
Data Storage Solutions for
Decentralized Online Social Networks

— Anwitaman Datta
S* Aspects of Networked & Distributed Systems (SANDS)!

School of Computer Engineering 
NTU Singapore

iSocial Summer School, KTH Stockholm

Research @ SANDS

codes&for&
storage&

&

trust&
models&

&

social&
network&
analysis&

secure/privacy&
preserved&computa7on&

primi7ves&

networked&distributed&storage&&
&&data&management&systems&

distributed&key:value&stores&

P2P/F2F&
storage&
systems&

data:center&
design&

&

privacy&aware/preserved&data&
aggrega7on,&storage,&sharing&&

&&analy7cs/data:mining&

data/computa7on&&at&&
3rd&party/outsourced&

decentralized&online&social&
networking&and&collabora7on&

&

recommenda7on&and&
decision&support&systems&

&

Founda'onal)
(Distributed)))System

s)
Applica'ons)

DOSNish research at SANDS

DOSNish research at SANDS

Selective information dissemination using social links

GoDisco

DOSNish research at SANDS

Selective information dissemination using social links

GoDisco

Security issues

Access control, Private Information Retrieval, …

DOSNish research at SANDS

Selective information dissemination using social links

GoDisco

Security issues

Access control, Private Information Retrieval, …

DOSN architectures

PeerSoN, SuperNova, PriSM, …

DOSNish research at SANDS

Selective information dissemination using social links

GoDisco

Security issues

Access control, Private Information Retrieval, …

DOSN architectures

PeerSoN, SuperNova, PriSM, …

P2P storage

DOSNish research at SANDS

Selective information dissemination using social links

GoDisco

Security issues

Access control, Private Information Retrieval, …

DOSN architectures

PeerSoN, SuperNova, PriSM, …

P2P storage

h"p://sands.sce.ntu.edu.sg/0

P2P Storage

Not the same as a file-sharing system

Peer-to-Peer (P2P) storage systems leverage the
combined storage capacity of a network of storage
devices (peers) contributed typically by autonomous
end-users as a common pool of storage space to
store content reliably.

P2P Storage

P2P Storage

Design space

P2P Storage

Design space

Reliability: Availability & Durability (focus of this talk)

P2P Storage

Design space

Reliability: Availability & Durability (focus of this talk)

Security & Privacy: Access control, integrity, free-
riding, anonymity, privacy, …

P2P Storage

Design space

Reliability: Availability & Durability (focus of this talk)

Security & Privacy: Access control, integrity, free-
riding, anonymity, privacy, …

Sophisticated functionalities: Concurrency, Version
Control, …

Realizing Reliability

Proactive

Eager: Repair all

Lazy: Deterministic
(Threshold based)

Lazy: Randomized R
eactive

Maintenance strategies

Redundancy type

Replication New codes,
e.g. self-repairing codes

Erasure codes

Key based (e.g., DHTs)

Selective (e.g., at friends or trusted nodes, history or proximity based, etc.)

Random

Placement

Garbage collection

Diversity of
online fragments

Duplicates of
same fragment

P2P#storage#
design#space#

Redundancy Type

Redundancy Type

Replication

Redundancy Type

Replication

Erasure codes

D
at

a
=

O
bj

ec
t

Encoding

k blocks

…

O1

O2

Ok

B2

B1

Bn

n encoded blocks
(stored in storage devices in a network)

…

…

Lost blocks

Retrieve any
k’ (≥ k) blocks

Original
k blocks

…

R
ec

on
st

ru
ct

 D
at

a

O1

O2

Ok

Decoding Bl

Redundancy placement

Redundancy placement

A rather complicated problem

All peers are fully cooperative and altruistic, but autonomous

System capacity and resource allocation …

• Heterogeneity, …

Coverage: history/prediction/…

Redundancy placement

A rather complicated problem

All peers are fully cooperative and altruistic, but autonomous

System capacity and resource allocation …

• Heterogeneity, …

Coverage: history/prediction/…

Selfish/Byzantine peers: Incentives, trust, enforcement, …

Redundancy placement

A rather complicated problem

All peers are fully cooperative and altruistic, but autonomous

System capacity and resource allocation …

• Heterogeneity, …

Coverage: history/prediction/…

Selfish/Byzantine peers: Incentives, trust, enforcement, …

Security & privacy implications of data placement …

 Classical P2P storage systems

DHTIDspace$

Succe
ssor$li

st$

replicas)

 Classical P2P storage systems

Distributed Hash Table (DHT) determines storage placement, e.g., CFS/
OpenDHT

DHTIDspace$

Succe
ssor$li

st$

replicas)

 Classical P2P storage systems

Distributed Hash Table (DHT) determines storage placement, e.g., CFS/
OpenDHT

Pros: Simple design, ease of locating data

DHTIDspace$

Succe
ssor$li

st$

replicas)

 Classical P2P storage systems

Distributed Hash Table (DHT) determines storage placement, e.g., CFS/
OpenDHT

Pros: Simple design, ease of locating data

Cons: mixes indexing with storage

DHTIDspace$

Succe
ssor$li

st$

replicas)

 Classical P2P storage systems

Distributed Hash Table (DHT) determines storage placement, e.g., CFS/
OpenDHT

Pros: Simple design, ease of locating data

Cons: mixes indexing with storage

high correlation of failures

DHTIDspace$

Succe
ssor$li

st$

replicas)

 Classical P2P storage systems

Distributed Hash Table (DHT) determines storage placement, e.g., CFS/
OpenDHT

Pros: Simple design, ease of locating data

Cons: mixes indexing with storage

high correlation of failures

cannot leverage other  
characteristics

• e.g., locality, history, etc. DHTIDspace$

Succe
ssor$li

st$

replicas)

 Classical P2P storage systems

Distributed Hash Table (DHT) determines storage placement, e.g., CFS/
OpenDHT

Pros: Simple design, ease of locating data

Cons: mixes indexing with storage

high correlation of failures

cannot leverage other  
characteristics

• e.g., locality, history, etc.

may lead to poor performance

• access latency, repair cost, …

DHTIDspace$

Succe
ssor$li

st$

replicas)

 Classical P2P storage systems

DHTIDspace$

Succe
ssor$li

st$

pointers)
to))

replicas)

 Classical P2P storage systems

Distributed Hash Table (DHT) as a directory,
e.g., TotalRecall

DHTIDspace$

Succe
ssor$li

st$

pointers)
to))

replicas)

 Classical P2P storage systems

Distributed Hash Table (DHT) as a directory,
e.g., TotalRecall

Pros: Flexible placement policy

DHTIDspace$

Succe
ssor$li

st$

pointers)
to))

replicas)

 Classical P2P storage systems

Distributed Hash Table (DHT) as a directory,
e.g., TotalRecall

Pros: Flexible placement policy

Cons of TotalRecall, which placed at random:

???

