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Abstract—Accountability and transparency have been com-
monly accepted to deter bad acts and to encourage compliance to
rules. For this, auditing has been largely, and since ancient times,
adopted to ensure the well running of systems and businesses
within which duties are governed by set rules. Recently, an a-
posteriori approach to data access control has been investigated
for information systems as well across number of critical domains
(e.g, healthcare systems). Besides, privacy advocates started
calling for the necessity of accountability and transparency in
managing users’ privacy in nowadays connected and proliferated
web data. Following this line of thought, we suggest a system for
collaborative a-posteriori access control to data dissemination
in decentralized online social networks based on reporting and
auditing. We demonstrate the usability of our suggested model
using a real OSN graph.

Index Terms—Collaborative audit, DOSNs, A-posteriori access
control, Data accountability, Collaborative data sharing.

I. INTRODUCTION

Access control (AC) is a main building block in information
security that has been commonly approached by a lock-it-to-
protect-it frame of thought. In almost all information systems,
AC solutions have focused on keeping sensitive resources
securely locked in, by ensuring that only authorized entities
can unlock their way to them [1]. Users get access to data
through authorizations that can be specified according to a
variety of AC models. This approach ensures the protection
of data as much as the locks are stronger than the will
of intruders, and fails short when the shields are broken.
Moreover, it works under the assumption that all the granted
accesses can be implicitly or explicitly coded into a set of
authorizations, and this can be hardly achieved in today web-
based collaborative environments. As a result, information
security advocates started calling for an alternative approach
to data protection, based on accountability, operated by trans-
parency, and regulated by adequate and enforced laws and
systems [2][3].

The birth of auditing for accountability can be referenced to
very ancient times according to historians of accounting who
revealed evidence that “the accounting system in China during
the Zhao dynasty (1122-256 BC) included audits of official
departments” [4]. Subsequently, accountability and auditing
have been a major field and a necessary practice in business
as well as in the general legal and social structures of our
societies. Indeed, as argued in [2], though transparency and
accountability can be not enough to ensure compliance by
simply uncovering bad actions and possibly rewarding good

ones, they have been the basis for our general respect to
most of our legal and social rules. This is mostly because
we are implicitly aware that there are records holding us
accountable, should we break the rules. As such, a-posteriori
AC has been considered for information systems as well.
For instance, there are works on audit-based solutions for
AC in healthcare systems [5], and others on a-posteriori AC
for systems within which some accesses cannot be fully
anticipated [7], or for information that requires more than
traditional AC enforcement [6].

Online Social Networks (OSNs), given the personal nature
and granularity of data shared in them, make one of the
scenarios where the standard a-priori AC paradigm better
shows its limits, due to the huge user population and to the fact
that access to personal or sensitive information is not always
under the control of the data owner but can be influenced
by the actions of other users in the network (e.g., a user
tagging another user in a picture). This problem is pronounced
even more seriously in decentralized online social networks
(DOSNs).

A DOSN is a system that offers OSN services in a peer to
peer manner. The concept of DOSNs aims at bringing back
control to OSN users and freeing them from the observance
of the central service providers. Indeed, there is no doubt that
users’ personal data (and hence, their privacy) is the currency
used to get advantage of the socializing services offered by
current commercialized OSNs [8]. As such, many researchers
believe that the solution relies in designing platforms for
collaborative service provision. However, one of the still open
challenges to DOSNs is access control, that has been mainly
addressed using cryptography based solutions [9], [10]. Whilst
such solutions might ensure high data security levels, they are
also not flexible enough to support the fine granularity and
complex access scenarios required for data dissemination in
DOSNs [11].

With a belief in the power of accountability and trans-
parency in ensuring better informed data security manage-
ment and in increasing awareness towards privacy issues, we
suggest, in this paper, a deterrent a-posteriori AC mechanism
based on collaborative auditing and reporting of data sharing
(CARDS) in DOSNs. Instead of deploying hard preventive
mechanisms, we suggest an open sharing environment based
on collaboration and on trust, where an auditing mechanism
coupled with a reputation management system is put in place
to encourage good behavior and to deter bad actions. More-
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Fig. 1: The four steps of the proposed CARDS framework

over, a proactive activity continuously takes place to prevent
continuity of damage in cases of detected bad actions.

The remainder of the paper is structured as follows. In
Section II, we provide an overview of the system with its main
building blocks; whereas in Section III, we formally define
the model. Section IV deals with the security properties and
the complexity analysis. In Section V, we present performance
experiments using a real world OSN dataset. We survey related
work in Section VI. Finally, in Section VII, we conclude the
paper and discuss future work.

II. CARDS OVERVIEW

In line with AC common definitions, in this paper, we
address the problem of granting/denying access to a resource
(i.e., object) in the system by a requesting entity (i.e., subject).
More precisely, we target the scenario of DOSNs, where
subjects establish friendship links, and collaborate to dissemi-
nate their objects over these established relationships without
relying on a central data repository/manager. We consider that
each object in the system is solely owned by the user that
created it (i.e., the owner), and is under the protection of any
user that gets access to it (i.e., custodians). Owners specify
access requirements for their objects, and the system needs
to ensure the objects are disseminated in alignment with their
corresponding AC requirements.

Differently from the common apriori approach to AC, in
this paper, we adopt an a-posteriori paradigm that follows a
framework of four connected processes, depicted in Figure 1.
These processes are described as follows:
• Share & Report: this process aims at recording data

sharing transactions. Data owners specify access rules for
their objects by activity SR1 and objects are shared based
on evaluating their access rules (activity SR2). Custodians
might share an object against its access rule, thus activity
SR3 records any sharing transaction taking place. Finally,
activity SR4 reports illegitimate sharing transactions and
can be performed by custodians, in case they have access
to the object’s sharing log, or by any entity safekeeping
it.

