
A WebRTC DHT

Andres Ledesma (UCY) in
cooperation with Mikael (Peerialism).

Preface I

• Existing DHT overlays have been optimized
using one criteria (network proximity, social
links, content caching or others).

• An adaptable overlay that uses more than
one criteria, should improve performance,
reliability and availability in distributed
(social) applications.

Preface II

• Currently we are experimenting with Web
browsers to build an initial DHT overlay.

• After the implementation, we will extend the
overlay to be adaptable.

What do we mean by adaptable overlay?

Different applications have
different requirements.

• A distributed YouTube would
prefer high bandwidth among the
peers.
• A cloud storage would prefer
peers with sufficient storage and
perhaps “good” reputation.
• A social network would favor
peers that belong to actual
friends.

Example

Fastest Possible Bandwidth
Fastest

bandwidth
Store in

this node

Social Links

Reputation

Problem Formulation

A node is a processing entity connected to a network. The network
implements a Distributed Hash Table (DHT). Given that:

 Node 𝑢 𝜖 𝑉 and a set of functions 𝑓𝑖 : 0 < 𝑖 < 𝐶 such that
 𝑓𝑖 𝑢, 𝑣 → 𝑅, 𝑢 𝜖 𝑉, 𝑣 𝜖 𝑁 𝑢 (v is connected or it is considered to be a
“neighbor” of u)
o where 𝐶 is the number of criterion specified by the application
o where 𝑁 𝑢 = {𝑣: 𝑢, 𝑣 𝜖 ∃} (there is a connection between the

nodes)

 Vector 𝑤 𝜖 1 × 𝐶 where 𝑤𝑖 is the element and represents the weight of
𝑓𝑖

Node 𝑢 needs to find 𝑣 such that:

𝑣∗ = arg max 𝑣 [𝑤𝑖𝑓𝑖(𝑢, 𝑣)

𝐶

𝑖=0

]

Problem Formulation

A node is a processing entity connected to a network. The network
implements a Distributed Hash Table (DHT). Given that:

 Node 𝑢 𝜖 𝑉 and a set of functions 𝑓𝑖 : 0 < 𝑖 < 𝐶 such that
 𝑓𝑖 𝑢, 𝑣 → 𝑅, 𝑢 𝜖 𝑉, 𝑣 𝜖 𝑁 𝑢 (v is connected or it is considered to be a
“neighbor” of u)
o where 𝐶 is the number of criterion specified by the application
o where 𝑁 𝑢 = {𝑣: 𝑢, 𝑣 𝜖 ∃} (there is a connection between the

nodes)

 Vector 𝑤 𝜖 1 × 𝐶 where 𝑤𝑖 is the element and represents the weight of
𝑓𝑖

Node 𝑢 needs to find 𝑣 such that:

𝑣∗ = arg max 𝑣 [𝑤𝑖𝑓𝑖(𝑢, 𝑣)

𝐶

𝑖=0

]

Among the options that a peer has to send data, use the
one that gives the best match given a criteria.

Research Objectives

• Extend existing state-of-the-art DHT
techniques

– Adaptable overlays: adapt to application
requirements

– Backend for distributed and social applications

• First step: build an overlay for a DHT

comprised of web browsers using WebRTC
and HTML5.

Research Objectives

• Extend existing state-of-the-art DHT
techniques

– Adaptable overlays: adapt to application
requirements

– Backend for distributed and social applications

• First step: build an overlay for a DHT

comprised of web browsers using WebRTC
and HTML5.

“Long-term” research direction

Research Objectives

• Extend existing state-of-the-art DHT
techniques

– Adaptable overlays: adapt to application
requirements

– Backend for distributed and social applications

• First step: build an overlay for a DHT

comprised of web browsers using WebRTC
and HTML5.

“Short-term” research direction

Recap from Barcelona Sept. 2013

An ideal DOSN…

• No installation

• No extra hardware

• No configuration

All in the browser! 

A WebRTC DHT

Objective: Build a backend for distributed
applications using web browsers.