DHTIDspace$

Succe
ssor$li

st$

pointers)
to))

replicas)

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

 Cloud assisted storage system

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Users

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Users

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Users

GET

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Wuala’s	
 dedicated	

storage	
 data	
 center	

as	
 fallback

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Wuala’s	
 dedicated	

storage	
 data	
 center	

as	
 fallback

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

Index independent of storage

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Wuala’s	
 dedicated	

storage	
 data	
 center	

as	
 fallback

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

Index independent of storage

Many fragments per object

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Wuala’s	
 dedicated	

storage	
 data	
 center	

as	
 fallback

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

Index independent of storage

Many fragments per object

Suitable for sharing very
large but static files

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Wuala’s	
 dedicated	

storage	
 data	
 center	

as	
 fallback

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

Index independent of storage

Many fragments per object

Suitable for sharing very
large but static files

Parallel download

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Wuala’s	
 dedicated	

storage	
 data	
 center	

as	
 fallback

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

Index independent of storage

Many fragments per object

Suitable for sharing very
large but static files

Parallel download

 Piggy-backed, large DHT
routing states

http://www.youtube.com/watch?v=3xKZ4KGkQY8

Source:	
 Google	
 tech	
 talk	
 on	
 Wuala:	
 http://www.youtube.com/watch?v=3xKZ4KGkQY8	

DHT

Storage	
 peers

Wuala’s	
 dedicated	

storage	
 data	
 center	

as	
 fallback

Users

GETRo
uti
ng

Superpeers

 Cloud assisted storage system
Hybrid architecture (used
previously in Wuala)

Index independent of storage

Many fragments per object

Suitable for sharing very
large but static files

Parallel download

 Piggy-backed, large DHT
routing states

So very few hops needed,
gives high through-put

http://www.youtube.com/watch?v=3xKZ4KGkQY8

More sophisticated heuristics

More sophisticated heuristics

Incentives

reciprocity, trust/reputation, …

More sophisticated heuristics

Incentives

reciprocity, trust/reputation, …

QoS: 24/7 coverage, locality, …

online/offline behavior (history/prediction), …

More sophisticated heuristics

Incentives

reciprocity, trust/reputation, …

QoS: 24/7 coverage, locality, …

online/offline behavior (history/prediction), …

Control

De/centralized, local/global knowledge

Replication model: A clique of replicas storing each other’s
data (reciprocity)

Explores both centralized and decentralized settings for
clique formation

Challenge

Centralized matching - right set of peers to optimize
storage capacity utilization (proven NP-hard)

Decentralized matching - uses an underlying gossip
algorithm (T-man) to explore partners

Replica Placement in P2P Storage:
Complexity and Game Theoretic Analyses

TECHNICAL REPORT, 15TH JUNE 2010

Krzysztof Rzadca
School of Computer Engineering

Nanyang Technological University
Singapore

Email: krz@ntu.edu.sg

Anwitaman Datta
School of Computer Engineering

Nanyang Technological University
Singapore

Email: anwitaman@ntu.edu.sg

Sonja Buchegger
School of Computer Science

KTH
Sweden

Email: buc@kth.se

Abstract—In peer-to-peer storage systems, peers replicate each
others’ data in order to increase availability. If the matching is
done centrally, the algorithm can optimize data availability in an
equitable manner for all participants. However, if matching is
decentralized, the peers’ selfishness can greatly alter the results,
leading to performance inequities that can render the system
unreliable and thus ultimately unusable.

We analyze the problem using both theoretical approaches
(complexity analysis for the centralized system, game theory for
the decentralized one) and simulation. We prove that the problem
of optimizing availability in a centralized system is NP-hard.
In decentralized settings, we show that the rational behavior
of selfish peers will be to replicate only with similarly-available
peers. Compared to the socially-optimal solution, highly available
peers have their data availability increased at the expense of
decreased data availability for less available peers. The price of
anarchy is high: unbounded in one model, and linear with the
number of time slots in the second model.

We also propose centralized and decentralized heuristics that,
according to our experiments, converge fast in the average case.

The high price of anarchy means that a completely decentral-
ized system could be too hostile for peers with low availability,
who could never achieve satisfying replication parameters. More-
over, we experimentally show that even explicit consideration
and exploitation of diurnal patterns of peer availability has a
small effect on the data availability—except when the system
has truly global scope. Yet a fully centralized system is infeasible,
not only because of problems in information gathering, but also
the complexity of optimizing availability. The solution to this
dilemma is to create system-wide cooperation rules that allow
a decentralized algorithm, but also limit the selfishness of the
participants.
Index Terms—price of anarchy, equitable optimization, dis-
tributed storage

I. INTRODUCTION

A decentralized system for data storage and replication
is an important building block of many peer-to-peer (p2p)
applications, such as backup (e.g., wuala.com), or social net-
works [1] (in which, when a user is off-line, the system ensures
that her data is available for her friends). In such systems,
individual users (peers) store other users’ data. Data storage

The work in this paper has been funded in part by NTU/MoE’s AcRF Tier-1
RG 29/09 and A*Star SERC 072 134 0055 grants.

uses not only storage space but, more importantly, consumes
bandwidth [2]. In return, a user expects that her data will also
be stored remotely, increasing availability and resilience. As
users in p2p systems are assumed to be independent [3], [4],
they seek to maximize their perceived profits (e.g., availability
of their data) and to minimize their contribution (e.g., the
amount of other users’ data they store). Thus, the crucial
decision an user must take is to choose other users that will
replicate her data (and whose data she will replicate, assuming
a reciprocity-based scheme). Depending on the organization of
the system, this decision is either done through the agency of
a centralized matching system (like in wuala.com), or using a
fully decentralized algorithm in which users form replication
agreements [5], [6].

In this paper, we study the problem of maximization of
data availability in a decentralized data replication system. In
order to obtain worst-case bounds in these complex systems,
we model what we consider the crucial characteristics of the
problem along two axes: (1) peer availability (deterministic
time slots or probabilistic); (2) matching (centralized and
enforced or decentralized and autonomous).

In the probabilistic model, a peer’s availability is the
probability of the peer being available (correlated with the
peer’s expected lifetime, like in [7], [6]). The goal is to
maximize data availability given the constraints on the storage
size. In contrast, in the time slot (deterministic) model peer
availability is a function of time, either in a periodic way [8]
(also observed for the whole system in [9]), or according to
a detailed prediction for the next time period. In this model,
availability is a set of time slots in which the peer is available
with certainty. The goal is to minimize the number of replicas
such that the sum of their availability periods covers the whole
prediction time.

We analyze both availability models when matching is done
either centrally or in a decentralized manner. A centralized
system collects information about the peers’ availabilities and
then derives replication groups so that the expected availability
(or resource usage) is optimized in a manner equitable to all
the participants. In a decentralized system, each peer seeks to

Rzadca et al, ICDCS 2010

Representative result
(simulations with artificial data)

covered time slots (possibly replacing one of the existing
members of Gk), scoreT (i, j) = |Aj � AGk|/T . If Gk is
complete, the score is inversely proportional to the difference
in the number of members in cliques, scoreT (i, j) = 1 �
||Gk|� |Gl||/(max(Gk, Gl)).

When two cliques Gk and Gl are merged, and |Gk|+|Gl| >
s + 1, we use a greedy algorithm to construct the “better”
clique. The algorithm starts with choosing the peer who covers
the maximum number of time slots. Then, from the remaining
peers, the algorithm adds the peer that covers the maximum
number of currently uncovered time slots. This step is repeated
until there are peers able to cover uncovered time slots (with a
limit of maximum clique size s+1) or the number of remaining
peers is greater than s + 1 (as the remaining peers will form
one clique).