• Listen & React: with three activities, LR1, LR2, and
LR3, this process concerns the reaction to illegitimate
sharing (i.e., delinquencies) communicated using activity
SR4. It is recommended to have LR1 and LR2 taken
by different entities than the one performing SR4, since

such a separation of tasks would ensure dual control that
provides stronger security guarantees. In fact, dual control
requires actions from more than one entity to grant
access, basing on the premise that for a breach to happen,
all entities need to collude. It is also recommended that
these entities do not share a common interest so as to
avoid collusion [12].

• Inform & Prevent: this process aims at deterring sus-
pected entities from performing further illegitimate shar-
ing of a victimized object. The main challenge is the
timeliness to have a preventive action and also the ability
to predict future behavior that is to be prevented.

• Monitor & Evaluate: the motive of this process is
to ensure the cleanliness of the environment under the
assumption that not all entities will willingly abide by the
reporting mechanism of the first process. This is ensured
by three activities that should be carried out periodically
on all the nodes in the system.

Based on these processes, we model our suggested system
by considering the DOSN users as its major active players.
As exemplified on Figure 2, DOSN users establish friendship
links with each other such that they are aware of and can
only contact their direct friends, create objects, and share
them with their fellows based on their privacy preferences.
Generally, in OSNs and in DOSNs, privacy preferences are
defined following a relationship-based model [1] in the sense
that users gain access to information based on the links
they establish with its owners. Similarly, in designing our
solution, we assume a rule-based model for the formulation
of relationship-based privacy settings for an object. That is,
upon creating an object, its owner assigns to it a relationship-
based access rule encoding its privacy requirements and then
shares the object, in plain format, with direct eligible friends
as allowed by the rule. Users that receive an object (i.e.,
custodians) can share it further with their contacts. To allow
for activity SR3 from the CARDS framework (Figure 1), we
attach to every object a log that traces its sharing trajectory
(Bichon1 Chain as on Figure 2). A Bicon Chain keeps record
of every sharing transaction that the object has been subject
to through a given path since leaving its owner. The first
sharing record is added by the owner when first releasing the
object, then records are added to the chain by every custodian
who shares the object. The chain should allow an object’s
receiver to check: 1) whether the sharing transaction by which
it received the object is legitimate or is a delinquency, and 2)
which are the valid sharing transactions that it can still perform
on the object.

When a delinquency is detected, the node needs to report it
and appropriate actions against the delinquent node should be
taken. To manage delinquencies, we suggest the exploitation of
a central trusted register manager (i.e., TReMa) that manages
a central delinquencies register. The TReMa listens to all
the nodes in the system, receives reported susceptible Bichon
chains, evaluates them, and records in the delinquencies regis-

1Bichon is the name of a company dogs’ breed.
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Fig. 2: The CARDS architecture for a decentralized social
network with a trusted monitor

ter any delinquency they contain (Figure 2). The delinquencies
register contains records of confirmed delinquencies as a pair
[actor, delinquency’s severity] (refer to Algorithm 2 for the
severity computation). The TReMa also performs the activities
in the Inform& Prevent and Monitor& Evaluate processes
from the CARDS framework (cfr. Figure 1), to ensure the
sanity of the system and to catch unreported collusion, if any.
Since we target collaborative DOSNs, we limit the activities
of the TReMa to managing the reported delinquencies and
to performing periodic audits, ensuring that it does not get
hold of the objects themselves. In this paper, we assume the
trustworthiness of the TReMa, and we plan to completely
remove it from the system for future works (see Section VII).

The CARDS framework is to be deployed with a reputation
management system that uses the recorded delinquencies in
computing entities’ reputation. This system has also to provide
a punish/reward mechanism that provides incentives for good
actions and deters from bad ones and has to be aligned with the
architecture and the requirements of the system instantiating
the CARDS framework. Typically, a reputation management
system should provide a mechanism for the collection of in-
formation and computation of reputation scores, a mechanism
for the dissemination of these scores, and security guarantees
against manipulation of scores. Reputation management is a
due discipline in itself that is being subject to a number of
research work [13] with proposals for both decentralized [14]
and centralized solutions [15]. As such, we consider, in this
paper, that a reputation management system is put in place
keeping its study outside of the paper’s scope.2

III. THE CARDS MODEL

In this section, we detail our proposed CARDS model for
DOSNs. We start by defining its basic blocks.

A. Basic Definitions

We note that we differentiate between the reference monitor
of a node, represented by the software, and the end-user (the
person) who manipulates it. Hereafter, we refer to the software

2We discuss this more in [16].

as the node and to the person using it as the end-user. We
formally define a DOSN as follows:

Definition 3.1: DOSN. A DOSN is a directed graph,
G=(V,E,R, T ), where:
• V is the set of nodes (or users), where each node

vi ∈ V has a unique network identity (denoted vi.id),
a digital identity signature expressed by the ownership of
an identity key-pair (idki, sidki), and a reputation score
denoted as vi.rep.

• E is the set of relationship edges such that erij ∈ E
denotes a relationship of type r ∈ R from node vi ∈ V
to node vj ∈ V .

• R is the set of available relationship types in the DOSN.3

• T is a function that assigns to each edge e ∈ E a trust
value, denoted by e.trust, (e.trust ∈ [0, 1]).

