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The overwhelming success of online social networks, the key actors in the cosmos of the Web 2.0,
has reshaped human interactions on a worldwide scale. To understand the fundamental mechanisms
which determine the fate of online social networks at the system level, we recently introduced a
general ecological theory of the digital world. In this paper, we discuss the impact of heterogeneity
in the network intrinsic fitness and present how the general theory can be applied to understand
the competition between an international network, like Facebook, and local services. To this end,
we construct a 1:1000 scale model of the digital world enclosing the 80 countries with most Internet
users. We find that above a certain threshold the level of global connectivity can lead to the
extinction of local networks. In addition, we reveal the complex role the tendency of individuals to
engage in more active networks plays for the probability of local networks to become extinct and
provide insights into the conditions under which they can prevail.

Keywords: complex systems — complex networks — online social networks — digital ecology — digital
world — network of networks — double mean field approximation

I. INTRODUCTION

The rapid growth of online social networks (OSNs),
such as Twitter or Facebook, has led to over two billion
active accounts in 2014 [1], connecting over one quarter of
the world population and 72% of online U.S. adults [2].
Bridging the gap between social sciences and informa-
tion and communication technologies, OSNs constitute
a crucial building block in the development of innova-
tive approaches to the challenges society faces nowadays.
However, technological progress in the last decade has
dramatically outpaced our understanding of the new sys-
tems and their impact for society.

This lack of understanding of the complex dynamics in
the digital world urges the need of a comprehensive and
concise theory in which the Web 2.0 is described by a set
of interacting networks. In this context, the activity of
users has become a scarce resource driving the compe-
tition in the digital world. Digital services only persist
if they can attract and maintain users’ attention. In re-
cent studies [3, 4], we revealed the fundamental mecha-
nisms for the evolution of online social networks, the key
players in the cosmos of the Web 2.0, and developed a
general and concise ecological theory of interacting net-
works. Interestingly, this theory predicts the possibility
of coexistence of multiple a priori identical networks, in
contrast to the principle of competitive exclusion [5].

In reality not all networks are initially identical.
They can differ in functionality, features, and –most
importantly– they can address different peer groups. In
this paper we discuss how the effect of different overlap-
ping peer groups can be described in terms of different
network intrinsic fitnesses and show how heterogeneity
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in these fitnesses can impede the coexistence of networks
under certain conditions.

This effect is particularly important for the competi-
tion between local networks and globally operating ones.
We enrich our theory with empirical data to describe the
competition between an internationally operating net-
work like Facebook and a set of local networks which
operate exclusively in their countries of origin. Empirical
observations have shown that Facebook expanded in the
mid 2000s starting in the US when local networks were
the most popular services in most countries worldwide.
Several years later, Facebook had become the most popu-
lar network in most countries. Is then the final fate of the
digital world one with a single predominant “big brother”
taking over all our digital interactions? Is, instead, dig-
ital diversity possible from a system’s level perspective?
In this paper, we show that due to the non-linear char-
acter of the underlying laws at play, the answer to both
questions can be positive or negative depending on the
range of parameters and, quite surprisingly, depending
on chance.

II. RESULTS

To shed light on these questions, we extend our general
theory by incorporating the effect of different underlying
communities given by the countries in which networks
operate. In section II B we show how this effect can be
taken into account by an effective activity which leads to
an increased intrinsic fitness of the international network.
In section II C we show how heterogeneity in network in-
trinsic fitnesses can impede coexistence which can lead
to the extinction of local networks as well as their preva-
lence under certain conditions. In section II D we present
a 1:1000 scale model of the digital world by creating syn-
thetic networks for the underlying communities and per-
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form numerical simulations to provide insights about the
conditions which allow local networks to persist.

