Job}, and {Job, Current City} are CASes in Cm. Given a
new user Alice wants to connect with Mike, he can estimate
her profile’s trustworthiness by checking the values on her
profile corresponding to his communities’ CASes. To better
assist Mike, DIVa can also provide him with the top-n values
associated with each CAS in Cm.

We provide the details of each of DIVa’s three phases in
the following subsections.

A. Discovering Local CASes

We base the distributed learning of the LCASes on the
association rule mining (ARM) that is generally used for the
extraction of associations among different items in a shopping
basket [21]. In our model, the items are the profile attributes
and the association rules are the correlated attribute sets. For
example, a node can learn that among her direct friends, users
who are employed at company X also live in city Y. If a node
observes that this is frequent enough in the profiles of its direct
friends, the node deduces that attributes Employer and City
are correlated. Before giving the formal definitions, we first
introduce some notations.

We model an OSN as an undirected graph G = (V, E),
where V is the set of nodes (or users) and E is the set of
edges (or friendships), where eij ∈ E denotes a relationship
between nodes vi and vj ∈ V . We denote with S = {A1, A2,
.., Am }, the profile schema adopted in the OSN. Given a
node vi ∈ V , pi denotes the set of its profile values: pi =
{pi.a1, pi.a2, ..pi.am}, where pi.ak is the value provided by
vi for Ak ∈ S.

In the decentralized learning of LCAS, every node stores
the profile information of all its direct friends to form its Local
Profile Collection. More precisely, given vi ∈ V , we introduce
the set DFi = {vj ∈ V |eij ∈ E} as the set of vi’s direct
friends, and LPCi = {pk|vk ∈ DFi} as the collection of
their profiles, referred to as vi’s local profile collection.

To minimize computational effort, a node vi considers only
those attributes having high value frequency in its LPCi. As
an example, a job value musician that is repeated in more
than 30% of the profiles in LPCi makes the attribute Job a
frequent one; whereas, one satisfying less than this threshold
is a non-frequent attribute. Therefore, we define:

Definition 2.1: Local Frequent Attributes - LFA. Let
vi ∈ V and LPCi be its local profile collection. Let Ak ∈ S
be an attribute from the profile schema and let Pϑ

k ⊆ LPCi

be the set of profiles in LPCi having the same value ϑ for
attribute Ak. That is, ∀ ϑ (ϑ is a given value), Pϑ

k = {pm ∈ Pϑ
k

|pm.ak = ϑ}. Let LFAi ⊆ S be the set of attributes such
that, LFAi = {Ak ∈ LFAi| ∃ϑ s.t. |Pϑ

k |
|LPCi| ≥ ε}, where ε is

a global predefined threshold.

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

385

Given LFAi, vi computes the support of each attributes
pair in it. We limit to a pair as any combination larger than 2
can be decomposed into correlations between pairs.3

We define the support of an attributes pair as follows:

Definition 2.2: Support of an attributes pair. Let vi ∈ V ,
LPCi be its local profile collection, and LFAi be its local
frequent attributes set. Let (Aj , Ah) be a pair of attributes from
LFAi. The support of (Aj , Ah) defines the percentage of co-
occurrence of the same paired values for the two attributes Aj

and Ah to the total number of values in LPCi:

Support((Aj , Ah)) =
values-co-occurrence(Aj , Ah)

all-values(Aj , Ah, LPCi)
(1)

Where,

values-co-occurrence(Aj , Ah)=|{(pe, pm) ∈
LPCi|pe.aj = pm.aj ∧ pe.ah = pm.ah}|.

and,

all-values(Aj , Ah, LPCi)=|{ϑ |∃p ∈ LPCi s.t., p.aj =
ϑ ∨ p.ah = ϑ}|

By Equation 1, the support of an attributes pair is computed
based on the values-co-occurrence of its elements to the total
number of values in a local profile collection. For example,
the values-co-occurrence between Job and Education is the
number of profiles in which a specific pair of values, (Job = X,
Education = Y), exist. However, the values of profile attributes
in an OSN are mostly textual and are input as free-text by
the users. Thus, two values might be syntactically different
or worded differently but semantically the same. Therefore,
computing the values-co-occurrence requires a technique for
values comparison. We use for that a set of intersecting words
comparison by which we compute the set of common words
between two attributes’ values. The size of this set reflects the
similarity between these two values (see Algorithm 1).