– Select DHT to Implement

–Build overlay

– Test it

– Build apps with it

Select DHT to Implement: Kademlia

• Most suitable DHT for unreliable peers.

• Several improvements over the years.

Building a Reliable P2P System Out of Unreliable P2P Clients: The Case

of KAD. Damiano Carra and Ernst W. Biersack. Institut Eurecom. Sophia-Antipolis,
France. ACM Conference on Emerging Network Experiment and Technology
(CoNEXT), 2007.

Active Research on Kademlia

• Fast Lookups

• Social analysis

• Network proximity

• Caching system

Active Research on Kademlia

Embracing the Peer Next Door: Proximity in Kademlia.
Sebastian Kaune, et al. Technische Universitat Darmstadt. KOM Multimedia
Communications Lab. International Conference on Peer-to-peer Computing 2008.
IEEE Computer Society Press.

Improving the Routing Performance of KAD through Social Network Analysis.
Xiangtao Liu, et al. Institute of Computing Technology, Chinese Academy of Science.
International Symposium on Computers and Communications, 2010.

Revisiting Why Kad Lookup Fails. Bingshuang Liu, et al. Peking University, Beijing,
China. IEEE International Conference on Peer-to-Peer Computing, 2012.

Kaleidoscope: Adding Colors to Kademlia. Gil Einziger, et al. Computer Science
Department, Technion Haifa. IEEE International Conference on Peer-to-Peer
Computing, 2013.

How does Kademlia work?

• 160-bit keys and 160-bit node identifiers

• Distances between nodes and keys are
calculated using XOR

• Each step is one bit closer to the destination.

– Peers have routing tables

– Routes are grouped on 160 buckets (one for each
different bit)

This node has the id 0011
In this node the others are grouped in buckets:
1*** bucket 1
01** bucket 2
0001 bucket 3
0000 bucket 4 (contains one node)

bucket 4
bucket 1

bucket 2

bucket 3

This node has the id 0011
In this node the others are grouped in buckets:
1*** bucket 1
01** bucket 2
0001 bucket 3
0000 bucket 4 (contains one node)

Kademlia: A Peer-to-peer Information System Based on the XOR Metric.
Petar Maymounkov and David Mazieres. New York University.
International Workshop on Peer-to-peer Systems, 2002.

• Storage: HTML5 (through
providing the “localstorage”
object that enables
permanent storage)

• P2P Communication :
WebRTC a W3C Standard and
the only mechanism to
enable browser-to-browser
communication without plug-
ins or third-party extensions
(Java, ActiveX, Flash, etc.).

Tools used to build a WebDHT

WebRTC Considerations

• For peers to contact each other, they need a
signal server for the initial connection.

– ICE (Interactive Connectivity Establishment)

– STUN (Session Traversal Utility for NAT)

– TURN (Traversal Using Relays around NAT)

Expensive process in
terms of performance.

Memory

• There is a limited
amount of RAM the OS
assigns to the browser
(between 2 to 4
Gigabytes of RAM).

• Each connection
demands a chunk of
this memory. …Aw, Snap…!

• Kademlia requires
communication with
160 buckets. There are
two ways of doing this:

– Connect and disconnect
• OR

– Keep connections open

• Kademlia requires
communication with
160 buckets. There are
two ways of doing this:

– Connect and disconnect
• OR

– Keep connections open

• This will trigger too many
 hits on the signal server.

• For every request to the
 signal server, the
 performance is affected.

• Kademlia requires
communication with
160 buckets. There are
two ways of doing this:

– Connect and disconnect
• OR

– Keep connections open

• Memory limitations of
 the browser.

• Consider mobile devices…

• Consider peers leaving…

Can we “extend” Kademlia?

=Memory=

– Keep as few open connections as possible

=Performance=

– Try to avoid opening and closing connections

=Distribution=

– Use XOR to compute distances

This is how we “extended” Kademlia…

• Node aggregation and find/store key operations
are done via routing instead of opening new
connections.