A. Evolution and ecology of online social networks

In this section, we provide a brief summary of the evo-
lution [3] and ecology [4] of online social networks. The
evolution of an OSN is coupled to the pre-existing offline
social structure. The following four dynamical processes
drive the evolution of the system (see Fig. 1d):

1. Viral activation: a susceptible node can be virally
activated and added to the OSN by contact with an
active neighbor in the traditional off-line network.
Such events happen at rate λ for each active link.

2. Mass media effect: each susceptible individual be-
comes active spontaneously at rate µ and may thus
be added to the OSN in response to the visibility
of the OSN.

3. Deactivation: active users become spontaneously
passive at rate δ and no longer trigger viral activa-
tions or reactivate other passive nodes.

4. Viral reactivation: at rate λ, active users can reac-
tivate their passive neighbors. The neighbor then
becomes active and can trigger both viral activa-
tions and viral reactivations.

The balance between the mass media influence, µ, and
the viral effect, λ, can be estimated from the topological
evolution of the corresponding empirical network. This
estimation can be performed by making use of the net-
work exhibiting a dynamical percolation transition. The
critical point of the transition depends on the ratio be-
tween λ and µ. This is due to the complementary roles
the respective effects play in the topological evolution.
Matching the system size at the critical point then yields
a linear relationship between λ and µ (see [3] for further
details).

The simultaneous existence of multiple digital services
in competition for the attention of users suggests an eco-
logical perspective to explain the prevalence of one net-
work or the coexistence of multiple networks. In ecology
theory, the principle of competitive exclusion [5] states
that multiple species in competition for the same only
resource cannot coexist as even the slightest advantage
of one species is amplified successively, a mechanism re-
ferred to as rich-get-richer or preferential attachment [6–
14]. This eventually leads to the extinction of the infe-
rior species. Analogously, we assume such a mechanism
for the interaction of multiple networks where the ac-
tivity plays the role of the networks fitness. The total
amount of the viral parameter, λ, constitutes a conserved
quantity related to the physical and cognitive limitations
of users. Each network obtains a share λi = ωi(ρ

a)λ,
where ωi(ρ

a) represents a normalized set of weights. The
weights depend on the activities of the networks, which

are given by the fraction of active nodes in the network
divided by the total number of users in the traditional
off-line network. We denote the activities as a vector
ρa = (ρa1, ρ

a
2, . . . , ρ

a
nl

)T of length nl. nl corresponds to
the number of OSNs competing for the same set of users.
Users are more likely to subscribe to or engage in more
active networks, hence ∂ωi(ρ

a)/∂ρai > 0. In [4], we pro-
posed

ωi(ρ
a) =

ψ(ρai )∑nl

j=1 ψ(ρaj )
(1)

which governs the competitive interaction between digi-
tal services. For the treatment of intrinsically equal net-
works, the choice

ψ(ρai ) = [ρai ]
σ

(2)

allows us to to interpolate between a set of independent
networks and highly coupled ones as a function of the
activity affinity σ, which denotes the tendency of users
to subscribe to or engage in more active networks. Inter-
estingly, in contrast to the principle of competitive exclu-
sion, multiple networks can coexist because the rich-get-
richer mechanism is damped by the diminishing returns
of the dynamics of the network evolution. Although any
number of networks can coexist in a certain range of pa-
rameters, it is highly probable to observe only a moder-
ate number of coexisting services. For details we refer
the reader to [4].

In the following, we introduce additional mechanisms
and enrich the theory with empirical data to account for
the situation of competition between a large internation-
ally operating online social network and locally operating
services.

B. Effective activity

As mentioned before, since its official launch in 2004,
Facebook has become the most popular online social net-
work in most countries, even in countries where there was
already a popular one before Facebook was launched.

To mimic the real evolution, we assume that one lo-
cal network exists in each country in addition to a glob-
ally operating, international network (see Fig. 1a). In
the US, both networks are launched at the same time
whereas the international network is launched with a de-
lay in the remaining countries to take into account the
initial prevalence of the local networks.