Once the support has been calculated for all pairs in LFAi,
node vi selects the ones for which the support is high enough
to reflect they are correlated. Formally, we define a LCAS as:

Definition 2.3: Local Correlated Attribute Set - LCAS.
Let vi ∈ V and LFAi ⊆ S be its local frequent attributes
set. Let (Aj , Ah) be a pair of attributes from LFAi. The pair
(Aj , Ah) is a local correlated attribute set, denoted as LCAS,
if: Support((Aj , Ah)) ≥ β, where β is a global predefined
threshold.

Algorithm 1 details how node vi finds its LCAS list (i.e.,
CLISTi). CLISTi is a list of attribute pairs (i.e., (A1, A2))
with their support contained in the variable (A1, A2).c. First,
for every (A1, A2) from LFAi, the pair is inserted in CLISTi
with a support equal to 0 (line 3). Then, tokenize() retrieves
all the words from all the values of A1 and A2 in all the
profiles in LPCi (lines 4 and 5) to form their respective word
list, W1 and W2. Then, we calculate the number of pairs of

3Assume CAS = (A,B,C). This implies there is a non-empty set of profiles
where the values for A, B, and C co-occur. That is (A, B), (B, C), and (C,
A) are correlated. The correlations (A, B), (B, C), and (C, A) are not enough
for (A, B, C) to be correlated; however, the correlation (A, B, C) necessarily
implicates the paired correlations.

profiles from LPCi, such that their values for A1 and A2 share
some words from their respective word lists and we update
(A1, A2).c accordingly (getIndex() locates the pair (A1, A2)
in CLISTi) (lines 6 - 12). Basically, for every two profiles
from LPCi, we get the set of words for which word lists of
A1 and A2 intersect, denoted as X and Y respectively. Then,
the normalized support of (A1, A2) is computed by dividing
the length of minimum intersection between their word lists by
all the words in W1 and W2 (line 10). The pairs in CLISTi
with support higher than the predefined threshold β are the
LCASes of vi.

Example 2. Consider Example 1 and assume Jane as
another OSN user belonging to communities Cm and Cj . To
learn her LCAS, Jane collects the available profile attributes
from all her direct friends to construct LPCJane. Assume she
finds that Job and City are in LFAJane; that is, their values
are highly frequent in LPCJane. Jane computes the number
of profile pairs in LPCJane for which these two attributes’
pair have similar values. Assume in more than 40% of the
profiles in LPCJane, this pair is co-occurring. Assuming that
the LCAS threshold β = 0.3, the pair (Job, City) is an LCAS
for Jane.

Algorithm 1 LCAS Learning at node vi
Require: LFAi, LPCi, and β
Ensure: List of LCAS with their support: CLISTi
1: CLISTi ← ∅
2: for all (A1, A2) ∈ LFAi do
3: CLISTi ← insert((A1, A2), 0)
4: W1 ← tokenize(LPCi, A1)
5: W2 ← tokenize(LPCi, A2)
6: for all pk, pj ∈ LPCi do
7: X ←tokenize(pk.a1) ∩ tokenize(pj .a1)
8: Y ←tokenize(pk.a2) ∩ tokenize(pj .a2)
9: if X 6= ∅ ∧ Y 6= ∅ then

10: s← min(|X|,|Y |)
|W1|+|W2|

11: CLISTi[getIndex(A1, A2)].c ←
CLISTi[getIndex(A1, A2)].c+ s

12: end if
13: end for
14: end for
15: for all (A1, A2) ∈ CLISTi do
16: if CLISTi[getIndex(A1, A2)].c < β then
17: remove(CLISTi, (A1, A2))
18: end if
19: end for

B. Decentralized Community Detection

LCASes learned locally at nodes need to be disseminated
to construct community level CASes. Thus, a community
detection step is required. In general, a community is defined
as a subgraph G’ ⊂ G = (V’, E’) representing a tightly-knit set
of nodes that are sparsely connected to the rest of the nodes
in G.