Finally, as peers also minimize the clique size, each clique
periodically removes redundant members. A peer j is redun-
dant for clique Gk if and only if all the time slots covered
by j are covered by other members of the clique, thus
AGk�{j} = AGk.

The algorithm is evaluated in Section VII-B.

VII. SIMULATION OF THE ALGORITHMS

A. Probabilistic Model

1) Simulation Settings: Peers’ availabilities were generated
in three steps. Firstly, according to [6], 10% of the peers
have availability 0.95, 25%—0.87, 30%—0.75 and 30%—
0.33. Then, we added a Gaussian noise with � = 0.1 to
each availability. Finally, we caped the resulting value, so
that 0.03  av(i)  0.97. Histogram on Figure 2 shows the
resulting distribution of peers. We repeated each experiment on
50 instances with peers’ availabilities generated as described
above; error bars on plots denote standard deviations.

We set the storage size s = 5 and the sizes of random and
metric pools in T-Man gossiping to 50.

We implemented decentralized algorithms in a custom dis-
crete event simulator. In each round of the simulated matching,
all the peers are processed sequentially in random order. Each
peer performs one iteration of T-Man gossiping, and then one
iteration of the decentralized matching algorithm (in the first
four rounds we perform only gossiping in order to “warm up”
the metric pools).

2) Centralized Algorithms: Subgame Perfect vs Equitable
Solutions: We started with comparing random, subgame per-
fect and equitable allocation algorithms according to the
resulting data unavailability. We ran these algorithms on 50
randomly-generated instances of 10000 peers each; then we
computed averages over all the random instances and all
peers having similar availabilities (with resolution equal to
two decimal places, e.g., the score for 0.95 is an average for
all peers with 0.95  av(i) < 0.96). Figure 2 summarizes the
obtained results.

The equitable algorithm produces cliques that result in
similar data availability regardless of the peer’s availability.
In contrast, the subgame perfect equilibrium results in wide
range of data availabilities: while the highly available peers

 � worse better �!

�

b
e
t
t
e
r

w
o
r
s
e
�!

10

�8

10

�6

10

�4

10

�2

10

0

e
s
t
i
m

a
t
e
d

d
a
t
a

u
n
a
v
a
i
l
a
b
i
l
i
t
y

0 0.2 0.4 0.6 0.8 1

peer availability

0k

10k

20k

30k

40k

50k

n
u
m

b
e
r

o
f
p
e
e
r
s

i
n

b
u
c
k
e
t

(
h
i
s
t
o
g
r
a
m

)

peers (histogram)

random

equitable

subgame perfect

Fig. 2. Peers’ expected data unavailability as a function of their availability
in random, equitable and subgame perfect assignment. Histogram shows the
number of peers in each availability bucket.

have their data available with expected failure probability of
approximately 10

�9, the weakest available peers almost do not
gain from replication, with data unavailability close to 1.

Such diversification in the subgame perfect solution pro-
vides incentives for peers to be highly available. A highly
available peer is able to replicate its data with other highly
available peers, which exponentially increases peer’s data
availability. Thus, the subgame perfect solution is fair to par-
ticipants. However, the subgame perfect solution might be too
“extreme” to the less-available peers. Peers with availabilities
less than approximately 0.5 have their data available with
probability less than 0.99 (approximately), which might be not
sufficient for some applications. This, in turn, can discourage
such peers to join the system, and consequently, prohibit the
system from growing to a critical mass.

On the other hand, an equitable solution does not reward
highly available peers. In absence of altruistic peers, the
system would degenerate.

Consequently, a robust system might require a hybrid of
the selfish and the equitable solution: guaranteeing some
minimal level of service to less available peers (but also
requiring minimal availability), at the same time rewarding
highly available peers with higher data availability.

Also note that the equitable solution clearly Pareto-
dominates the random assignment, resulting in higher data
availabilities for all classes of peers.

3) Decentralized Algorithms: Speed of Convergence: In
the next series of experiments, we measure how fast do the
decentralized algorithms presented in Section VI-A converge
to the subgame perfect cliques.

Initial experiments revealed that the Optimistic Queries
version of the algorithm is inefficient. After the first few
rounds when the underlying gossiping protocol efficiently fills
the metric pools of all peers with the same set of 50 highest
available peers, in the subsequent rounds the whole population
queries the best peer, the second-best peer, and so on. Thus,
replication agreements are formed extremely slowly. We ob-
serve that if peers’ availabilities are distinct, approximately
k/(s + 1) cliques are formed after approximately k rounds.

Figure 3 compares the convergence speed of Pragmatic
Queries to Explicit Cliques, measured as the median average

Representative result
(simulations with artificial data)

covered time slots (possibly replacing one of the existing
members of Gk), scoreT (i, j) = |Aj � AGk|/T . If Gk is
complete, the score is inversely proportional to the difference
in the number of members in cliques, scoreT (i, j) = 1 �
||Gk|� |Gl||/(max(Gk, Gl)).

When two cliques Gk and Gl are merged, and |Gk|+|Gl| >
s + 1, we use a greedy algorithm to construct the “better”
clique. The algorithm starts with choosing the peer who covers
the maximum number of time slots. Then, from the remaining
peers, the algorithm adds the peer that covers the maximum
number of currently uncovered time slots. This step is repeated
until there are peers able to cover uncovered time slots (with a
limit of maximum clique size s+1) or the number of remaining
peers is greater than s + 1 (as the remaining peers will form
one clique).

Finally, as peers also minimize the clique size, each clique
periodically removes redundant members. A peer j is redun-
dant for clique Gk if and only if all the time slots covered
by j are covered by other members of the clique, thus
AGk�{j} = AGk.

The algorithm is evaluated in Section VII-B.

VII. SIMULATION OF THE ALGORITHMS

A. Probabilistic Model

1) Simulation Settings: Peers’ availabilities were generated
in three steps. Firstly, according to [6], 10% of the peers
have availability 0.95, 25%—0.87, 30%—0.75 and 30%—
0.33. Then, we added a Gaussian noise with � = 0.1 to
each availability. Finally, we caped the resulting value, so
that 0.03  av(i)  0.97. Histogram on Figure 2 shows the
resulting distribution of peers. We repeated each experiment on
50 instances with peers’ availabilities generated as described
above; error bars on plots denote standard deviations.

We set the storage size s = 5 and the sizes of random and
metric pools in T-Man gossiping to 50.

We implemented decentralized algorithms in a custom dis-
crete event simulator. In each round of the simulated matching,
all the peers are processed sequentially in random order. Each
peer performs one iteration of T-Man gossiping, and then one
iteration of the decentralized matching algorithm (in the first
four rounds we perform only gossiping in order to “warm up”
the metric pools).

2) Centralized Algorithms: Subgame Perfect vs Equitable
Solutions: We started with comparing random, subgame per-
fect and equitable allocation algorithms according to the
resulting data unavailability. We ran these algorithms on 50
randomly-generated instances of 10000 peers each; then we
computed averages over all the random instances and all
peers having similar availabilities (with resolution equal to
two decimal places, e.g., the score for 0.95 is an average for
all peers with 0.95  av(i) < 0.96). Figure 2 summarizes the
obtained results.