Consistent with our findings in [4], we assume that in
general users are more prone to subscribe to or engage
in more active networks. However, once launched, the
international network provides the user with the possi-
bility to connect to individuals from different countries,
in contrast to local networks. This makes the interna-
tional network more attractive. The attractiveness dif-
ference is the result of inter-country social ties, thus its
amount is proportional to the abundance of those ties.
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Figure 1. Constituents of our model. a) Design of the international network and local networks. b) Sketch of our model
using a coarse-grained coupling. c) Visualization of the flight network. The area of the nodes is proportional to the number
of Internet users in the respective country with Internet access. The transparency and thickness of the links represents the
density of passengers between the involved countries. d) Illustration of the competition of the international network and the
local network within one country.

We use data from air travel passengers as a proxy for
the frequency of inter-country social ties. Note that air
travel data has proven to be a good proxy for large-scale
contagion processes [15].

When a user in country i evaluates the attractiveness of
the international network she considers its activity with
respect to the population of her own country but also
might have contacts in other countries. To account for
the latter, on a coarse grained level, the attractiveness of
the international network will be augmented by its activ-
ity in all the other countries discounted by some factor
which depends on the frequency of the respective inter-
country social ties. Such evaluation of the attractiveness
allows us to define an effective activity which takes into
account the coarse-grained coupling induced by the pre-
viously mentioned mechanism (sketched in Fig. 1b). In
detail, we define the effective activity of the international
network perceived in country i

ρ̃ai,int = ρai,int + α
∑
j

Ωijρ
a
j,int (3)

where

Ωij =
Wij/Ni

max[Wij/Ni]
(1− δij) (4)

denotes the fraction of the number of air travel passengers
between countries i and j, Wij , and the size of country
i, Ni. In the following, we refer to the network given
by the adjacency matrix Ωij as the generalized air travel
network. α is a constant which represents the proportion-
ality between the number of passengers and the number
of contacts in the respective country, namelyNij ∝ αWij .
The parameter α controls the overall frequency of inter-
country social ties. The normalization in Eq. (4) leads
to reasonable values for the parameter α in the order of
unity.

The definition of the effective activity allows us to treat
the international network as a set of disjunct coupled
networks operating in each country. A user in country i
then perceives the activity of the local network, ρai,loc, and
the effective activity of the international network with
respect to country i, ρ̃ai,int. To account for this effect, we
replace the activity of the international network in the
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argument of the weight function by the effective activity.
Then, the competition in this country is equivalent to the
one of two local networks if we replace the activity of one
of them with the effective activity of the international
network (see Fig. 1b). Note that the latter depends on
the state of the whole system.

The effective activity dynamically couples the evolu-
tion of the networks in different countries via the gener-
alized air travel network. Hence, our model forms a net-
work of networks [16–19], where each node in Fig. 1c rep-
resents a three layer multiplex network [20, 21] in which
the bottom layer corresponds to the underlying social
structure of the respective country and the two upper
layers denote the local and international network operat-
ing in the respective country (see Fig. 1d).

C. Double meanfield approximation

We assume that the physical and cognitive limitations
of users are country independent, hence each country
contains the same total amount of virality λ. In each
country the virality is distributed between the interna-
tional and local network via the weight function ωl(ρ

a
i ) as

introduced in Eq. 1, where l = (loc, int) denotes the local
or international network and i = (1, . . . , nc) indicates the
country. The normalization of the weight function then

reads ωloc(ρ
a
i ) +ωint(ρ

a
i ) = 1. Here, ρa

i =
(
ρai,loc, ρ̃

a
i,int

)T
denotes the vector which contains the activity of the lo-
cal network and the effective activity of the international
network in country i. Recall that the effective activity of
the international network ρ̃ai,int defined in Eq. (3) depends
on the state of the whole system.