The TReMa is the only entity in the system aware of all the
available nodes’ identity signatures4 and it is the only entity
that can verify them. The reputation of a node is public in
the DOSN and can be computed based on the number and
severity of delinquencies recorded against it in the delinquen-
cies register and in alignment with the adopted reputation
management system. Given that the TReMa is responsible of
computing, safekeeping, and disseminating reputation scores,
a centralized reputation system could be deployed. However,
and for performance purposes, the dissemination of reputation
scores should also be enabled at a peer to peer level such that
a node could retrieve this information from its neighbors, if
they have it locally, instead of contacting the TReMa. Solutions
such as those suggested in [14][15] could be considered. We
plan tackling this issue in more details in future extensions of
this work.

Regarding edges’ trust values, and given they will be used
for evaluating access to personal data, we consider them to
be assigned by the users involved in the direct relationship.
Users might consider the reputation of a node when assigning
their trust values to their links with it. Finally, and for
computational purposes, we consider that every relationship
type in R corresponds to an integer in [1, . . . , |R|].

Nodes generate content in the DOSN in the form of objects
and are considered their owners. An object can be of different
types5 depending on what is supported in the DOSN. Owners
set the privacy requirements for their objects and encode them
into access rules. We formally define an object as follows:

Definition 3.2: Object. Let vi ∈ V be a node in the
DOSN. An object owned by vi is denoted by the tuple, Obik
= (OID, t, val, ow,AcsR), where:
• OID = vi.id#t#k is a unique ID in the DOSN refer-

ring to the object Obik, where k is a sequence number
computed locally at node vi.

• t is an integer indicating the type of the object.
• val is the bit-value of the object.

3Example of relationship types can be: partner, colleague, family.
4The identity key-pair can be implemented using any cryptographic signa-

ture scheme.
5Examples of object types are text, picture, video, etc.



• ow = vi.id is the owner of the object.
• AcsR is the access rule encoding the privacy require-

ments of the object.
For access rules modeling, we adopt the model in [17].

By this model, every resource is linked to an access rule
that expresses conditions on the type, the depth (distance
between owner and requestor) and the trust level that a
relationship needs to satisfy so that its members are eligible
to access the resource. That is, given an object Ob, its
access rule (Ob.AcsR)6 is a list of access conditions among
which at least one has to be met for a legitimate access
to the object. An access condition is denoted by acsc =
(ow,RType,MaxD,MinT ), where ow refers to the owner
of the object RType, MaxD, and MinT respectively refer
to the type, the maximum distance, and the minimum trust of
the relationship between the owner and a legitimate receiver.

In a DOSN, no node would be able to trace paths of distance
higher than 1. For that, we need to consider an indirect trust
value for indirect relationships. The literature offers several
ways for computing indirect trust values [18]. In our model,
and since the access rules refer to the existence of specific
paths, we only consider the path in question for the computa-
tion of indirect trust. That is, given the trust values, eij .trust
and ejk.trust, between directly connected nodes vi and vj ,
and vj and vk, the trust value of the path pijk = (eij , ejk) is
expressed by: pijk.trust = eij .trust ∗ ejk.trust.

Objects are shared between nodes exploiting the edges
established between them. To log an object’s sharing activity,
a Bichon chain is attached to the object since it first leaves
its owner. A Bichon chain is a list of chained sharing records,
each signed by the node performing it. A sharing record is
defined as follows:

Definition 3.3: A sharing record. Let vo, vi, vi+1 ∈ V be
three consecutively connected nodes in the DOSN via relation
types r, r1 ∈ R respectively, i.e., eo = eroi ∈ E and e1 =
er1i(i+1) ∈ E. Let Obo be a resource owned by vo. The sharing
records of object Obo are generated as follows:
• When node vo shares Obo with its direct neighbor vi

using the edge eo, it creates the initialization tuple
ShR0 =< Obo.OID, tr, dist, ty > s.t. Obo.OID is the
object’s ID, tr = eo.trust, dist = 1, and ty = r. ShR0

is called the reference sharing record.
• The sharing record of Obo from vi to vi+1 is the

tuple: ShR1 =< Obo.OID, tr1, dist1, ty1 > s.t. tr1 =
ShR0.tr∗e1.trust, dist1 = ShR0.dist+1, and ty1 = r1.

As by Definition 3.3, a sharing record is created, by the
sharing node, for every passing of the object from one node to
another. It contains aggregate information on the path traversed
by the object so far and it is meant to publish the criteria based
on which the sharing happened.

The sharing records of an object are all chained to make its
sharing trajectory comprised in the Bichon chain. This chain
is a list of blocks (i.e., Bichon rings) each containing a sharing
record for a given object’s trajectory and a corresponding

6We use the dot notation to denote an object components.
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Fig. 3: The Bichon chain for an object’s share trajectory

Bichon header. This header serves for the verification of both
the correctness and the integrity of the chain, and for the iden-
tification of the block’s creator by the TReMa when performing
the audit. We formalize a Bichon header as follows:

Definition 3.4: A Bichon header. Let vo, vi, vi+1 ∈ V
be three consecutively connected nodes in the DOSN and let
ShR0 =< Obo.ID, tr, dist, ty > and
ShR1 =< Obo.ID, tr1, dist1, ty1 > be the sharing records
of object Obo, owned by node vo, from vo to vi and from vi
to vi+1.
• The reference Bichon header for ShR0 is denoted by

the signed element: header0 = signsidko(checksum0);
where signsidko(X) is a function that signs message
X with the identity secret-key sidko of node vo and
checksum0 = tr + dist+ ty.

• The Bichon header for ShR1 is:
header1 = signsidki

(concat(checksum1, H(header0)))
where sidki is the identity secret-key of node vi,
concat(f, g) is the concatenation of strings f and g, and
H() is a hash function. checksum1 = tr1 + dist1 + ty1.