The equitable algorithm produces cliques that result in
similar data availability regardless of the peer’s availability.
In contrast, the subgame perfect equilibrium results in wide
range of data availabilities: while the highly available peers

 � worse better �!

�

b
e
t
t
e
r

w
o
r
s
e
�!

10

�8

10

�6

10

�4

10

�2

10

0

e
s
t
i
m

a
t
e
d

d
a
t
a

u
n
a
v
a
i
l
a
b
i
l
i
t
y

0 0.2 0.4 0.6 0.8 1

peer availability

0k

10k

20k

30k

40k

50k

n
u
m

b
e
r

o
f
p
e
e
r
s

i
n

b
u
c
k
e
t

(
h
i
s
t
o
g
r
a
m

)

peers (histogram)

random

equitable

subgame perfect

Fig. 2. Peers’ expected data unavailability as a function of their availability
in random, equitable and subgame perfect assignment. Histogram shows the
number of peers in each availability bucket.

have their data available with expected failure probability of
approximately 10

�9, the weakest available peers almost do not
gain from replication, with data unavailability close to 1.

Such diversification in the subgame perfect solution pro-
vides incentives for peers to be highly available. A highly
available peer is able to replicate its data with other highly
available peers, which exponentially increases peer’s data
availability. Thus, the subgame perfect solution is fair to par-
ticipants. However, the subgame perfect solution might be too
“extreme” to the less-available peers. Peers with availabilities
less than approximately 0.5 have their data available with
probability less than 0.99 (approximately), which might be not
sufficient for some applications. This, in turn, can discourage
such peers to join the system, and consequently, prohibit the
system from growing to a critical mass.

On the other hand, an equitable solution does not reward
highly available peers. In absence of altruistic peers, the
system would degenerate.

Consequently, a robust system might require a hybrid of
the selfish and the equitable solution: guaranteeing some
minimal level of service to less available peers (but also
requiring minimal availability), at the same time rewarding
highly available peers with higher data availability.

Also note that the equitable solution clearly Pareto-
dominates the random assignment, resulting in higher data
availabilities for all classes of peers.

3) Decentralized Algorithms: Speed of Convergence: In
the next series of experiments, we measure how fast do the
decentralized algorithms presented in Section VI-A converge
to the subgame perfect cliques.

Initial experiments revealed that the Optimistic Queries
version of the algorithm is inefficient. After the first few
rounds when the underlying gossiping protocol efficiently fills
the metric pools of all peers with the same set of 50 highest
available peers, in the subsequent rounds the whole population
queries the best peer, the second-best peer, and so on. Thus,
replication agreements are formed extremely slowly. We ob-
serve that if peers’ availabilities are distinct, approximately
k/(s + 1) cliques are formed after approximately k rounds.

Figure 3 compares the convergence speed of Pragmatic
Queries to Explicit Cliques, measured as the median average

Good or bad?

How about F2F storage?

How about F2F storage?

Friend-to-Friend instead of Peer-to-Peer

How about F2F storage?

Friend-to-Friend instead of Peer-to-Peer

Translating “real life” trust into something useful for
reliable “system” design

How about F2F storage?

Friend-to-Friend instead of Peer-to-Peer

Translating “real life” trust into something useful for
reliable “system” design

Maps naturally to the overlying social application

How about F2F storage?

Friend-to-Friend instead of Peer-to-Peer

Translating “real life” trust into something useful for
reliable “system” design

Maps naturally to the overlying social application

Anecdotal note: SafeBook used Friend-of-Friends for
access control also

Place data at friends: That’s it?

Store at all friends (naïve/baseline)

Best one can do in terms of achieving highest
possible availability

Very high overheads!

Storage

Maintenance

Place data at friends: That’s it?

Store at all friends (naïve/baseline)

Best one can do in terms of achieving highest
possible availability

Very high overheads!

Storage

Maintenance
Find instead a

“reasonable” subset of
friends to store at!

An empirical study of availability in friend-to-friend
storage systems

Rajesh Sharma and Anwitaman Datta
Nanyang Technological University, Singapore

raje0014@e.ntu.edu.sg, anwitaman@ntu.edu.sg

Matteo Dell’Amico and Pietro Michiardi
Eurecom, Sophia-Antipolis, France

{matteo.dell-amico,pietro.michiardi}@eurecom.fr

Abstract—Friend-to-friend networks, i.e. peer-to-peer networks
where data are exchanged and stored solely through nodes
owned by trusted users, can guarantee dependability, privacy and
uncensorability by exploiting social trust. However, the limitation
of storing data only on friends can come to the detriment of
data availability: if no friends are online, then data stored in the
system will not be accessible. In this work, we explore the trade-
offs between redundancy (i.e., how many copies of data are stored
on friends), data placement (the choice of which friend nodes to
store data on) and data availability (the probability of finding
data online). We show that the problem of obtaining maximal
availability while minimizing redundancy is NP-complete; in
addition, we perform an exploratory study on data placement
strategies, and we investigate their performance in terms of
redundancy needed and availability obtained. By performing a
trace-based evaluation, we show that nodes with as few as 10
friends can already obtain good availability levels.
Keywords: friend-to-friend (F2F), storage systems, data place-
ment, NP-complete, heuristics

I. INTRODUCTION

Peer-to-peer (P2P) storage systems have been studied for
over a decade, starting with the OceanStore [5] project. The
premise of P2P storage is crowdsourcing the storage cloud
[2] to other end-users. One of the many design issues in such
systems is the choice of peers at which to store data. A specific
subclass of P2P storage systems have emerged based on the
placement choice being constrained to ‘friends’ of the data
owner, for example, FriendStore [7]. The basic characteristics
of such friend-to-friend (F2F) storage systems are: (i) real-
life social trust is exploited to guarantee a dependable system
(e.g., a friend of mine won’t erase my data); (ii) data access is
predominantly confined within a small social neighborhood.
These networks, also known as ‘darknets’ when the focus
is on security, can also guarantee privacy and resistance to
censorship [1]. F2F storage thus constitutes a good building
block for diverse applications such as personal backup service
and decentralized online social networking.

For personal backup, while data persistence is more critical,
data availability is nevertheless desirable. For decentralized
online social networking systems such as SuperNova [6],
availability is of paramount importance. Thus, a fundamental
problem that arises is determining what kind of availability
one can achieve in a storage system where data placement for

This work was supported in part by A*Star SERC grant 072 134 0055
and NTU/MoE Tier-1 grant RG 29/09. The collaboration between NTU and
Eurecom was supported by Merlion grant.

any specific data owner is constrained by the use of only peer
nodes run by friends of the data owner.