To understand the qualitative behavior of the system,
in this section we present a double meanfield approxima-
tion of the system. This reduces the system given by a
network of networks to a set of evolution equations of
the average activity in the international network and in
local networks. As we show in section II D, the results
of the full model with heterogeneous topologies exhibits
a similar behavior as found by the double meanfield ap-
proximation.

The first meanfield approximation consists in assuming
a fully mixed homogeneous population in each country.
Let ρai,l denote the fraction of active users in network

l ∈ (loc, int) in country i and ρsi,l the fraction of nodes
susceptible to joining this network. Then, the fraction
of passive users is given by 1 − ρsi,l − ρai,l. The evolu-
tion equations of the resulting system is a generalization
of the evolution equations for identical networks which
we derived in [4] where one replaces the activity of the
international network with the effective activity. This

procedure yields

ρ̇ai,l = ρai,l

{
λ 〈k〉ωl(ρa

i )
[
1− ρai,l

]
− 1

}
+
λ

ν
ωl(ρ

a
i )ρ

s
i,l

ρ̇si,l = −λ
ν
ωl(ρ

a
i )ρ

s
i,l

{
1 + ν 〈k〉 ρai,l

}
,

(5)

where we assume the same linear relationship between
virality and media influence in each country, thus we have
in country i

µi,loc = λωloc(ρ
a
i )/ν (6)

µi,int = λωint(ρ
a
i )/ν (7)

(see [3, 4]). As shown in [4] the value of ν does not affect
the stability of the system. In the following we perform
the stability analysis for ν → ∞. This decouples the
evolution of ρai,l from ρsi,l, so that in the following we only
have to consider ρai,l. Plugging in the weights function

defined in Eq. (1) and the effective activity from Eq. (3)
yields the evolution equations for the activities of the
local and international network in country i

ρ̇ai,loc = ρai,loc

[
λ 〈k〉 [ρai,loc]σ

[ρai,loc]
σ + (ρai,int + δi)σ

[1− ρai,loc]− 1

]

ρ̇ai,int = ρai,int

[
λ 〈k〉 (ρai,int + δi)

σ

[ρai,loc]
σ + (ρai,int + δi)σ

[1− ρai,int]− 1

]
,

(8)

where δi = α
∑
j Ωijρ

a
j,int.

The second meanfield approximation consists in apply-
ing the hypothesis of a fully mixed homogeneous network
to the generalized air travel network given by the adja-
cency matrix Ωij . We denote Ω̄ = α 〈Ωij〉 and define

the mean activity of the local networks as x ≡
〈
ρai,loc

〉
and the mean activity of the international network as
y ≡

〈
ρai,int

〉
. In double meanfield approximation, one

obtains

ẋ = x

[
λ 〈k〉 xσ

xσ + (y(1 + Ω̄))σ
[1− x]− 1

]
ẏ = y

[
λ 〈k〉 (y(1 + Ω̄))σ

xσ + (y(1 + Ω̄))σ
[1− y]− 1

]
.

(9)

Note that Eq. (9) incorporates an increased intrin-
sic fitness of the international network as a result of
inter-country social ties. However, different classes of in-
creased intrinsic fitnesses –for example superior features
or functionality– can be described by the same system.
As a consequence, the following results are also valid in
these cases and hence can be applied to a broad spectrum
of empirical situations.

For constant σ, the system of Eq. (9) exhibits a sad-
dlenode bifurcation at a critical value of the global con-
nectivity Ω̄c (see Fig. 2). Above this point, coexistence
is not possible and the only stable solutions correspond
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Figure 2. Bifurcation diagram and stream plots for the double meanfield approximation (9) for λ 〈k〉 = 3.5 and ν →∞. The
basins of attraction for the domination of the international network is marked blue, the basin of attraction for the domination
of local networks is marked red, and the white area corresponds to the basin of attraction of the coexistence solution (if it
exists).
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Figure 3. Phase diagram of the double meanfield approxima-
tion for λ 〈k〉 = 3.5. The white area denotes the parameters
for which a coexistence is possible. In the blue area the dom-
ination of the international network is reached and in the red
region local networks dominate. At the blue line, the sys-
tem undergoes a saddlenode bifurcation in which the stable
coexistence solution disappears. The red dashed line denotes
the combination of parameters for which the system switches
attractors for the initial conditions given by Eq. (10).

either to the domination of local networks or the interna-
tional network. Above and below the critical point, the
basin of attraction for the solution corresponding to the
domination of local networks decreases with Ω̄ whereas
the one for the international network increases (see the
rows of Fig. 2).