Many decentralized algorithms for community detection
have been proposed [23], [24], [19]. In particular, the work by
Rahimian et al. [19] seems to comply with our decentralization
requirement. In this work, every node starts as a community
by itself using its node ID as its community ID. Then, every
node chooses to quit its current community and join one of its
neighbour’s if this brings some modularity gains. Therefore,
we define modularity gain in terms of dominant ID by which
every node changes its community ID to the dominant one

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

386

Fig. 2. Identifying two overlapping communities and communicating with
diva nodes to perform community-level aggregation.

in its neighbours. This step is iterated until no node wants to
change its ID as it already represents the dominant one of all
its neighbors. If a node does not find a dominant ID among
its neighbours, it changes to the highest ID between its own
and the ones of its neighbours.

However, since communities in social networks are majorly
overlapping, and considering that DIVa aims to learn correla-
tions that are more representative of a node’s environment, we
opt for a soft clustering approach. That is, a node can belong
to more than one community and hence have more than one
dominant community ID. More precisely, a node keeps track
of the top dominant community IDs that it learns about when
the community detection algorithm converges. As shown in
Figure 2, DIVa instances have organized themselves into two
overlapping communities. Further, node with the largest ID
(i.e., node with darker shade) has been identified as the leader
node of the detected community.

C. Community-level Aggregation

After step 2 of DIVa, every node becomes aware of its
community ID(s). Furthermore, each community ID points to
its leader node (i.e., its diva4 node) of the community; that is
the node with the maximum nodeID. Particularly, this node is
responsible for collecting all LCASes found in its community
to extract from them the community CASes using a weighted
voting mechanism. Thus, each node sends its LCASes and their
corresponding support values to its community’s diva(s) and
receives back CASes with the maximum votes represented by
maximum aggregated support. However, recall that in DOSNs
nodes are aware only of their direct friends. Therefore, nodes
must be aware of the path to reach their communitie(s)’ diva(s)
by a hop-by-hop routing over their social ties. Accordingly,
during the execution of the community detection part, nodes
maintain paths leading to the diva of each community they
belong to. Path construction is straightforward. First, a node
checks if the diva is a direct friend. If it is not, the node
creates the path by assembling the node IDs of intermediate
nodes leading to the diva. Figure 2 depicts how nodes reach
their communities diva nodes by following the constructed path
towards them.

Given that all nodes know the path to each of their
communitie(s)’ diva node(s), messages containing their LCAS,

4Diva is the main female singer in an opera company. In analogy, we name
community leader nodes as diva nodes.

along with the support of every LCAS attached as a parameter
LCAS.c, are sent by every node to reach the destined diva(s)
using a hop-by-hop consumption of the specified path. With
every newly received message, each diva node inserts the ID
of the sender into a participants list and the communicated
LCAS into a list of received LCAS (i.e., LISTL). A diva
node is assumed to be preliminary aware of the size of its
community after execution of community detection. When the
number of received participants represents the majority of the
community’s nodes, the diva aggregates the support of received
LCAS. The calculation of the aggregated support is straight-
forward: for each LCAS a diva node receives, it computes
the average of its received supports from the different nodes
communicating it. As shown in Figure 2, node J has received
LCASes form other nodes belonging to the community and
has aggregated partial results to reach community CAS. The
last step is to inform the rest of nodes with the final consensus
in CAS representing the community.

Example 3. Following up with Example 2, Jane commu-
nicates to the diva nodes of Cj and Cm her LCAS (Job, City)
with its computed support. Assuming that the diva of Cj (i.e.,
divaj) receives this LCAS from the majority of nodes in Cj ,
(Job, City) is a CAS in Cj . However, let us assume that in
Cm, (Job, City) is under represented and hence it is not a
CAS in Cm. Given this, Jane will have the choice of using the
CAS (Job, City) to evaluate the trustworthiness of her new
contacts based on which community, Cj or Cm, she knows
them from. For example, a new contact who claims to be a
colleague is more highly expected to meet this CAS, when
another one who Jane knows from the GYM is less likely to
be judged based on it.