There are several variations of this basic question that
would interest a F2F storage system designer. A baseline is
determined when all friends of a node store its data. This is
the best in terms of availability that one can achieve subject
to the constraint of using friend nodes exclusively. However,
there are some obvious variations worth studying. Can the
same availability (or any other predetermined threshold of
availability) be achieved using only a subset of the node’s
friends? How does the law of diminishing returns work in
terms of availability, as the number of used friends is in-
creased? If a stipulated number of friends are to be used, what
is the best availability that can be achieved? Furthermore, the
way to measure availability itself may vary. For a personal
backup application, the data owner may care for the data to be
available only when it itself is online - for example, with other
portable devices. For a decentralized online social networking
application, the data owner can serve its own data when it
is itself online, but will like the friends to make the data
available when it is itself offline. More generally, availability
may also be determined based on whether it was available
when there was any access request for the data. These various
interpretations of availability may depend on the access and
application specific characteristics.

The achievable and achieved performance would depend on
the (temporal) characteristics of individual nodes’ egocentric
networks (i.e., the social network consisting of those nodes and
their respective immediate friends), the actual data-placement
policies determining a subset of friends to store data at, as well
as the interpretation of availability itself. This paper is a first
attempt to formalize these quantitative aspects of F2F storage
systems, exploring algorithmic aspects of data placement in
(sub-)optimal subset of friends, and exposition of the efficacy
of F2F storage systems using trace-driven simulations using
real egocentric social network traces capturing additionally
node availability traces over time.

The important contributions of this paper include (i) defin-
ing some key characteristics of an ego-network which influ-
ence the achievable availability in a F2F storage system, (ii)
observing that identification of a minimal set of friends to
achieve the maximum achievable coverage is in fact analogous
to the set cover problem, and hence NP-hard, (iii) propose
greedy heuristic data placement algorithms, and (iv) evaluation

Sharma et al, P2P 2011

Look at the temporal online/offline behavior of
friends

An empirical study of availability in friend-to-friend
storage systems

Rajesh Sharma and Anwitaman Datta
Nanyang Technological University, Singapore

raje0014@e.ntu.edu.sg, anwitaman@ntu.edu.sg

Matteo Dell’Amico and Pietro Michiardi
Eurecom, Sophia-Antipolis, France

{matteo.dell-amico,pietro.michiardi}@eurecom.fr

Abstract—Friend-to-friend networks, i.e. peer-to-peer networks
where data are exchanged and stored solely through nodes
owned by trusted users, can guarantee dependability, privacy and
uncensorability by exploiting social trust. However, the limitation
of storing data only on friends can come to the detriment of
data availability: if no friends are online, then data stored in the
system will not be accessible. In this work, we explore the trade-
offs between redundancy (i.e., how many copies of data are stored
on friends), data placement (the choice of which friend nodes to
store data on) and data availability (the probability of finding
data online). We show that the problem of obtaining maximal
availability while minimizing redundancy is NP-complete; in
addition, we perform an exploratory study on data placement
strategies, and we investigate their performance in terms of
redundancy needed and availability obtained. By performing a
trace-based evaluation, we show that nodes with as few as 10
friends can already obtain good availability levels.
Keywords: friend-to-friend (F2F), storage systems, data place-
ment, NP-complete, heuristics

I. INTRODUCTION

Peer-to-peer (P2P) storage systems have been studied for
over a decade, starting with the OceanStore [5] project. The
premise of P2P storage is crowdsourcing the storage cloud
[2] to other end-users. One of the many design issues in such
systems is the choice of peers at which to store data. A specific
subclass of P2P storage systems have emerged based on the
placement choice being constrained to ‘friends’ of the data
owner, for example, FriendStore [7]. The basic characteristics
of such friend-to-friend (F2F) storage systems are: (i) real-
life social trust is exploited to guarantee a dependable system
(e.g., a friend of mine won’t erase my data); (ii) data access is
predominantly confined within a small social neighborhood.
These networks, also known as ‘darknets’ when the focus
is on security, can also guarantee privacy and resistance to
censorship [1]. F2F storage thus constitutes a good building
block for diverse applications such as personal backup service
and decentralized online social networking.

For personal backup, while data persistence is more critical,
data availability is nevertheless desirable. For decentralized
online social networking systems such as SuperNova [6],
availability is of paramount importance. Thus, a fundamental
problem that arises is determining what kind of availability
one can achieve in a storage system where data placement for

This work was supported in part by A*Star SERC grant 072 134 0055
and NTU/MoE Tier-1 grant RG 29/09. The collaboration between NTU and
Eurecom was supported by Merlion grant.

any specific data owner is constrained by the use of only peer
nodes run by friends of the data owner.

There are several variations of this basic question that
would interest a F2F storage system designer. A baseline is
determined when all friends of a node store its data. This is
the best in terms of availability that one can achieve subject
to the constraint of using friend nodes exclusively. However,
there are some obvious variations worth studying. Can the
same availability (or any other predetermined threshold of
availability) be achieved using only a subset of the node’s
friends? How does the law of diminishing returns work in
terms of availability, as the number of used friends is in-
creased? If a stipulated number of friends are to be used, what
is the best availability that can be achieved? Furthermore, the
way to measure availability itself may vary. For a personal
backup application, the data owner may care for the data to be
available only when it itself is online - for example, with other
portable devices. For a decentralized online social networking
application, the data owner can serve its own data when it
is itself online, but will like the friends to make the data
available when it is itself offline. More generally, availability
may also be determined based on whether it was available
when there was any access request for the data. These various
interpretations of availability may depend on the access and
application specific characteristics.

The achievable and achieved performance would depend on
the (temporal) characteristics of individual nodes’ egocentric
networks (i.e., the social network consisting of those nodes and
their respective immediate friends), the actual data-placement
policies determining a subset of friends to store data at, as well
as the interpretation of availability itself. This paper is a first
attempt to formalize these quantitative aspects of F2F storage
systems, exploring algorithmic aspects of data placement in
(sub-)optimal subset of friends, and exposition of the efficacy
of F2F storage systems using trace-driven simulations using
real egocentric social network traces capturing additionally
node availability traces over time.

The important contributions of this paper include (i) defin-
ing some key characteristics of an ego-network which influ-
ence the achievable availability in a F2F storage system, (ii)
observing that identification of a minimal set of friends to
achieve the maximum achievable coverage is in fact analogous
to the set cover problem, and hence NP-hard, (iii) propose
greedy heuristic data placement algorithms, and (iv) evaluation

Sharma et al, P2P 2011

Look at the temporal online/offline behavior of
friends

Achievable coverage

What best availability can be achieved?