For constant Ω̄ > 0, the system also exhibits a saddlen-
ode bifurcation at a critical value of the activity affinity
σc. The evolution of the basins of attraction is more
complex compared to the case of constant σ. Below the
critical point, both basins of attraction increase with σ.
Above the critical point, the basin of attraction for the
local network increases but the basin of attraction for the
international network decreases with σ (see the columns
of Fig. 2). This is particularly interesting as it implies
that an intermediate value of the activity affinity just
slightly above the critical point represents the worst sce-
nario for the survival of local networks.

In [4] we showed that the system undergoes a sub-
critical pitchfork bifurcation with respect to the control
parameter σ above which no stable coexistence is possi-
ble. Ω̄ > 0 breaks the symmetry of the pitchfork bifur-
cation and in this case the system undergoes a saddlen-
ode bifurcation with respect to σ instead (see bottom of
Fig. 2). This behavior is well known in bifurcation theory
by adding a small error term to the normal form of the
pitchfork bifurcation (see [22] and Appendix C).

In Fig. 3 we show the critical line Ω̄c(σ) which sepa-
rates a phase in which coexistence is possible and one in
which only domination can occur.

The increasing size of the basin of attraction for the
domination of local networks above the critical point with
respect to σ can dramatically alter the fate of the system
for a given initial condition. Assume that the interna-
tional network dominates in the US and starts with a
significant delay in each other country which causes the

local networks to dominate in those countries. The US
constitutes about 20% to the total population taken into
account here (see table I). To illustrate the effect of the
change of the basin of attraction, consider the initial con-
ditions

x0 = 0.8

[
1− 1

λ 〈k〉

]
y0 = 0.2

[
1− 1

λ 〈k〉

]
.

(10)

If one network dominates in country i, its activity is given
by ρai,l = 1− 1

λ〈k〉 . Hence, the initial conditions given by

Eq. (10) reflect that local networks dominate in 80% of
the system and the international one dominates in the
remaining 20%. The evolution of the basins of attraction
makes the system approach different stationary solutions
from this initial condition for different parameters. As
shown by the red area in Fig. 3, for low values of the
global connectivity and high activity affinity the domi-
nation of local networks is approached from the initial
conditions x0, y0. This means that in this parameter re-
gion, when the international network is launched globally,
it is not able to overcome the initial advantage of local
networks due to its earlier launch.

To conclude, the double meanfield approximation pre-
dicts that intermediate values of the activity affinity most
favor the international network whereas the local net-
works can dominate for a high activity affinity and low
global connectivity. We confirm these findings by numer-
ical simulations in the following section.

D. A 1:1000 scale model of the digital world

To investigate the full dynamics of the system, we now
present a miniature model of the digital world. To this
end, we construct 1:1000 scaled synthetic networks for
the 80 countries with the largest number of Internet users
(see Tab. I). To generate these networks, we make use of
a model introduced in [23–25], which produces realistic
topologies of the traditional off-line social networks, in-
cluding heterogeneous node degrees and a high level of
clustering (see Methods and Material A). To complete
the network of networks description, we use the empirical
network of air travel passengers (see Fig. 1c and Meth-
ods and Material) which couples the evolution in different
countries by a dynamic heterogeneity in the network in-
trinsic fitnesses as a result of the previously introduced
effective activity.

