Data Storage Solutions for Decentralized Online Social Networks

- Anwitaman Datta

S* Aspects of Networked & Distributed Systems (SANDS) School of Computer Engineering NTU Singapore

iSocial Summer School, KTH Stockholm

Research @ SANDS

	recommendation and decision support systems					entralized online social orking and collaboration		Applications
	privacy aware/preserved data aggregation, storage, sharing & analytics/data-mining				distributed key-value stores			
					data-center design	 	P2P/F2F storage systems	tributed) S
data/computation at 3 rd party/outsourced & data management systems							0	ystems
	social trust network models analysis			secure/privacy preserved computation primitives			codes for storage	Foundational

- Selective information dissemination using social links
 - GoDisco

Selective information dissemination using social links

- GoDisco
- Security issues
 - Access control, Private Information Retrieval, ...

Selective information dissemination using social links

- GoDisco
- Security issues
 - Access control, Private Information Retrieval, ...
- DOSN architectures
 - PeerSoN, SuperNova, PriSM, ...

Selective information dissemination using social links

- GoDisco
- Security issues
 - Access control, Private Information Retrieval, ...
- DOSN architectures
 - PeerSoN, SuperNova, PriSM, ...
- # P2P storage

Selective information dissemination using social links

- GoDisco
- Security issues
 - Access control, Private Information Retrieval, ...
- DOSN architectures
 - PeerSoN, SuperNova, PriSM, ...
- # P2P storage

http://SandS.sce.ntu.edu.sg/d SN

- Not the same as a file-sharing system
 - Peer-to-Peer (P2P) storage systems leverage the combined storage capacity of a network of storage devices (peers) contributed typically by autonomous end-users as a common pool of storage space to store content reliably.

Design space

- Design space
 - Reliability: Availability & Durability (focus of this talk)

- Design space
 - Reliability: Availability & Durability (focus of this talk)
 - Security & Privacy: Access control, integrity, freeriding, anonymity, privacy, ...

- Design space
 - Reliability: Availability & Durability (focus of this talk)
 - Security & Privacy: Access control, integrity, freeriding, anonymity, privacy, ...
 - Sophisticated functionalities: Concurrency, Version Control, ...

Realizing Reliability

Redundancy Type

Redundancy Type

Replication

Redundancy Type

Replication 貒 Erasure codes **※ B**₁ Retrieve any $\mathbf{0}_{1}$ \mathbf{O}_1 k' (\geq k) blocks **B**₂ 0 0 Data = ObjectB Encoding Decoding 0 Lost blocks Original k blocks **B**_n k blocks n encoded blocks

(stored in storage devices in a network)

Data

Reconstruct

- A rather complicated problem
 - All peers are fully cooperative and altruistic, but autonomous
 - - Heterogeneity, ...
 - Coverage: history/prediction/...

- A rather complicated problem
 - All peers are fully cooperative and altruistic, but autonomous
 - - Heterogeneity, ...
 - Coverage: history/prediction/...
 - Selfish/Byzantine peers: Incentives, trust, enforcement, ...

- A rather complicated problem
 - All peers are fully cooperative and altruistic, but autonomous
 - - Heterogeneity, ...
 - Coverage: history/prediction/...
 - Selfish/Byzantine peers: Incentives, trust, enforcement, ...
 - Security & privacy implications of data placement ...

Distributed Hash Table (DHT) determines storage placement, e.g., CFS/ OpenDHT

- Distributed Hash Table (DHT) determines storage placement, e.g., CFS/ OpenDHT
 - Pros: Simple design, ease of locating data

- Distributed Hash Table (DHT) determines storage placement, e.g., CFS/ OpenDHT
 - Pros: Simple design, ease of locating data
 - Cons: mixes indexing with storage

- Distributed Hash Table (DHT) determines storage placement, e.g., CFS/ OpenDHT
 - Pros: Simple design, ease of locating data
 - Cons: mixes indexing with storage
 - high correlation of failures

- Distributed Hash Table (DHT) determines storage placement, e.g., CFS/ OpenDHT
 - Pros: Simple design, ease of locating data
 - Cons: mixes indexing with storage
 - high correlation of failures
 - cannot leverage other characteristics
 - e.g., locality, history, etc.