An empirical study of availability in friend-to-friend
storage systems

Rajesh Sharma and Anwitaman Datta
Nanyang Technological University, Singapore

raje0014@e.ntu.edu.sg, anwitaman@ntu.edu.sg

Matteo Dell’Amico and Pietro Michiardi
Eurecom, Sophia-Antipolis, France

{matteo.dell-amico,pietro.michiardi}@eurecom.fr

Abstract—Friend-to-friend networks, i.e. peer-to-peer networks
where data are exchanged and stored solely through nodes
owned by trusted users, can guarantee dependability, privacy and
uncensorability by exploiting social trust. However, the limitation
of storing data only on friends can come to the detriment of
data availability: if no friends are online, then data stored in the
system will not be accessible. In this work, we explore the trade-
offs between redundancy (i.e., how many copies of data are stored
on friends), data placement (the choice of which friend nodes to
store data on) and data availability (the probability of finding
data online). We show that the problem of obtaining maximal
availability while minimizing redundancy is NP-complete; in
addition, we perform an exploratory study on data placement
strategies, and we investigate their performance in terms of
redundancy needed and availability obtained. By performing a
trace-based evaluation, we show that nodes with as few as 10
friends can already obtain good availability levels.
Keywords: friend-to-friend (F2F), storage systems, data place-
ment, NP-complete, heuristics

I. INTRODUCTION

Peer-to-peer (P2P) storage systems have been studied for
over a decade, starting with the OceanStore [5] project. The
premise of P2P storage is crowdsourcing the storage cloud
[2] to other end-users. One of the many design issues in such
systems is the choice of peers at which to store data. A specific
subclass of P2P storage systems have emerged based on the
placement choice being constrained to ‘friends’ of the data
owner, for example, FriendStore [7]. The basic characteristics
of such friend-to-friend (F2F) storage systems are: (i) real-
life social trust is exploited to guarantee a dependable system
(e.g., a friend of mine won’t erase my data); (ii) data access is
predominantly confined within a small social neighborhood.
These networks, also known as ‘darknets’ when the focus
is on security, can also guarantee privacy and resistance to
censorship [1]. F2F storage thus constitutes a good building
block for diverse applications such as personal backup service
and decentralized online social networking.

For personal backup, while data persistence is more critical,
data availability is nevertheless desirable. For decentralized
online social networking systems such as SuperNova [6],
availability is of paramount importance. Thus, a fundamental
problem that arises is determining what kind of availability
one can achieve in a storage system where data placement for

This work was supported in part by A*Star SERC grant 072 134 0055
and NTU/MoE Tier-1 grant RG 29/09. The collaboration between NTU and
Eurecom was supported by Merlion grant.

any specific data owner is constrained by the use of only peer
nodes run by friends of the data owner.

There are several variations of this basic question that
would interest a F2F storage system designer. A baseline is
determined when all friends of a node store its data. This is
the best in terms of availability that one can achieve subject
to the constraint of using friend nodes exclusively. However,
there are some obvious variations worth studying. Can the
same availability (or any other predetermined threshold of
availability) be achieved using only a subset of the node’s
friends? How does the law of diminishing returns work in
terms of availability, as the number of used friends is in-
creased? If a stipulated number of friends are to be used, what
is the best availability that can be achieved? Furthermore, the
way to measure availability itself may vary. For a personal
backup application, the data owner may care for the data to be
available only when it itself is online - for example, with other
portable devices. For a decentralized online social networking
application, the data owner can serve its own data when it
is itself online, but will like the friends to make the data
available when it is itself offline. More generally, availability
may also be determined based on whether it was available
when there was any access request for the data. These various
interpretations of availability may depend on the access and
application specific characteristics.

The achievable and achieved performance would depend on
the (temporal) characteristics of individual nodes’ egocentric
networks (i.e., the social network consisting of those nodes and
their respective immediate friends), the actual data-placement
policies determining a subset of friends to store data at, as well
as the interpretation of availability itself. This paper is a first
attempt to formalize these quantitative aspects of F2F storage
systems, exploring algorithmic aspects of data placement in
(sub-)optimal subset of friends, and exposition of the efficacy
of F2F storage systems using trace-driven simulations using
real egocentric social network traces capturing additionally
node availability traces over time.

The important contributions of this paper include (i) defin-
ing some key characteristics of an ego-network which influ-
ence the achievable availability in a F2F storage system, (ii)
observing that identification of a minimal set of friends to
achieve the maximum achievable coverage is in fact analogous
to the set cover problem, and hence NP-hard, (iii) propose
greedy heuristic data placement algorithms, and (iv) evaluation

Sharma et al, P2P 2011

Look at the temporal online/offline behavior of
friends

Achievable coverage

What best availability can be achieved?

Criticality of friends

Which friends are indispensable?

An empirical study of availability in friend-to-friend
storage systems

Rajesh Sharma and Anwitaman Datta
Nanyang Technological University, Singapore

raje0014@e.ntu.edu.sg, anwitaman@ntu.edu.sg

Matteo Dell’Amico and Pietro Michiardi
Eurecom, Sophia-Antipolis, France

{matteo.dell-amico,pietro.michiardi}@eurecom.fr

Abstract—Friend-to-friend networks, i.e. peer-to-peer networks
where data are exchanged and stored solely through nodes
owned by trusted users, can guarantee dependability, privacy and
uncensorability by exploiting social trust. However, the limitation
of storing data only on friends can come to the detriment of
data availability: if no friends are online, then data stored in the
system will not be accessible. In this work, we explore the trade-
offs between redundancy (i.e., how many copies of data are stored
on friends), data placement (the choice of which friend nodes to
store data on) and data availability (the probability of finding
data online). We show that the problem of obtaining maximal
availability while minimizing redundancy is NP-complete; in
addition, we perform an exploratory study on data placement
strategies, and we investigate their performance in terms of
redundancy needed and availability obtained. By performing a
trace-based evaluation, we show that nodes with as few as 10
friends can already obtain good availability levels.
Keywords: friend-to-friend (F2F), storage systems, data place-
ment, NP-complete, heuristics

I. INTRODUCTION

Peer-to-peer (P2P) storage systems have been studied for
over a decade, starting with the OceanStore [5] project. The
premise of P2P storage is crowdsourcing the storage cloud
[2] to other end-users. One of the many design issues in such
systems is the choice of peers at which to store data. A specific
subclass of P2P storage systems have emerged based on the
placement choice being constrained to ‘friends’ of the data
owner, for example, FriendStore [7]. The basic characteristics
of such friend-to-friend (F2F) storage systems are: (i) real-
life social trust is exploited to guarantee a dependable system
(e.g., a friend of mine won’t erase my data); (ii) data access is
predominantly confined within a small social neighborhood.
These networks, also known as ‘darknets’ when the focus
is on security, can also guarantee privacy and resistance to
censorship [1]. F2F storage thus constitutes a good building
block for diverse applications such as personal backup service
and decentralized online social networking.

For personal backup, while data persistence is more critical,
data availability is nevertheless desirable. For decentralized
online social networking systems such as SuperNova [6],
availability is of paramount importance. Thus, a fundamental
problem that arises is determining what kind of availability
one can achieve in a storage system where data placement for

This work was supported in part by A*Star SERC grant 072 134 0055
and NTU/MoE Tier-1 grant RG 29/09. The collaboration between NTU and
Eurecom was supported by Merlion grant.

any specific data owner is constrained by the use of only peer
nodes run by friends of the data owner.

There are several variations of this basic question that
would interest a F2F storage system designer. A baseline is
determined when all friends of a node store its data. This is
the best in terms of availability that one can achieve subject
to the constraint of using friend nodes exclusively. However,
there are some obvious variations worth studying. Can the
same availability (or any other predetermined threshold of
availability) be achieved using only a subset of the node’s
friends? How does the law of diminishing returns work in
terms of availability, as the number of used friends is in-
creased? If a stipulated number of friends are to be used, what
is the best availability that can be achieved? Furthermore, the
way to measure availability itself may vary. For a personal
backup application, the data owner may care for the data to be
available only when it itself is online - for example, with other
portable devices. For a decentralized online social networking
application, the data owner can serve its own data when it
is itself online, but will like the friends to make the data
available when it is itself offline. More generally, availability
may also be determined based on whether it was available
when there was any access request for the data. These various
interpretations of availability may depend on the access and
application specific characteristics.