The value ν resembles the relative importance of the
influence of mass media compared to the viral spreading
mechanism. Due to the existence of multiple stable fixed
points, a higher influence of mass media initially drives
the system closer to the coexistence point, as a conse-
quence the probability to reach the coexistence solution
increases [4]. In the following we set ν = 4, the value
found empirically in [3].
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Figure 4. Typical realization. Color coded is the relative prevalence of the international network, given by ρai,int/(ρ
a
i,int +ρai,loc).

Here, λ = 0.2 per country, σ = 0.75, ∆t = 2 and α = 2.

Figure 5. Mean prevalence φ of the international network is shown on the z axis as a function of the launch time delay ∆t and
the coupling strength σ. Here, λ = 0.2 per country. Averaged over 30 realizations.
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We consider the international network to be banned in
China and Iran. To model this, we set the values of Ωij =
0 for each entry which involves one of these countries.
This is equivalent to assuming that in these countries
two local networks compete without any coupling to the
rest of the world.

In Fig. 4 we show a typical realization of our model
for parameters that allow the international network to
dominate eventually. The international network starts
delayed in all countries except the US, so that at the be-
ginning in these countries the respective local network
dominates. After some time, the international network
obtains a significant advantage and quickly takes over
North America and Europe, followed by Africa, South
America, and Asia. The main patterns are in agreement
with empirical observations, as reflected by the “world
map of social networks” [26]. However, on a country by
country level, there are deviations regarding our model
and the observations. To improve the performance, it
is essential to account for the specific situation of each
country, for instance by adjusting λ and ν for each coun-
try separately. In addition, some networks are not really
local but are present in several countries, like the network
“VKontakte” (see [26]). The inclusion of further, more
detailed, small-grained mechanisms and the enrichment
with such data is left for future research.

To further investigate the properties of the model pre-
sented here, we define the global prevalence of the inter-
national network as

Φ =
1

nc

nc∑
i=1

ρai,int
∣∣
st

ρai,int

∣∣∣
st

+ ρai,loc

∣∣∣
st

(11)

where nc denotes the number of countries, ρai,int
∣∣
st

the
activity of the international network in country i at the

stationary state, and ρai,loc

∣∣∣
st

the activity of the local

network in country i at the steady state.
The results are shown in Fig. 5 for different levels of

global connectivity, α, which is proportional to the con-
trol parameter Ω̄ used in the double meanfield approxi-
mation. We observe that for large enough launch time de-
lays, the actual amount of time delay becomes irrelevant.
We can understand this in analogy to the basin of attrac-
tion for the domination of local networks in Fig. 2, where
the line separating this attractor saturates for higher ac-
tivity values of the local network. Note, that a launch
time delay means a shift to the right in the stream plots.
In addition, note that noise in the full stochastic model
can make the system jump to another attractor as it is
near its border.

The independence of the actual amount of launch time
delay in the limit ∆t� 0 allows us to average over launch
time delays ∆t ≥ 2. The result is shown in Fig. 6. In-
deed, numerical simulations of the full model confirm the
results from the meanfield analysis, in particular the com-
plex role of the activity affinity σ. We can distinguish dif-
ferent regions depending on the global connectivity α and

Figure 6. The prevalence of the international network aver-
aged over time delays for ∆t ≥ 2 as a function of the activity
affinity (σ) and the global connectivity α. Averaged over 30
realizations.