III. SECURITY ANALYSIS

We analyze the security of DIVa assuming a malicious
adversary model. The goal of an attacker would be to convince
the community to use a corrupted CAS so as to confirm the
trustworthiness of his/her identity or to compromise the ones of
honest nodes. Since CAS values depend on the co-occurrence
frequency of similar attribute values within a community, an
attacker can have an effect only by introducing enough fake
profiles (i.e., sybil nodes [25]) within the target community.
Sybil nodes in OSNs have been studied both from a graph and
a profile perspectives [26]. Since we detect communities based
on topology, our focus will be on graph based sybil detection
(GSD). Most work on GSD agrees that Sybils often manifest
in proper topological structures making them distinguishable
from honest nodes [26]. More precisely, sybil nodes exhibit
proportionally smaller degree centrality and tend to group
as outliers in the graph, compared to honest nodes [26].
Therefore, based on the logic of DIVa, sybil nodes would be
detected in separate communities with their own CASes unless
they trick enough honest users into establishing friendship
links with them so that they join their honest communities.
This last possibility is discussed in the following sub-sections.
Proofs to security theorems are available in [22].

A. Introducing a fake CAS

To introduce a new CAS, CASnew, to a community,
an attacker has to successfully integrate in it enough fake
nodes, say z nodes, that carry profile information confirming

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

387

CASnew. Inserting a node x into a community C requires
the creation of a number of edges (i.e., friendships) with
enough other members of C so that x is included into it
by the community detection algorithm. We emphasize on the
amount of effort needed to introduce one new fake node into
a community and we deterministically define z, the number of
such fake nodes required to introduce a fake CASnew.

Theorem 3.1: Let C ⊂ G, C = (C.V,C.E), be a commu-
nity of size n (|C.V | = n). Let suplowest be the lowest support
by which a CAS is accepted in C. For a new CAS, CASnew

to appear in C, it must be inserted a group of fake nodes
Cf that successfully join C and that show profile information
confirming CASnew such that:

z = |Cf | ≥ suplowest

(1−suplowest)
∗ n.

By Theorem 3.1, we can see that the required adversary
effort to introduce a fake CAS is directly proportional to the
size of the target community and to the lowest support by
which it accepts a new CAS. Given that, communities tend
to be more vulnerable to adversaries when they are small in
size. However, for the adversary to succeed, fake nodes need
to successfully establish enough links with the members of
the target community. We believe that small communities, that
are supposedly composed of nodes knowing and trusting each
other, would tend to be more selective and hence more resilient
to accepting unknowns compared to larger communities. In
addition to that, a smaller community is expected to be more
homogeneous (a small group of people knowing each other
closely would be more homogeneous than a larger group) and
so could allow high threshold values for the computations of its
CASes. By Theorem 3.1, it is clear that the higher the support
threshold is, the higher the number of fake nodes are needed
for an attack to succeed.

B. Corrupting a valid CAS

Additionally, an adversary might be interested in removing
a valid CAS from a community. This can be achieved by
introducing profiles that are not compliant with this CAS in a
number big enough to disturb its valid support.

Theorem 3.2: Let C ⊂ G, C = (C.V,C.E), be a com-
munity of size n (|C.V | = n). Let suplowest be the lowest
support by which a CAS is accepted in C. For a valid CAS,
CASvalid with support Sv , to disappear from C, it must be
inserted in C a group of fake nodes, Cf , that does not have
profile information confirming CASvalid such that:

z = |Cf | > Sv∗n
suplowest

− n.

By Theorem 3.2, the vulnerability of a valid CAS is
inversely proportional to the percentage of nodes in the com-
munity that contributed in making it arise. In fact, the lower
the support of a CAS is, the smaller the number of nodes in
the community represent it, and as such, the most vulnerable
CAS to such an attack is the one having the lowest support.
However, the success of such an attack, even for the weakest
CAS, still requires the insertion of a considerable number of
Sybil nodes in the target community. As we discussed before,
this in itself remains a challenge for attackers.

TABLE I. REAL OSN DATASETS USED IN EXPERIMENTS.

Dataset Nodes Edges
Facebook 23,332 28,972
GpJUL 2,417,014 25,016,154
GpAUG 4,349,414 35,544,682
GpSEP 4,388,907 43,060,890

IV. EXPERIMENTAL RESULTS

We have implemented DIVa using GraphLab [20] with
two different distributed execution modules. The first module
executes our adopted community detection algorithm until it
converges so that

every node knows the divas of its communities and the
paths toward them. Thereafter, the control is moved to the
second module that extracts CASes for every detected com-
munity. We compare DIVa discovered CASes with global
CASes generated by learning from all profiles in one central
repository. That is, global CASes are obtained by executing
DIVa’s LCAS learning algorithm, but over all the available
profiles in the OSN all at once.