Every Bichon ring contains one sharing record plus its cor-
responding Bichon header. As per Definition 3.4, every header
comprises a hash of the previous Bichon ring’s header. This
has the effect of creating a chain of sharing records making
the trajectory of the traced object. Sharing records (rings) are
guaranteed to be chronologically ordered in the Bichon chain
because the previous Bichon ring’s header would otherwise
not be known. The Bichon rings can be verified for integrity
using the checksum value included in the signed header, and
the signed headers serve for accountability recording and for
audit tracking by the TReMa. Figure 3 depicts a simplified
sketch of a Bichon chain. Formally, a Bichon chain is defined
as follows:

Definition 3.5: Bichon chain. The Bichon chain of an
object Ob, denoted as BC Ob, is a list of BC Ob.length
Bichon rings: BC Ob = {ringi |ringi = [headeri, ShRi],
i ∈ [0,BC Ob.length]}, where ShRi is a sharing record
and headeri is its corresponding Bichon header. ring0 =
[header0, ShR0] is the reference ring of BC Ob.

B. Sharing and Reporting

In this section, we detail the sharing and reporting processes.
1) Sharing objects: When a node receives an object, it also

receives its corresponding Bichon chain. Upon viewing the
object, the end-user might choose to share it with one of its
friends. At such event, the node uses the object’s access rule
along with the last Bichon ring in the Bichon chain to evaluate
the legitimacy of the intended sharing transaction. Let us first
define the following:



Definition 3.6: Legitimate sharing record. Let Obo be
an object and let ShRn =< Obo.ID, trn, distn, tyn >
be the sharing record in the n-th Bichon ring of its
Bicon chain. Given the access rule of the object, en-
coded as a list of access conditions, Obo.AcsR = {acsc
| acsc = (Obo.ow,RType,MaxD,MinT )}, the sharing
record ShRn is legitimate if and only if: ∃ acsch =
(ow,RTypeh,MaxDh,MinTh) ∈ Obo.AcsR, such that:
trn ≥MinTh ∧ distn ≤MaxDh ∧ tyn = RTypeh.

The evaluation of the legitimacy of a sharing transaction is
performed by Algorithm 1, that takes as input the access rule
(Ob.AcsR), the last sharing record in the Bichon chain of the
target object (ShRn), and the trust and the type of the edge
along which the sharing is to be evaluated (er.trust and r).
The algorithm computes the sharing record to be evaluated
by making a call to the CreateShR function (line 1). Then,
it evaluates its legitimacy by the MatchRule function (line
2). If the sharing record is legitimate, the algorithm returns
Legitimate (line 4); otherwise it returns a Delinquency message
(line 7).

Algorithm 1: Evaluation of the legitimacy of a sharing
Input : The access rule of the object to be shared: Ob.AcsR
Input : The last sharing record in the Bichon chain of the object to be

shared: ShRn =< Ob.ID, trn, distn, tyn >
Input : The edge along which the object is to be shared: er
Output: Message legitimate or delinquency.

1 new ShR = CreateShR(er.trust, r, ShRn);
2 match = MatchRule(new ShR, Ob.AcsR);
3 if match then
4 return Legitimate;
5 else
6 return Delinquency;
7 end
8 Function CreateShR(er.trust, r, ShRn)
9 SR tr = ShRn.trn * er.trust;

10 SR ty = r;
11 SR dist = ShRn.distn + 1;
12 SR = < Ob.ID, SR tr, SR dist, SR ty >;
13 return SR;
14 end
15 Function MatchRule(new ShR, Ob.AcsR)
16 foreach acsc in Ob.AcsR do
17 if new ShR.ty = acsc.RType ∧

new ShR.tr ≥ acsc.MinT ∧
new ShR.dist ≤ acsc.MaxD then return True;

18 end
19 return False;
20 end

Once the node has the answer to the legitimacy of the
intended sharing, it prompts the end-user for the last decision.
If the end-user chooses to share the object, regardless of the
legitimacy of the transaction, the node creates the Bichon
ring corresponding to this sharing and appends it to the
object’s Bichon chain. Afterwards, the node initiates a secure
communication channel7 with the target node (i.e., the next
receiver of the object). There are two possible scenarios, that
are exemplified by Example 1: 1) the sharing transaction is
legitimate, or 2) the sharing transaction is a delinquency.

7We consider any communication between nodes to be over a secure
channel whose establishment is not covered in the described flows.

Example 1. Let us assume Kate and Jane are DOSN
friends and that the relationship edge from Kate to Jane
has type colleague and trust value 1. Assume that Kate
receives a video (denoted as V ) for which an access condition
allows sharing it with colleague, with minimum trust= 0, and
maximum distance= 10. Assume that the value of the distance
parameter in the last ring of the video’s Bichon chain is 5
and that Kate wants to send the video to Jane. Figure 4(a)
depicts the communication flow between Kate’s and Jane’s
nodes to perform this sharing. First, the Bichon chain of the
video, BC V, is updated at Kate’s node to add the ring for the
sharing transaction to be performed and it is then encapsulated,
with the video’s access rule (V.AcsR), in a newShare() request
to Jane’s node (see Figure 4(a)). The received Bichon chain
is verified at Jane’s node by extracting the last ring’s sharing
record from the Bichon chain and evaluating it using function
MatchRule from Algorithm 1. In this case, the sharing is
legitimate, so V is accepted and the transaction is fulfilled.