the activity affinity σ as denoted in Fig. 6. For small α
and σ, local networks and the international network can
coexist. Increasing σ and/or α favors the international
network which gives rise to the blue “V”-shaped region
around σ = 0.5 corroborating the saddlenode bifurcation
in the double meanfield approximation. In this region,
the international network dominates. See supplementary
video [27] for an explicit realization of this case. For high
values of σ and small values of α (red region in the right
bottom corner of Fig. 6), local networks tend to domi-
nate. Note that partial states are also possible in which
the international networks dominates in some countries
and local networks dominate in the remaining countries.
See supplementary video [28] for an explicit realization
of this case. Between the region of domination of the in-
ternational network and local networks, a region is found
in which the final fate of the system varies significantly
between different realizations of the model (“coinflip re-
gion”). In this region, the network which wins in the
US will become dominant globally. Although in this re-
gion the prevalence of the international network averaged
over many realizations is about 0.5 as in the coexistence
region in the left bottom corner of Fig. 6, the behavior
of the system differs dramatically between them. In the
coexistence region, each realization of the model leads
to the same final state, namely the coexistence of local
networks and the international one. In contrast, in the
coinflip region, coexistence is not possible, as this region
of the parameter space corresponds to the supercritical
regime (the blue area in Fig. 3). In the coinflip region,
about 50% of the realizations show the domination of the
international network whereas the remaining 50% lead to
the domination of local networks. As a consequence, even
knowing the exact parameters, it is impossible to predict
the fate of the system beforehand.

We can summarize our findings as follows. A higher
value of α, which is a measure of the global connectiv-
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ity of society, favors the prevalence of the international
network and hinders the survival of the local ones. The
role of the tendency of individuals to participate in more
active networks (activity affinity), σ, is particularly inter-
esting. Low values allow the networks to coexist whereas
intermediate values always lead to the prevalence of the
international network and the extinction of local ones. A
high activity affinity, however, enables the prevalence of
local networks and thus can even lead to the extinction
of the international network.

III. DISCUSSION

The understanding of the digital world constitutes an
important challenge for interdisciplinary science nowa-
days. In recent studies we presented a general theory for
the evolution and ecology of online social networks which
explains under which conditions networks can coexist and
why we observe a moderate number of coexisting digital
services. However, the heterogeneity found in empirical
networks demands a more detailed description.

In this paper, we showed how inter-country social ties
can lead to an increased intrinsic fitness of an interna-
tionally operating network compared to local networks.
Interestingly, heterogeneity in network intrinsic fitnesses
can impede the coexistence of networks as the system
undergoes a saddlenode bifurcation. However, under cer-
tain conditions local networks can persist even if coex-
istence is impossible, a scenario which leads to the ex-
tinction of the international network. We confirm our
analytical analysis by constructing a 1:1000 scale model
of the digital world incorporating synthetic networks for
the underlying societies and use data from the air trans-
portation network as a proxy for inter-country social ties.
We find that in addition to the previously mentioned sce-
narios, a partial state in which the international network
dominates in some countries and local networks domi-
nate in the remaining is possible as well. Finally, we
note that depending on the parameters the final state
of the system –whether local networks dominate or the
international one wins– can be completely unpredictable
as it varies randomly between different realizations of the
model.

Our findings here suggest interesting future research
lines. On the one hand, even without adjusting parame-
ters on a country-by-country level, our model reproduces
the main features empirically observed in the overtake of
Facebook and the extinction of local networks in most
countries for a certain parameter region. It remains an
interesting task for future research to further increase the
precision of the model. This can be done by improving
the proxy for the similarity between countries and by
adjusting parameters on a country-by-country level. On
the other hand, the model can be extended to account for
several international networks to investigate their global
competition. Different properties of the networks like
features or functionalities can lead to different intrinsic

fitnesses. For a second international network to overcome
the first one a certain minimal difference of intrinsic fit-
ness is needed. Finally, random fluctuations of the in-
trinsic fitness can be incorporated to describe Darwinian
selection in the digital ecosystem.
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Appendix A: S1 model

We use the S1 model [23–25] to generate the synthetic
networks for the underlying societies of each country.
The model allows to specify the degree distribution and
the level of clustering. The model is based on a circle as
a hidden metric space and works as follows:

1. All nodes are placed on the circle with randomly
assigned variable θ which represent the polar co-
ordinate. θ is uniformly distributed in [0, 2π). To
keep the average node density on the circle con-
stant, its radius grows linearly with the number of
nodes to satisfy N = 2πR.