As aforementioned, the LCAS learning considers a node’s
LFA to prune the attributes passing the required values-
frequency threshold ε (Definition 2.2). We set ε = 0.2, as
we believe that a pattern supported by more than 20% of the
population is statistically meaningful. A further discussion on
specifying the threshold value is presented in [22].

A. Datasets Description

We conducted several experiments to validate the effec-
tiveness of DIVa using real profile datasets from Facebook
and Google+ (shown in Table 1). We used the Facebook
dataset collected and used in [27], and the Google+ dataset
publicly available from [28]. The profile schema in the Face-
book dataset contains: First Name, Gender, Home County,
Education, Job, Current Country, and Interests. Meanwhile, the
profile in Google+ datasets has fewer attributes, specifically
Occupation, Employment, Education, and Places Lived. The
Google+ dataset represents three crawled parts of the OSN
collected on July, August, and September in 2011. We denote
them as GpJUL, GpAUG, and GpSEP, respectively. Given the
fact that the Facebook dataset does not have timestamp on
links creation, we test the incremental update of DIVa using
the Google+ datatset that comes with this information.

B. Batch Execution

The Facebook dataset was collected using a Facebook app
that gathered the friendship links and profiles of the users who
launched it. As a result, the collected data makes a graph of
connected hubs with no overlapping communities. Therefore,
every node belongs to a single community, and communi-
ties divas are reached directly without any message routing
overhead. The community detection algorithm converged after
three rounds detecting 64 communities.

Table 2 lists CASes extracted by DIVa and their equivalent
support values for two communities comparing them to the
global extracted CASes. For the two communities we list the
top five attribute pairs in terms of support value. In fact,
DIVa extracts 15 attribute pairs on average, but we show the
top 5 due to space limitation. As a first observation, CASes

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

388

TABLE II. DIVA EXTRACTED CAS VS. GLOBAL CAS FOR FACEBOOK DATASET.

DIVa CAS Community1
Attribute Pair Sup.
1:(gender, f.name) 0.14
2:(f.name, h.country) 0.105
3:(education, job) 0.103
4:(job, employer) 0.102
5:(education, interest) 0.085

DIVa CAS Community2
Attribute Pair Sup.
1:(education, employer) 0.168
2:(employer, interest) 0.164
3:(job, h.country) 0.108
4:(gender, f.name) 0.105
5:(f.name, h.country) 0.104

Global CAS
Attribute Pair Sup.
1:(ob, interest) 0.335
2:(gender, interest) 0.179
3:(education, interest) 0.138
4:(job, h.country) 0.137
5:(education, job) 0.126

extracted by DIVa differ between the two communities. This
proves that communities have different identity patterns and
that DIVa succeeds in revealing them. This is further confirmed
by the common CASes in the two communities as their support
values hugely differ in each one of them. For example, the pair
(education, interest) has different support values 0.085, and
0.168 in Community1, and Community2, respectively. This
emphasizes that the importance of an attribute pair differs from
a community to another depending on its social and identity
characteristics.

Our second observation is related to the nature of the
CASes discovered by DIVa compared to the ones retrieved
from global learning, especially with regard to the type (single
or multi-value) of attributes they contain. Indeed, the pairs
extracted universally capture the common global trends and
mainly consist of multi-value attributes. Meanwhile, most
DIVa CASes are made of single-value attributes. This is an
important factor to consider and a real strength of DIVa as
single-value attributes cover more specific identity dimensions
that could not be captured from the global learning. Indeed,
this latter failed to extract fine-grained and community-aware
rules that disappear when considering the whole network as
one giant component.

Fig. 3. Comparing total support of DIVa CAS to globally extracted CAS for
Facebook dataset.

Figure 3 depicts a comparison of total support values of
CASes extracted by DIVa and those extracted globally. For
every detected community we compute DIVa total support by
summing up the support of its extracted CASes. Meanwhile,
the second total support (global) is the sum of the global
support values associated with attribute pairs of global CASes
if those attribute pairs are correlated inside the detected
communities. Figure 3 shows that DIVa provides stronger
validation than the global approach, as the total support of
DIVa generated CASes is higher than the total support of
global CASes. In general, DIVa achieves average improvement
over global CASes that is up to 52.5% in the Facebook dataset.