Assume now that Kate received a photo (denoted as P )
owned by her cousin Ryan, with whom she is friend on the
DOSN with a family relationship type. Ryan wants the photo to
be viewed by family members only. Kate decides to share the
photo with Jane though this sharing is a delinquency (Kate
does not have a family relationship with Jane). Figure 4(b)
presents the communication flow between Kate’s and Jane’s
nodes for this delinquent sharing. This starts by Kate’s node
sending a newShare() request to Jane’s node encapsulating the
picture’s Bichon chain (BC P) and its access rule (P.AcsR).
The last ring in the chain is verified at Jane’s node and is
found to be delinquent. Jane’s node prompts Jane to take the
decision. If Jane accepts, the picture is sent and the operation
is terminated. If she rejects, the operation terminates without
transferring the picture.

2) Reporting a detected delinquency: When a node receives
a request for a delinquent sharing, it can report it to the TReMa,
regardless of whether it accepted receiving the object or not.
In fact, even in the event of accepting a delinquent sharing,
the receiver might want to redeem for having colluded in the
delinquency by reporting it. This would be an illustration of a
honest-but-curious user. To report the detected delinquency,
the node needs to send to the TReMa the Bichon chain
in question along with the concerned object’s access rule.
To demonstrate a reporting operation, we continue with the
scenario in Example 1. In fact, when Jane’s node finds that
the sharing request for object P is a delinquency, it prompts
Jane for whether it has to report it to the TReMa or not. If
Jane chooses to report it, a report delinquency message - rdm
is sent to the TReMa. A report delinquency message is defined
as follows:

Definition 3.7: Report delinquency message (rdm). Let
vi ∈ V be a node in the DOSN, Ob be an object, and BC Ob
its Bichon chain. An rdm on BC Ob communicated by node
vi to the TReMA is defined as follows:

rdm = signsidki
(Ob.AcsR,BC Ob); where sidki is the

identity secret-key of node vi.
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C. The TReMa’s Operations

The TReMa reacts to reported delinquencies by executing
the processes Listen& React and Inform& Prevent (cfr. Figure
1). It verifies the reported message, records the confirmed
delinquencies, informs the faulty nodes, and runs targeted
auditing on other nodes that could have possibly received the
victim object. Before detailing the TReMa’s operations, we
first define a delinquency record.

Definition 3.8: Delinquency record (dr). A delinquency
record (dr) is a pair [actorID, severity], where actorID = v.id
(v ∈ V ) and severity ∈ N∗.

1) Listen and React: The TReMa evaluates a received rdm
from node vi by running Algorithm 2. The algorithm takes
as input the message rdm and the identity-key idki of the
reporting node vi. It initializes an empty log list (its output
parameter) and checks the validity of rdm by verifying its
signature (by calling function CheckSignature in line 1). If the
message is valid, function CheckChainCorrectness is called
(line 3) to verify the integrity of the reported chain by checking
the conformity of each ring’s header to its corresponding
sharing record (via the checksum value) and to the hash of
the previous ring’s header, as from Definition 3.4 (lines 13-
22). If the verification of the chain or of the rdm’s signature
fails, the algorithm returns a null value. Otherwise, a call to
the AuditChain function is made (line 5). This latter evaluates
the legitimacy of the rings of the target chain (i.e., BC Ob)
starting from the last one (lines 24-36). It then continues
evaluating the previous rings as long as delinquencies are
detected (lines 26-32). To evaluate a ring, its enclosed sharing
record is extracted (line 27) and it is checked for legitimacy
using function MatchRule from Algorithm 1 (line 28). If the
sharing record is not legitimate, the actor of that sharing
transaction is extracted from the corresponding ring’s header
using function GetSignerID (line 30) and a delinquency record
is added to the log with a severity level equal to 1, by using
function RecordDelinq (line 31). When the algorithm finds a
legitimate ring in the chain, it stops its evaluation as rings
previous to it are also legitimate (the break statement at line
33). If the number of delinquent rings is more than 1 (line 35),
the severity levels of the logged delinquency records need to
be adjusted. This is what is achieved by invoking function
AdjustSeverityLevels at line 35. This function increases the

severity level of each delinquency record based on its position
in the series of delinquent rings (lines 42-46). That is, the
actor of the first delinquent sharing is punished with a severity
equal to 1, the second colludent with a severity of 2, and
so on. This adjustment ensures that nodes that collude by
receiving a delinquent sharing without reporting it, get a higher
punishment than the first initiator of the collusion. Finally, the
algorithm returns the list of found delinquency records.

If the reported delinquency is a false alarm (i.e., the output
Log is empty), the TReMa notifies the reporter node vi
and logs the false alarm. Moreover, a log of all received
notifications with the result of their evaluation is kept by the
TReMa. This information can be used to reward the nodes
reporting valid delinquencies by increasing their reputation.

2) Inform and Prevent: After recording a delinquency, the
TReMa informs the object’s owner about the incident. The
owner can use this information to reconsider the assigmnent
of access rules to its future shared objects. Besides, it also
informs all the nodes against whom a delinquency record
has been logged, as returned by Algorithm 2. Afterwards,
the TReMa takes a protective procedure to prevent eventual
delinquencies to happen with the same object by starting a
targeted auditing on all these nodes’s direct contacts (next
potential colludents). It then continues auditing on any other
of their contacts’ contacts found to have received the object
until the sharing of the object is found to be stopped.

Algorithm 3 presents the steps to perform the targeted
auditing based on an identified object. The algorithm takes
as input the log of delinquency records found for an object
(i.e., the output of Algorithm 2) and the id of the object
in question (Ob.OID). Using these two parameters, it goes
through all the delinquency records, dr in the input list. For
each dr, it retrieves all the friends of its actor node (line
3). For each of these friends, it checks whether they have
received the target object from the actor node or not (line
5). If a friend is found to have received the object from the
actor node,8 a delinquency record is created against it using
function RecordDelinq from Algorithm 2 by passing to it a
severity input parameter incremented by 1 compared to the
severity by which the previous dr has been recorded (line 6).