The achievable and achieved performance would depend on
the (temporal) characteristics of individual nodes’ egocentric
networks (i.e., the social network consisting of those nodes and
their respective immediate friends), the actual data-placement
policies determining a subset of friends to store data at, as well
as the interpretation of availability itself. This paper is a first
attempt to formalize these quantitative aspects of F2F storage
systems, exploring algorithmic aspects of data placement in
(sub-)optimal subset of friends, and exposition of the efficacy
of F2F storage systems using trace-driven simulations using
real egocentric social network traces capturing additionally
node availability traces over time.

The important contributions of this paper include (i) defin-
ing some key characteristics of an ego-network which influ-
ence the achievable availability in a F2F storage system, (ii)
observing that identification of a minimal set of friends to
achieve the maximum achievable coverage is in fact analogous
to the set cover problem, and hence NP-hard, (iii) propose
greedy heuristic data placement algorithms, and (iv) evaluation

Sharma et al, P2P 2011

Evaluation

Data set

Italian instant messenger service

Pros

• Social+Temporal characterisitcs

• “May” reasonably reflect the online/offline behavior

Cons:

• Not a p2p storage system trace

• “small”, “incomplete” and “geographically localized”

Evaluation

Data set

Italian instant messenger service

Pros

• Social+Temporal characterisitcs

• “May” reasonably reflect the online/offline behavior

Cons:

• Not a p2p storage system trace

• “small”, “incomplete” and “geographically localized”

!  3436$nodes$
o 848$nodes$inthelargest$component$

" Note$that$many$nodes$had$“neighbors”$in$other$
servers,forwhomwedidnothave$info.$

" Between$1A18$neighbors$

!  Usetwoweeksofdata$
o Onefor“learning”,onefor$evaluaFon$

" Timeofday,dayof$week$effects$

Representative results

Representative results

!  AC:$achievable$coverage$
o 50%$nodes$cangetmore$than$90%$availability$

!  Crit:$Time$covered$using$cri<cal$nodes$
o Too$much$dependenceoncri<cal$nodes$

Representative results

!  AC:$achievable$coverage$
o 50%$nodes$cangetmore$than$90%$availability$

!  Crit:$Time$covered$using$cri<cal$nodes$
o Too$much$dependenceoncri<cal$nodes$

!  !<Achievable!coverage,!Degree!of!Cri3cality,!#!of!Friends>!

Representative results

!  AC:$achievable$coverage$
o 50%$nodes$cangetmore$than$90%$availability$

!  Crit:$Time$covered$using$cri<cal$nodes$
o Too$much$dependenceoncri<cal$nodes$

!  !<Achievable!coverage,!Degree!of!Cri3cality,!#!of!Friends>!

If there are “enough” friends,
(>10), ought to be okay! (assuming

storage capacity is not an issue)

Bootstrapping pangs!

New peers with few friends in the system, or no
reputation of being highly available, will find it
difficult to get started!

Game-theoretic study on reciprocity based P2P
cliques

Analysis of ego-centric networks for F2F storage

SuperNova: Super-peers Based Architecture for
Decentralized Online Social Networks

Rajesh Sharma and Anwitaman Datta

School of Computer Engineering, Nanyang Technological University, Singapore.
{raje0014,Anwitaman}@ntu.edu.sg

Abstract. Recent years have seen several earnest initiatives from both academic
researchers as well as open source communities to implement and deploy decen-
tralized online social networks (DOSNs). The primary motivations for DOSNs
are privacy and autonomy from big brotherly service providers. The promise of
decentralization is complete freedom for end-users from any service providers
both in terms of keeping privacy about content and communication, and also from
any form of censorship. However decentralization introduces many challenges.
One of the principal problems is to guarantee availability of data even when the
data owner is not online, so that others can access the said data even when a
node is offline or down. Intuitively this can be solved by replicating the data on
other users’ machines. Existing DOSN proposals try to solve this problem using
heuristics which are agnostic to the various kinds of heterogeneity both in terms
of end user resources as well as end user behaviors in such a system. For instance,
some propose replication at friends, or at some other peers based on other heuris-
tics such as reciprocal storage among nodes with similar availability, or storage
in a global DHT realized using all peers’ resources. In this paper, we argue that
a pragmatic design needs to explicitly allow for and leverage on system hetero-
geneity, and provide incentives for the resource rich participants in the system
to contribute such resources. To that end we introduce SuperNova - a super-peer
based DOSN architecture. Super-peers can help (i) bootstrap new peers who are
yet to have/find any friends by either providing them storage space, (ii) maintain-
ing a directory of users, so that users can find friends in the network by name or
interests, (iii) help peers find other peers to store their content in case they don’t
have adequate friends to do so, or if their friends are already overloaded. We en-
vision a self-organizing system, where nodes that provide substantial resources
can gain reputation, and be elevated to the status of super-peers. Users may want
to become super-peers out of altruism (they want DOSNs to succeed), for the
sake of the reputation (e.g., being an influential member for an interest based
community) as well as potentially to monetize their special roles (e.g., run adver-
tisements). While proposing the SuperNova architecture, we envision a dynamic
system driven by incentives and reputation, however, investigation of such incen-
tives and reputation, and its effect on determining peer behaviors is a subject for
our future study. In this paper we instead investigate the efficacy of a super-peer
based system at any time point (a snap-shot of the envisioned dynamic system),
that is to say, we try to quantify the performance of SuperNova system given any
(fixed) mix of peer population and strategies.

Keywords: System architecture, Super-peers, Storage, Self-organization

ar
X

iv
:1

10
5.

00
74

v2
 [

cs
.S

I]
 2

5
M

ay
 2

01
1

Sharma et al, Comsnets 2012

The big picture/premise

SuperNova: Super-peers Based Architecture for
Decentralized Online Social Networks

Rajesh Sharma and Anwitaman Datta

School of Computer Engineering, Nanyang Technological University, Singapore.
{raje0014,Anwitaman}@ntu.edu.sg