- Distributed Hash Table (DHT) determines storage placement, e.g., CFS/ OpenDHT
 - Pros: Simple design, ease of locating data
 - Cons: mixes indexing with storage
 - high correlation of failures
 - cannot leverage other characteristics
 - e.g., locality, history, etc.
 - may lead to poor performance
 - access latency, repair cost, ...

Distributed Hash Table (DHT) as a directory, e.g., TotalRecall

- Distributed Hash Table (DHT) as a directory, e.g., TotalRecall
 - Pros: Flexible placement policy

- Distributed Hash Table (DHT) as a directory, e.g., TotalRecall
 - Pros: Flexible placement policy

♦ ???

• Cons of TotalRecall, which placed at random:

Cloud assisted storage system

Source: Google tech talk on Wuala: <u>http://www.youtube.com/watch?v=3xKZ4KGkQY8</u>

Cloud assisted storage system

Hybrid architecture (used previously in Wuala)

Cloud assisted storage system

Hybrid architecture (used previously in Wuala)

- Hybrid architecture (used previously in Wuala)
 - Index independent of storage

- Hybrid architecture (used previously in Wuala)
 - Index independent of storage
 - Many fragments per object

- Hybrid architecture (used previously in Wuala)
 - Index independent of storage
 - Many fragments per object
 - Suitable for sharing very large but static files

- Hybrid architecture (used previously in Wuala)
 - Index independent of storage
 - Many fragments per object
 - Suitable for sharing very large but static files
 - Parallel download

- Hybrid architecture (used previously in Wuala)
 - Index independent of storage
 - Many fragments per object
 - Suitable for sharing very large but static files
 - Parallel download
 - Piggy-backed, large DHT routing states

- Hybrid architecture (used previously in Wuala)
 - Index independent of storage
 - Many fragments per object
 - Suitable for sharing very large but static files
 - Parallel download
 - Piggy-backed, large DHT routing states
 - So very few hops needed, gives high through-put

Incentives

reciprocity, trust/reputation, ...

Incentives

- reciprocity, trust/reputation, ...
- QoS: 24/7 coverage, locality, ...
 - online/offline behavior (history/prediction), ...

Incentives

- reciprocity, trust/reputation, ...
- QoS: 24/7 coverage, locality, ...
 - online/offline behavior (history/prediction), ...

Control

• De/centralized, local/global knowledge

Replica Placement in P2P Storage: Complexity and Game Theoretic Analyses Rzadca et al, ICDCS 2010

- Replication model: A clique of replicas storing each other's data (reciprocity)
 - Explores both centralized and decentralized settings for clique formation
 - Challenge
 - Centralized matching right set of peers to optimize storage capacity utilization (proven NP-hard)
 - Decentralized matching uses an underlying gossip algorithm (T-man) to explore partners

(simulations with artificial data)

Peers' expected data unavailability as a function of their availability in random, equitable and subgame perfect assignment. Histogram shows the number of peers in each availability bucket.

(simulations with artificial data)

Peers' expected data unavailability as a function of their availability in random, equitable and subgame perfect assignment. Histogram shows the number of peers in each availability bucket.

Friend-to-Friend instead of Peer-to-Peer

- Friend-to-Friend instead of Peer-to-Peer
 - Translating "real life" trust into something useful for reliable "system" design

- Friend-to-Friend instead of Peer-to-Peer
 - Translating "real life" trust into something useful for reliable "system" design

Maps naturally to the overlying social application

- Friend-to-Friend instead of Peer-to-Peer
 - Translating "real life" trust into something useful for reliable "system" design

- Maps naturally to the overlying social application
 - Anecdotal note: SafeBook used Friend-of-Friends for access control also

Place data at friends: That's it?