8A friend might have received the same object but from another node via
a legitimate sharing.



Algorithm 2: Processing an rdm by the TReMa
Input : reported delinquency message from node vi: rdm =

signsidki
(Ob.AcsR,BC Ob).

Input : identity-key of node vi: idki.
Output: A list of delinquency records for delinquencies in the chain:

Log.
1 Log = ∅; validMsg = CheckSignature(rdm, idki);
2 if validMsg then
3 validChain = CheckChainCorrectness(BC Ob);
4 if validChain then
5 Log = AuditChain(BC Ob, Ob.AcsR);
6 return Log;
7 else
8 return null;
9 end

10 else
11 return null;
12 end
13 Function CheckChainCorrectness(BC Ob)
14 foreach ringi in BC Ob do
15 headeri = UnsignMsg(ringi.headeri);
16 if is ring0 then
17 if header0.checksum0 is not equal

ShR0.tr + ShR0.dist+ ShR0.ty then return false;
18 else
19 if headeri is not equal

concatenate(headeri.checksumi, H(headeri−1))
then return false;

20 end
21 end
22 return true;
23 end
24 Function AuditChain(BC Ob, Ob.AcsR)
25 Log = ∅; pos = 0; len = BC Ob.length - 1;
26 for ringlen in BC Ob do
27 ShR = ShRlen;
28 legit = MatchRule(ShR, Ob.AcsR);
29 if not legit then
30 actor = GetSignerID(headerlen);
31 RecordDelinq(Log, pos, actor, 1);
32 pos = pos + 1; len = len - 1;
33 else break;
34 end
35 if pos ≥ 2 then Log = AdjustSeverityLevels(Log, pos) ;
36 return Log;
37 end
38 Function RecordDelinq(Log, n, actor, severity)
39 dr = [actor, severity]; Log.Add(dr, n);
40 return Log;
41 end
42 Function AdjustSeverityLevels(Log, pos)
43 foreach dri in Log (i starts from 0) do
44 dri.severity = pos; pos = pos - 1;
45 end
46 return Log;
47 end

This new recorded delinquency is appended to the initial input
colludents list so that the friends of its actor are audited as well
(line 10). Finally, the algorithm returns the log of all new found
delinquency records.

The aim of the targeted auditing on an identified object is
to track all other possible colludents after the first delinquency
report received on it. It is admitted that the prevention is not
strong as it does not guarantee full protection of the victimized
object. However, it works on minimizing the risk of it being
subject to further mis-shares by notifying possible future

colludents. Given that the system is based on a reputation
spirit, we believe that warning nodes and/or punishing them
through detecting and recording their delinquencies would
have a deterrence preventive outcome.
Algorithm 3: Targeted auditing based on identified objects

Input : list of delinquency records of colluding nodes on mis-sharing
an object: colludents = {dr1, .., drn}.

Input : the target object id: Ob.OID.
Output: A list of delinquency records for delinquencies detected on the

object: Log.
1 Log = ∅; pos = 0;
2 foreach dr in colludents do
3 targets = GetFriendsOf(dr.actor);
4 foreach friend in targets do
5 if HasReceivedObject(Ob.OID) then
6 RecordDelinq(Log, pos, friend, dr.severity+1);
7 pos = pos + 1;
8 end
9 end

10 colludents = colludents ∪ Log;
11 end
12 return Log;

3) Monitor and Evaluate: Besides reacting to reported
delinquencies, the TReMa takes proactive actions by executing
the activities under the Monitor& Evaluate process (cfr. Figure
1). Periodically, the TReMa starts general auditing on three
different groups of nodes, of fixed sizes, selected randomly
and uniformly from their respective pools. The first group
is selected from the pool of nodes that have no delinquency
record registered yet. The second one is selected from nodes
having at least one record in the delinquencies register. As
for the third group, it is selected from the nodes for which
the number, the severity level, and the frequency of recorded
delinquencies is the highest since the last performed periodic
audit. The rationale behind running periodic auditing on these
three groups is to ensure the cleanness of the DOSN assuming
that not all the nodes will abide by the reporting mechanism.
For the first group, the aim is to double check that there are no
malicious nodes hidden uncaught among good ones; whereas
targeting the second group aims at checking how suspicious
nodes behaved since the last recorded delinquency against
them. As for the third group, the aim is to insist on deterring
them considering that they do not seem to be compliant with
the system yet.

A general periodic audit is performed by requesting all the
Bichon chains in custody of the target nodes. Each of these
chains is then verified, as by function AuditChain from Algo-
rithm 2, to check and record any delinquencies it contains. We
rely on the underlying software to ensure the communication
of all the Bichon chains in a nodes’ custody. However, if the
node is broken through and the TReMa cannot get hold of its
Bichon chains, it immediately informs all the network about
the invalid node.

IV. SECURITY AND COMPLEXITY ANALYSES

In this section, we provide the security properties and we
discuss the complexity of the system. Proofs and detailed
discussions for the provided results are available at [16].



A. Security Properties

We consider a malicious adversary model with three possi-
ble attacks. First, malicious nodes can collude to propagate a
delinquent sharing and never report it to the TReMa. Second, a
malicious node can create fake valid Bichon chains to compro-
mise the reputation of other honest nodes. Finally, a malicious
node can alter valid Bichon chains either by inserting new fake
rings or by changing the information already contained in the
chains.