• XOR-wise
– Forward OR
– Store/Connect

(-)Disadvantages:
– Lookups will not perform as fast as opening and

keeping the connections open.
– TTL is needed when packages cannot be delivered.

Node Aggregation

9

6

8 B

A new node contacts the signal server to receive an
identifier and a list of peers. The identifier is a string
such as “xpqr34trs”. The node uses SHA1 to
transform it into a 160-bit identifier.

Node Aggregation

9

6

8 B

A new node contacts any other peer in the network.

Node Aggregation

9

6

8 B

The contacted peer finds among itself and its open
connections the closest node in terms of XOR.

Node 9:
6 XOR 9 = F
6 XOR 8 = E
6 XOR B = D

Node Aggregation

9

6

8 B

ROUTING:
Forward request to join the network.

Node Aggregation

9

6

8 B

Connect to the closest node in terms of XOR.

Node 9 forward the request to node B. Node B
would compute in the same way and ultimately
connect to the new node, node 6.

Node Aggregation

9

6

8 B

Connect to the closest node in terms of XOR.

Node 9 forward the request to node B. Node B
would compute in the same way and ultimately
connect to the new node, node 6.

Node Aggregation

9

X

8 B

If a new node is inserted in between two other
nodes, a connection from both ends is opened.

Key Space

9

8 B

00X16 FFX16

Key Space

9

8 B

00X16 FFX16

K K

K

Key Space

9

8 B

00X16 FFX16

K K

K

Key redistribution:
• Node joins
• Node leaves

Key Space

9

8 B

00X16 FFX16

K K

K

Replication of degree
one. A node replicates
the keys from its
immediate neighbor.

Find / Store Key

• Serialize data (JSON)

• Hash with SHA1 (node identifier as salt)
– The result is a 160-bit key

• Find the closest XOR distance among the open
connections and the peer itself.
– Forward OR

– Store

• On each peer “stamps” its id to the message
=> create a trace route

Find / Store Key

• Serialize data (JSON)

• Hash with SHA1 (node identifier as salt)
– The result is a 160-bit key

• Find the closest XOR distance among the open
connections and the peer itself.
– Forward OR

– Store

• On each peer “stamps” its id to the message
=> create a trace route

Just like node aggregation

Example : Serialization and Key Construction

nodeId = “rqpws49p321”;
data = [
 {
 hello: “world:,
 name: “andres”,
 project: “iSocial”
 }
];

var value = JSON.Stringify(data);
var key = SHA1(nodeId + value);

console.log(“key: ” + key);
console.log(“value: ” + value);

> key: 97295d659d44340d72f084553239428de4b4f094
> value: [{hello: “world:, name: “andres”, project: “iSocial”}]

Follow us!

github.com / landreus / isocial

• Read me

• Commit logs

• Latest version

Follow us!

github.com / landreus / isocial

• Read me

• Commit logs

• Latest version

alias project

What do we have so far?

• 160-bit key management
• XOR-wise distance calculation
• Node aggregation
• Find node and key
• Store

– put(key, value)

• Retrieve
– get(key)

• Trace communication route
– Avoid deadlocks

• TTL

Finalize the first step…

• Implement look-ahead to speed up the finding process
• Testing:

– Simulate 100 000+ nodes
– Aspects to measure

• Performance – response time of a find key operation
• Reliability – how many nodes can fail while still maintaining an operation

network?

– More testing along with Peerialism…

• Come up with improvements
– Allow new connections under certain conditions to reduce the number

of hops => subject to testing

• Build demo applications
– Micro-blogging
– Social network

• Put it on paper 

What comes after the first step?

• Investigate DHT overlays
– Design adaptable or multiple-criteria overlays

• bandwidth
• network proximity
• reputation
• social links
• etc…

– Implementation of a prototype
– Allow applications to choose overlays based on requirements

• Experiment with key space
– Faster recovery when nodes go offline
– Faster lookups in large systems
– Improve replication strategy (performance and reliability)

Thank you for your attention! 

Questions? Feedback?