TABLE III. COMMUNITY DETECTION RESULTS FOR GOOGLE+
DATASET.

Dataset Avg. Comm. Mod.(H) Mod.(L)
GpJUL 2.24 0.747 0.372
GpAUG 2.67 0.721 0.421
GpSEP 2.76 0.738 0.492

C. Incremental Execution

Each of Google+ datasets contains timeID with values 0,
1, or 2, indicating which snapshot a directed link between
two users appeared in. Thus, we execute our experiments
incrementally to update the social graph by adding edges
among nodes using timeIDs. Therefore, previously existing
nodes monitor topological changes that affect their community
membership, and re-execute the community detection module
followed by DIVa extraction module when required.

1) Overlapping Community Detection: As aforementioned,
community detection in DIVa allows users to have multiple
community memberships. This is achieved by having every
node updates an ordered list of diva nodes of the dominant
communities to which its friends belong throughout the rounds
of the algorithm. Specifically, this list is ordered by the number
of friends in every community in order to rank community
memberships from densely to sparsely connected ones. Next,
nodes set their main community ID to diva node of the
dominant community among their neighbors. The average
number of rounds required for convergence across all Googel+
datasets is 28. Besides, the average path length towards the diva
nodes is 5.9, 4.9, and 4.5 in GpJUL, GpAUG, and GpSEP,
respectively. This results show that the more connected the
graph is, the shorter the path towards the diva nodes is.

Moreover, the results show that on average 95% of all
communities overlap with at least one other community, and
only 21% of nodes belong to only one community. Table 3
lists the obtained results, for example, the average number of
community memberships (Avg. Comm.) in GpJUL dataset is
2.24. Furthermore, the overall average modularity (Mod. (H))
computed for the dominant communities (i.e., the communities
with highest rank) for the whole graph is 0.747. The last
column in the table lists the overall average modularity (Mod.
(L)) computed for the lowest rank communities.

2) Incrementally Updating DIVa CASes: In this set of
experiments, we study the effect of the newly added nodes and
edges in the social structure of previously detected commu-
nities requiring the re-computation of DIVa CASes. Figure 4
shows the percentage of nodes re-performing CASes extraction
due to topological changes in their communities. In particular,
the lower bound of change should be the percentage of
new nodes, where only those nodes execute the community
detection module and notify their communities divas with their
LCASes. Meanwhile, the upper bound would mean that the

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

389

process will start all over from the beginning such that all
nodes execute the community detection and LCASes extraction
modules. The vertical error bars in Figure 4 represent the range
of expected change in the datasets graphs after adding the new
nodes.

Fig. 4. Percentage of nodes computing DIVa CASes at each snapshot of
Google+ datasets.

Intuitively, in the first snapshot all nodes execute both
modules. As shown in Figure 4, 60%, 50%, and 80% of
GpJUL, GpAUG, and GpSEP, respectively are loaded in the
beginning. In the second snapshot 30%, 45%, and 15% new
nodes were added to GpJUL, GpAUG, and GpSEP graphs,
respectively. The results of the three datasets show that, on
average, 17% of old nodes got affected by topological changes
caused by the new joining nodes and performed community
detection followed by LCASes extraction. The average change
reported for adding the last snapshot across all three datasets
is only 6%. Consequently, in our framework nodes are able to
detect the topological changes surrounding them. Moreover,
the results show that these changes are localized and require
re-computations only for changed regions not the whole graph.

3) Improvements achieved by DIVa CASes: The results
show that DIVa extracts more refined CASes than the global
CASes for Google+ datasets. The followings are all DIVa gen-
erated CASes: (employer, places lived) , (major, employer),
and (school, major). Moreover, some communities have more
CASes such as (school, employer}, (major, places lived),
and (school, places lived). Meanwhile, the global learn-
ing extracted the following four CASes only for the three
datasets: (major, employer), (major, places lived), (school,
places lived), and (school, major).

Fig. 5. Comparing DIVa and global CASes, showing DIVa improvement and
penalty of applying global CASes.