Let vm ∈ V be a malicious node with the aim of
propagating an illegitimate sharing on an object Ob. Let
S be the number of nodes randomly selected from V for
the TReMa’s periodic general audit. CARDS satisfies three
security properties:
• P1: vm cannot remain uncaught given T general audit

cycles, with T following a geometric distribution of p =
S
|V | .

• P2: Fake but valid Bichon chains cannot be created.
• P3: Compromising the integrity of a valid Bichon chain

will result in an invalid chain.

B. Complexity Analysis

For Algorithm 1, its complexity is O(Rule-size), with Rule-
Size = |Ob.LAcsR| being the number of the conditions in the
longest object access rule in the system. Given that access
rules are set by users to express their privacy requirements on
an object, the length of a rule is logically not expected to be
big.

For Algorithm 2, its complexity is O(|V | ∗
LBC Ob.length), where LBC Ob.length is the length
of the longest Bichon chain in the system, and |V | is the total
number of nodes in the DOSN. LBC Ob.length is determined
by the maximum hops an object has to go through before
it reaches all the nodes. Given the principle of six-degrees
of separation, which has been demonstrated by experimental
results to exist in today’s online social networks with even a
shorter scale (i.e., four-degrees) [19], LBC Ob.length can be
estimated to be less than 6. Concerning the |V | parameter,
it comes from the fact that the algorithm performs a search
for users’ identity keys, to validate rings, among all available
keys. This might be considered costly, but can also be easily
addressed by adopting a distributed hierarchical paradigm
in designing the TReMa, similar to the architecture of the
DNS9 protocol, for example. We further discuss this under
the following section where we also present results on the
scalability and performance of Algorithm 2.

Finally, Algorithm 3’s complexity is O(LBC Ob.length
×|C|), where |C| is the number of detected colludents by the
targeted audit.

V. PERFORMANCE RESULTS

As the TReMa’s operations might seem quite demanding
(analysis of Algorithms 2 and 3), we perform experiments

9Domain Name System [https://www.netbsd.org/docs/guide/en/chap-
dns.html]

simulating these operations to study the scalability of these
two algorithms.

We run our experiments using the OSN’s Pokec10 public
dataset11 that comprises 1.63 M nodes and 30.6 M edges. Its
diameter, longest shortest path, is equal to 11, and so we set the
maximum length of a Bichon chain to 11. We implemented
both Algorithms 2 and 3 using the Java language. All the
experiments have been conducted on a dual core PC of 3.4
GHZ each and 4 MB of RAM.

1) Scalability of Algorithm 2: Algorithm 2 processes a
reported Bichon chain against the access rule of its object. We
have simulated this reporting scenario by creating 10 different
objects (i.e., 10 different access rules) and 10 Bichon chains,
each of length 11, per object. For a given object, each of
the 10 Bichon chains contains from 0 (false alarm) to 10
(max possible delinquencies in the chain) delinquent rings. We
run Algorithm 2 20 times for each of the simulated objects
against its 10 simulated Bichon chains. Since the algorithm
performs a linear search for a ring’s signer ID, in the case
of a delinquent ring, we have set the pool of IDs over which
this search is performed to 1K nodes, 10K nodes, and 20K
nodes for three independent executions using the same settings
w.r.t Bichon chains and objects. The sizes of the pools of IDs
have been set based on the assumption of having a distributed
TReMa architecture by blocks of communities. In fact, based
on analyses of famous OSN datasets in the literature, we
find that the average community size is in the order of
hundreds of nodes [20]. As such, we run our simulations under
the assumption of one TReMa node for every block of ten,
hundred, and two hundred communities, respectively.

Figure 5 presents the results of this experiment. The x-axis
refers to the number of found delinquencies in the reported
chain, whereas the y-axis refers to the average run time in
seconds of the algorithm. The figure depicts three lines each
corresponding to one of the set pool sizes for the search on
signer IDs. The first thing we read on the figure is that the
higher the size of the pool is, the higher the run time is.
This goes in line with the complexity of the algorithm (i.e.,
O(|V | ∗ BC Ob.length)). |V | here represents the pool size.
The second thing we can notice is that the higher the number
of delinquencies is, the higher is the run time (the lines follow
a linear sloped function). This is also expected as the search
operation is performed per every delinquency found. However,
the run time with the number of delinquencies under 5 (50%
of the chain) is very low (35s as the highest recorded point
for a pool of 20K nodes). Finally, even under the worst case
of all the chains being delinquent (which is also not realistic)
and with a pool size of 20K nodes, the algorithm converges
in less than 90 seconds on a standard PC.

2) Number of audited nodes and scalability of Algorithm
3: Algorithm 3 takes a list of delinquency records (drs) found
w.r.t a target object and performs an audit on the friends
of their actors and subsequently on their friends as long as

10A Slovakian OSN: https://pokec.azet.sk/.
11http://snap.stanford.edu/data/soc-pokec.html



Fig. 5: Run time in seconds of Algorithm 2

Fig. 6: Run time in milliseconds of Algorithm 3

they are found to have received the object in question. The
length of the input drs list is expected to be the same as
the number of delinquent rings found in the reported chain
that fired Algorithm 3. For experimental purposes, we have
considered 4 scenarios with this length being of 5, 10, 40,
and 70 drs, respectively. 5 drs corresponds to 50% of the
reported chain being delinquent, and 10 drs to 100% of it. The
other 40 drs and 70 drs have been set to stretch the system
and study it’s performance under more exhaustive conditions.
Since the algorithm performs the targeted audit on a nodes’
contacts as long as they are found to have received the object,
we have simulated this by considering a varying probability
for this to happen. That is, when a node is audited, a biased
coin is flipped first. Depending on the flip result, the node
is considered as has received the object or not. The bias in
the coin is represented by a probability for the node to have
received the object. We vary this probability from 10% to 90%.
We simulate the algorithm for 20 times and report the average
run time results in Figure 6.