- Store at all friends (naïve/baseline)
 - Best one can do in terms of achieving highest possible availability
 - Very high overheads!
 - Storage
 - Maintenance

Place data at friends: That's it?

- Store at all friends (naïve/baseline)
 - Best one can do in terms of achieving highest possible availability
 - Very high overheads!
 - Storage
 - Maintenance

Sharma et al, P2P 2011

Sharma et al, P2P 2011

Look at the temporal online/offline behavior of friends

Sharma et al, P2P 2011

- Look at the temporal online/offline behavior of friends
 - Achievable coverage
 - What best availability can be achieved?

Sharma et al, P2P 2011

- Look at the temporal online/offline behavior of friends
 - Achievable coverage
 - What best availability can be achieved?
 - Criticality of friends
 - Which friends are indispensable?

Evaluation

- Data set
 - Italian instant messenger service
 - + Pros
 - Social+Temporal characterisitcs
 - "May" reasonably reflect the online/offline behavior
 - + Cons:
 - Not a p2p storage system trace
 - "small", "incomplete" and "geographically localized"

Evaluation

Data set

- Italian instant messenger service
 - + Pros
 - Social+Temporal characterisitcs

3436 nodes

- 848 nodes in the largest component
 - Note that many nodes had "neighbors" in other servers, for whom we did not have info.
 - Between 1-18 neighbors
- Use two weeks of data
 - \circ One for "learning", one for evaluation
 - Time of day, day of week effects
- "May" reasonably reflect the online/offline behavior
- + Cons:
 - Not a p2p storage system trace
 - "small", "incomplete" and "geographically localized"

AC: achievable coverage

 \odot 50% nodes can get more than 90% availability

Crit: Time covered using critical nodes
 Too much dependence on critical nodes

AC: achievable coverage

 \odot 50% nodes can get more than 90% availability

Crit: Time covered using critical nodes
 Too much dependence on critical nodes

<Achievable coverage, Degree of Criticality, # of Friends>

- AC: achievable coverage
 - \odot 50% nodes can get more than 90% availability
- Crit: Time covered using critical nodes
 Too much dependence on critical nodes

<Achievable coverage, Degree of Criticality, # of Friends>

If there are "enough" friends, (>10), ought to be okay! (assuming storage capacity is not an issue)

Bootstrapping pangs!

- New peers with few friends in the system, or no reputation of being highly available, will find it difficult to get started!
 - Game-theoretic study on reciprocity based P2P cliques
 - Analysis of ego-centric networks for F2F storage

Sharma et al, Comsnets 2012

The big picture/premise

- The big picture/premise
 - Well resourced nodes act as super-peers
 - incentives (could be): reputation within an interest community, ability to monetize (e.g., using ads), ...

- The big picture/premise
 - Well resourced nodes act as super-peers
 - incentives (could be): reputation within an interest community, ability to monetize (e.g., using ads), ...
 - New nodes use superpeers for storage, until they get established in the system
 - so that the super-peers are not over-burdened, or become a bottleneck for established peers, ...

- The big picture/premise
 - Well resourced nodes act as super-peers
 - incentives (could be): reputation within an interest community, ability to monetize (e.g., using ads), ...
 - New nodes use superpeers for storage, until they get established in the system
 - so that the super-peers are not over-burdened, or become a bottleneck for established peers, ...
 - Superpeers help coordinating, finding storage partners, etc.

Take with a huge pinch of salt: artificial data to drive simulations, with too many parameters ...

Moving forward

	Light weight P2P OSN		Full-fledged (D)OSN
Bulk (static) data storage	dynamic/social data store High availability High consistency High rate of data updates Small volume of data	Security modules Encryption access control 	Social modules Analytics Search/Navigation Recommendation
P2P overlay with basic services: DHT lookup, peer-sampling, etc.			
Could be even nulti-)cloud based.			