Figure 5 depicts DIVa achieved improvement compared to
global results for all datasets. We compute the improvement
by the difference between total support of DIVa CASes and
global CASes. On average, for 74% of the communities, DIVa
CASes are more in number than the globally extracted CASes.
Furthermore, the achieved gain ratio for these communities
range from 10% to 50% improvement. The Google+ results
emphasize that global CASes capture only the attribute pairs
that reflect the global patterns. On the other hand, DIVa
succeeds in revealing community-aware patterns with higher
support values. In general, DIVa achieves average improve-
ment over global CASes up to 16% in Google+ datasets.

Furthermore, compared to DIVa extracted CASes, some
global CASes are not represented in 20% of the communities
detected across all Google+ datasets. Thus, if these communi-
ties apply identity validation using global CASes, new users
will be penalized for mismatching some validation rules that
are unexpressed for the communities they want to join. Figure
5 depicts the penalty ratio paid by some communities when
using global CASes against when using DIVa CASes. Namely,
these communities represent minority trends discriminated by
the universal learning.

D. Complexity Analysis

The model’s cost is an aggregation of its steps. First, every
node computes its LCAS. The complexity of this is a function
of the number of node’s friends (i.e., its degree d) and of the
number of profile attributes in the profile schema. Indeed, the
LCAS learning requires computing for every pair of attributes
(a profile schema of m attributes results in p =

(
m
2

)
= m2−m

2
number of pairs), its value-co-occurrence among all the node’s
direct friends. Therefore, the number of performed checks per
attributes pair is, c =

(
d
2

)
= d2−d

2 . Accordingly, the LCAS
learning’s complexity isO(c∗p). By this, the nodes with higher
degree would be the bottlenecks in the LCAS learning step;
however, this step is node dependent and does not require the
simultaneous online availability of all the nodes. Moreover, it
is executed only upon significant changes to the network.

regarding the community detection step, it costs in terms
of communication traffic between all the nodes in the OSN.
By our adopted work for decentralized community detection,
this step’s cost is O(N ∗D ∗R), where N is the total number
of nodes in the OSN graph, D is the average node degree, and
R is the total number of rounds needed for the algorithm to
converge5 [19]. This can be very costly for large graphs, but
this step is a one time process only.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced DIVa, a novel unsuper-
vised and incremental learning scheme as a fully decentralized
identity validation model for OSNs in contrast to existing
global approaches. DIVa conceptualizes user online identities
by mining the correlations among user profile attributes not
from user population as a whole, but from individual com-
munities, where the correlations are more pronounced. In our
experiments we show that reliance on revealing the highly
expressed patterns inside communities resulted in extracting

5R depends on the topological properties of the underlying graph

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

390

community-aware validation rules with average improvements
upto 50% than the universal rules that only reveal the global
patterns. Furthermore, our model maintains users’ privacy
during the learning phase as users profiles information are
processed only by their direct friends. The experiments show
the effectiveness and scalability of our proposed model.

As a natural continuation of the work, we plan to im-
plement a gossip-based protocol to exchange LCAS among
nodes in communities instead of depending on diva nodes.
We plan to investigate trading off between convergence time
with efficiency in terms of scalability and resilience to nodes’
failures.

ACKNOWLEDGMENT

This work is under the umbrella of the iSocial EU Marie
Curie ITN project (FP7-PEOPLE-2012-ITN). The authors also
thank Naeimeh Laleh for her help with Facebook data sanitiz-
ing.

REFERENCES

[1] W. Luo, J. Liu, J. Liu, and C. Fan, “An analysis of security in social
networks,” in DASC’09. IEEE, 2009.

[2] M. Huber, M. Mulazzani, E. Weippl, G. Kitzler, and S. Goluch, “Friend-
in-the-middle attacks: Exploiting social networking sites for spam,”
Internet Computing, 2011.

[3] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer, “Social
phishing,” Communications of the ACM, 2007.

[4] Facebook. (2014) Facebook annual report. [Online]. Available:
http://investor.fb.com/annuals.cfm

[5] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia, “Decent:
A decentralized architecture for enforcing privacy in online social
networks,” in PeRCom’12. IEEE, 2012.