2. We assign each node a second hidden variable, κ,
which represent its expected degree. κ is drawn
from an arbitrary distribution ρ(κ).

3. A pair of nodes are connected with a probability r
that depends on their hidden variables (θ, κ) and
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Figure 7. Degree distribution and clustering spectrum for
generated networks for the example of the US (≈ 230.000
nodes).
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(θ′, κ′)

r(θ, κ; θ′, κ′) =

(
1 +

d(θ, θ′)

µκκ′

)−α
, (A1)

with µ = α−1
2〈k〉 . Here, d(θ, θ′) denotes the geodesic

distance between the two nodes on the circle and
〈k〉 the mean degree. Then, a the expected degree
k̄(κ) of a node with hidden variable κ can be shown
to be proportional to the latter [25]. As a conse-
quence, the degree distribution p(k) of the network
follows the shape of the distribution ρ(κ).

Here, we use an exponential distribution ρξ(κ) = ξe−ξκ

with ξ = 10. We set the parameter α = 1.5 and have
µ = 0.02. After generating the networks, we remove
nodes with zero degree. In Fig. 7 we show the degree
distribution and the clustering spectrum for the synthetic
network created for the US.

Appendix B: Air travel data

Air travel data aggregated on country basis was
taken from http://www.visualizing.org/datasets/global-

flights-network. Original data can be accessed at
http://openflights.org/data.html.

Appendix C: Double meanfield approximation: Ω̄ > 0
breaks symmetry of pitchfork bifurcation

The evolution equations for the double meanfield ap-
proximation (9) contain an additional control parameter
Ω̄. For Ω̄ = 0 we recover the case of two competing iden-
tical networks as discussed in [4]. In this case, the sys-
tem undergoes a subcritical pitchfork bifurcation. Such
bifurcation is symmetric locally near the critical point.
However, the additional control parameter Ω̄ > 0 breaks
this symmetry. As a consequence, the system undergoes
a saddlenode bifurcation instead of the former pitchfork.
See Fig. 8.
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China 253. UnitedStates 231. Japan 90.9 India 81. Brazil 64.9

Germany 62. UnitedKingdom 48.8 Russia 45.2 France 42.9 SouthKorea 37.5

Indonesia 30. Spain 25.2 Canada 25.1 Italy 25. Turkey 24.5

Mexico 23.3 Iran 23. Vietnam 20.8 Poland 18.7 Pakistan 18.5

Colombia 17.1 Malaysia 16.9 Thailand 16.1 Australia 15.2 Taiwan 15.1

Netherlands 14.3 Egypt 11.4 Argentina 11.2 Nigeria 11. Ukraine 10.4

Morocco 10.3 Sweden 8.1 SaudiArabia 7.7 Belgium 7.3 Venezuela 7.2

Peru 7.1 Romania 6.1 CzechRepublic 6. Austria 5.9 Hungary 5.9

Switzerland 5.7 Philippines 5.6 Chile 5.5 Denmark 4.6 Portugal 4.5

Finland 4.4 Greece 4.3 Sudan 4.2 SouthAfrica 4.2 HongKong 4.1

Algeria 4.1 Norway 3.9 Slovakia 3.6 Syria 3.6 Singapore 3.4

Kenya 3.4 Belarus 3.1 NewZealand 3. Serbia 2.9 UnitedArabEmirates 2.9

Ireland 2.8 Tunisia 2.8 Bulgaria 2.6 Uganda 2.5 Uzbekistan 2.5
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Croatia 1.9 Lithuania 1.8 Jamaica 1.5 Jordan 1.5 Azerbaijan 1.5

CostaRica 1.5 Cuba 1.4 Zimbabwe 1.4 Uruguay 1.3 Ecuador 1.3

Table I. List of countries and estimated number of Internet users (×106) according to Wolfram Alpha database.
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