From Figure 6, we can notice that the run time of the
algorithm is in terms of milliseconds only and that the worst
recorded time of 291ms is achieved with 70 initial drs (value
used just to stretch the simulation) and a probability for friends
to collude of 90%. We can also read on the same figure that
the run time of the algorithm remains under 20ms for 5 drs and
10 drs with the probability of a friend to collude being lower
than 60%. We think that this is a very good result as the worst
case scenario for Algorithm 3 is when all the reported chain

5 drs 10 drs 40 drs 70 drs
1 hop(90 ≥ PCol ≥ 60) 79 192 1360 1441
2 hops(60 ≥ PCol ≥ 20) 143 326 2316 2595
3 hops(20 ≥ PCol ≥ 10) 7 18 82 134

4 hops(PCol ≤ 60) 0 0 1 3

TABLE I: Number of audited nodes by Algorithm 3

is delinquent (i.e., 10 drs) and a non majority of colludents
(i.e., probability to collude is less than 50%).

In addition to studying the performance of Algorithm 3
in terms of its running time, we also computed the number
of audited nodes. Since the algorithm keeps auditing all the
contacts of a node as long as they have received the object,
we run our simulation by considering a probability of collision
(PCol) of 90 ≥ PCol ≥ 60 for the first hop friends,
60 ≥ PCol ≥ 20 for the second hop, 20 ≥ PCol ≥ 10
for the third hop, and PCol ≤ 60 for the fourth hop. Table I
presents the results on the number of audited friends by hop
and by considering the same number of drs as before (5drs,
10drs, 40 drs, and 70drs). As we can read on the table, the
number of audited nodes converges to 0 by the fourth hop.
Besides, this number scores 326 audited nodes as the highest
value with 10 initial drs. Recalling that the maximum initial
drs the algorithm can have as input is 10 (the other values
used to stretch the system), our experiment shows that the
worst case scenario results in 326 audited nodes only.

VI. RELATED WORK

AC in OSNs is mainly deployed following the relationship-
based model, which, in DOSNs, is often enforced using
cryptographic means [9], [10]. Shared objects are encrypted
by their owners to be read only by the subjects to whom they
have preliminary granted the needed tools to decipher them.
This adds a highly undesirable overhead to the system due
to the number of secure keys to be managed and to the cost
of objects’ encryption [11]. Although several research work
have addressed this performance issue, by adopting differing
levels of data encryption [10], [21], almost all of the existing
solutions for DOSNs still do not demonstrate the flexibility
and the usability levels available in centralized OSNs. For this,
we believe that an a-posteriori and managerial based approach
to protecting users’ data in DOSNs might be the solution to
providing both flexible and safe p2p socializing environments.
Indeed, in our proposal, DOSN users, who initially collaborate
to create the underlying socializing platform, can also collab-
oratively manage the insurance of secure data sharing. This
approach relies, like it is for almost all p2p systems, on the
spirit of honest majorities willing to collaborate to create and
benefit from the intended services.

Another body of work that might be thought of as crossing
with our proposal is related to the design of access policies that
continuously accompany their corresponding data to ensure
their privacy requirements across the different services and
platforms they travel through. Known as sticky policies, the
research on this field concerns the problem of ensuring the
enforcement of the privacy requirements of data owners even
when the data goes to third parties, mainly by having the



access policies stick to their corresponding data [22]. Whilst
the access rules attached to objects in our proposal might be
seen as similar to this concept of sticky policies, our work
does not concern the pre-enforcement of these policies, their
formulation, or their transporatbility across different services
as it is in the research on that field. Indeed, in our suggested
model access rules are attached to objects for access legitimacy
evaluation only, whilst the enforcement is ensured in a post-
sharing manner by relying on the Bichon chains accompanying
objects and recording sharing operations that they have been
subject to.

Finally, there are proposals for collaborative access control,
such as the work in [23], that introduced some levels of
transparency by showing when an object is shared against its
original access policies. However, that work does not tackle
the problem from an a-posteriori approach and is not based
on auditing with reward/punish mechanisms, as it is the case
for our proposal. In general and to the best of our knowledge,
this is the first proposal for collaborative a-posteriori and audit
based access control for DOSNs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for collaborative
audit based data sharing in DOSNs. Our approach allows for
data accountability, as opposed to the traditional pre-enforced
access control models. We believe that a-posteriori access
control might be the future to personal data security manage-
ment in DOSN realms. In fact, besides ensuring accountability,
we also believe that a-posteriori control would help enhance
users’ awareness regarding the management of their privacy.
This would happen by closing the audit loop and providing
feedback to users regarding the destiny of their shared objects.

We admit that the suggested base model should be comple-
mented by proper privacy-preserving techniques. Indeed, the
data in an object’s Bichon chain is communicated between
nodes in plain format and so any node can learn from it the
details of the path the object has traversed. Being aware of
this, we are working on a privacy-preserving version of our
model.

In addition to this, we also plan to study the usability of
the system and the effect of the suggested a-posteriori AC
on privacy awareness. Moreover, we plan to redesign the
system to be fully decentralized without having the TReMa,
by harvesting on technologies similar to the alternative chains
provided within the Bitcoin protocol,12 for example. Finally,
we also consider designing an appropriate accompanying
reputation/trust management system.
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