[6] A. C. Squicciarini, C. Griffin, and S. Sundareswaran, “Towards a game
theoretical model for identity validation in social network sites,” in
PASSAT’11. IEEE, 2011, pp. 1081–1088.

[7] H. Krasnova, O. Günther, S. Spiekermann, and K. Koroleva, “Privacy
concerns and identity in online social networks,” Identity in the Infor-
mation Society, 2009.

[8] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A near-
optimal social network defense against sybil attacks,” in Security and
Privacy. IEEE, 2008.

[9] L. Jin, H. Takabi, and J. B. Joshi, “Towards active detection of identity
clone attacks on online social networks,” in CODASPY’11. ACM,
2011.

[10] B.-Z. He, C.-M. Chen, Y.-P. Su, and H.-M. Sun, “A defence scheme
against identity theft attack based on multiple social networks,” Expert
Systems with Applications, 2014.

[11] M. Sirivianos, K. Kim, J. W. Gan, and X. Yang, “Assessing the veracity
of identity assertions via osns,” in COMSNETS’12. IEEE, 2012.

[12] X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. S. Kim, P. Compton,
and A. Mahidadia, “Collaborative filtering for people to people recom-
mendation in social networks,” in Advances in Artificial Intelligence.
Springer, 2011.

[13] P. Chairunnanda, N. Pham, and U. Hengartner, “Privacy: Gone with the
typing! identifying web users by their typing patterns,” in PASSAT’11.
IEEE, 2011.

[14] G. Roffo, C. Segalin, A. Vinciarelli, V. Murino, and M. Cristani,
“Reading between the turns: Statistical modeling for identity recognition
and verification in chats,” in AVSS’13. IEEE, 2013, pp. 99–104.

[15] O. Goga, H. Lei, S. H. K. Parthasarathi, G. Friedland, R. Sommer,
and R. Teixeira, “Exploiting innocuous activity for correlating users
across sites,” in WWW’13. International World Wide Web Conferences
Steering Committee, 2013.

[16] L. Bahri, B. Carminati, and E. Ferrari, “Community-based identity
validation on online social networks,” in ICDCS’14. IEEE, 2014, pp.
21–30.

[17] P. N. Krivitsky, M. S. Handcock, A. E. Raftery, and P. D. Hoff,
“Representing degree distributions, clustering, and homophily in social
networks with latent cluster random effects models,” Social networks,
2009.

[18] E. Ferrara, “Community structure discovery in facebook,” International
Journal of Social Network Mining, 2012.

[19] F. Rahimian, S. Girdzijauskas, and S. Haridi, “Parallel community
detection for cross-document coreference,” in IEEE/WIC/ACM. IEEE,
2014.

[20] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine learning
and data mining in the cloud,” Proceedings of the VLDB Endowment,
2012.

[21] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in SIGMOD. ACM, 1993.

[22] A. Soliman, L. Bahri, B. Carminati, E. Ferrari, and S. Girdzijauskas,
“Diva: Decentralized identity validation for social networks,” KTH-
Royal Institiute of Technology, Tech. Rep., 2015. [Online]. Available:
http://kth.diva-portal.org/smash/get/diva2:805740/FULLTEXT02.pdf

[23] H. Meyerhenke, B. Monien, and T. Sauerwald, “A new diffusion-
based multilevel algorithm for computing graph partitions of very high
quality,” in IPDPS’08. IEEE, 2008.

[24] P. Sanders and C. Schulz, “Distributed evolutionary graph partitioning.”
in ALENEX. SIAM, 2012.

[25] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
defending against sybil attacks via social networks,” in SIGCOMM’6,
vol. 36, no. 4. ACM, 2006, pp. 267–278.

[26] Y. Boshmaf, K. Beznosov, and M. Ripeanu, “Graph-based sybil detec-
tion in social and information systems,” in ASONAM’13. IEEE, 2013.

[27] C. G. Akcora, B. Carminati, and E. Ferrari, “Privacy in social networks:
How risky is your social graph?” in ICDE’12. IEEE, 2012, pp. 9–19.

[28] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar,
and D. Song, “Evolution of social-attribute networks: measurements,
modeling, and implications using google+,” in Internet Measurement
Conference. ACM, 2012, pp. 131–144.

2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

391