Abstract. Recent years have seen several earnest initiatives from both academic
researchers as well as open source communities to implement and deploy decen-
tralized online social networks (DOSNs). The primary motivations for DOSNs
are privacy and autonomy from big brotherly service providers. The promise of
decentralization is complete freedom for end-users from any service providers
both in terms of keeping privacy about content and communication, and also from
any form of censorship. However decentralization introduces many challenges.
One of the principal problems is to guarantee availability of data even when the
data owner is not online, so that others can access the said data even when a
node is offline or down. Intuitively this can be solved by replicating the data on
other users’ machines. Existing DOSN proposals try to solve this problem using
heuristics which are agnostic to the various kinds of heterogeneity both in terms
of end user resources as well as end user behaviors in such a system. For instance,
some propose replication at friends, or at some other peers based on other heuris-
tics such as reciprocal storage among nodes with similar availability, or storage
in a global DHT realized using all peers’ resources. In this paper, we argue that
a pragmatic design needs to explicitly allow for and leverage on system hetero-
geneity, and provide incentives for the resource rich participants in the system
to contribute such resources. To that end we introduce SuperNova - a super-peer
based DOSN architecture. Super-peers can help (i) bootstrap new peers who are
yet to have/find any friends by either providing them storage space, (ii) maintain-
ing a directory of users, so that users can find friends in the network by name or
interests, (iii) help peers find other peers to store their content in case they don’t
have adequate friends to do so, or if their friends are already overloaded. We en-
vision a self-organizing system, where nodes that provide substantial resources
can gain reputation, and be elevated to the status of super-peers. Users may want
to become super-peers out of altruism (they want DOSNs to succeed), for the
sake of the reputation (e.g., being an influential member for an interest based
community) as well as potentially to monetize their special roles (e.g., run adver-
tisements). While proposing the SuperNova architecture, we envision a dynamic
system driven by incentives and reputation, however, investigation of such incen-
tives and reputation, and its effect on determining peer behaviors is a subject for
our future study. In this paper we instead investigate the efficacy of a super-peer
based system at any time point (a snap-shot of the envisioned dynamic system),
that is to say, we try to quantify the performance of SuperNova system given any
(fixed) mix of peer population and strategies.

Keywords: System architecture, Super-peers, Storage, Self-organization

ar
X

iv
:1

10
5.

00
74

v2
 [

cs
.S

I]
 2

5
M

ay
 2

01
1

Sharma et al, Comsnets 2012

The big picture/premise

Well resourced nodes act as super-peers

incentives (could be): reputation within an interest
community, ability to monetize (e.g., using ads), …

SuperNova: Super-peers Based Architecture for
Decentralized Online Social Networks

Rajesh Sharma and Anwitaman Datta

School of Computer Engineering, Nanyang Technological University, Singapore.
{raje0014,Anwitaman}@ntu.edu.sg

Abstract. Recent years have seen several earnest initiatives from both academic
researchers as well as open source communities to implement and deploy decen-
tralized online social networks (DOSNs). The primary motivations for DOSNs
are privacy and autonomy from big brotherly service providers. The promise of
decentralization is complete freedom for end-users from any service providers
both in terms of keeping privacy about content and communication, and also from
any form of censorship. However decentralization introduces many challenges.
One of the principal problems is to guarantee availability of data even when the
data owner is not online, so that others can access the said data even when a
node is offline or down. Intuitively this can be solved by replicating the data on
other users’ machines. Existing DOSN proposals try to solve this problem using
heuristics which are agnostic to the various kinds of heterogeneity both in terms
of end user resources as well as end user behaviors in such a system. For instance,
some propose replication at friends, or at some other peers based on other heuris-
tics such as reciprocal storage among nodes with similar availability, or storage
in a global DHT realized using all peers’ resources. In this paper, we argue that
a pragmatic design needs to explicitly allow for and leverage on system hetero-
geneity, and provide incentives for the resource rich participants in the system
to contribute such resources. To that end we introduce SuperNova - a super-peer
based DOSN architecture. Super-peers can help (i) bootstrap new peers who are
yet to have/find any friends by either providing them storage space, (ii) maintain-
ing a directory of users, so that users can find friends in the network by name or
interests, (iii) help peers find other peers to store their content in case they don’t
have adequate friends to do so, or if their friends are already overloaded. We en-
vision a self-organizing system, where nodes that provide substantial resources
can gain reputation, and be elevated to the status of super-peers. Users may want
to become super-peers out of altruism (they want DOSNs to succeed), for the
sake of the reputation (e.g., being an influential member for an interest based
community) as well as potentially to monetize their special roles (e.g., run adver-
tisements). While proposing the SuperNova architecture, we envision a dynamic
system driven by incentives and reputation, however, investigation of such incen-
tives and reputation, and its effect on determining peer behaviors is a subject for
our future study. In this paper we instead investigate the efficacy of a super-peer
based system at any time point (a snap-shot of the envisioned dynamic system),
that is to say, we try to quantify the performance of SuperNova system given any
(fixed) mix of peer population and strategies.

Keywords: System architecture, Super-peers, Storage, Self-organization

ar
X

iv
:1

10
5.

00
74

v2
 [

cs
.S

I]
 2

5
M

ay
 2

01
1

Sharma et al, Comsnets 2012

The big picture/premise

Well resourced nodes act as super-peers

incentives (could be): reputation within an interest
community, ability to monetize (e.g., using ads), …

New nodes use superpeers for storage, until they get
established in the system

so that the super-peers are not over-burdened, or become
a bottleneck for established peers, …

SuperNova: Super-peers Based Architecture for
Decentralized Online Social Networks

Rajesh Sharma and Anwitaman Datta

School of Computer Engineering, Nanyang Technological University, Singapore.
{raje0014,Anwitaman}@ntu.edu.sg

Abstract. Recent years have seen several earnest initiatives from both academic
researchers as well as open source communities to implement and deploy decen-
tralized online social networks (DOSNs). The primary motivations for DOSNs
are privacy and autonomy from big brotherly service providers. The promise of
decentralization is complete freedom for end-users from any service providers
both in terms of keeping privacy about content and communication, and also from
any form of censorship. However decentralization introduces many challenges.
One of the principal problems is to guarantee availability of data even when the
data owner is not online, so that others can access the said data even when a
node is offline or down. Intuitively this can be solved by replicating the data on
other users’ machines. Existing DOSN proposals try to solve this problem using
heuristics which are agnostic to the various kinds of heterogeneity both in terms
of end user resources as well as end user behaviors in such a system. For instance,
some propose replication at friends, or at some other peers based on other heuris-
tics such as reciprocal storage among nodes with similar availability, or storage
in a global DHT realized using all peers’ resources. In this paper, we argue that
a pragmatic design needs to explicitly allow for and leverage on system hetero-
geneity, and provide incentives for the resource rich participants in the system
to contribute such resources. To that end we introduce SuperNova - a super-peer
based DOSN architecture. Super-peers can help (i) bootstrap new peers who are
yet to have/find any friends by either providing them storage space, (ii) maintain-
ing a directory of users, so that users can find friends in the network by name or
interests, (iii) help peers find other peers to store their content in case they don’t
have adequate friends to do so, or if their friends are already overloaded. We en-
vision a self-organizing system, where nodes that provide substantial resources
can gain reputation, and be elevated to the status of super-peers. Users may want
to become super-peers out of altruism (they want DOSNs to succeed), for the
sake of the reputation (e.g., being an influential member for an interest based
community) as well as potentially to monetize their special roles (e.g., run adver-
tisements). While proposing the SuperNova architecture, we envision a dynamic
system driven by incentives and reputation, however, investigation of such incen-
tives and reputation, and its effect on determining peer behaviors is a subject for
our future study. In this paper we instead investigate the efficacy of a super-peer
based system at any time point (a snap-shot of the envisioned dynamic system),
that is to say, we try to quantify the performance of SuperNova system given any
(fixed) mix of peer population and strategies.

Keywords: System architecture, Super-peers, Storage, Self-organization

ar
X

iv
:1

10
5.

00
74

v2
 [

cs
.S

I]
 2

5
M

ay
 2

01
1

Sharma et al, Comsnets 2012

The big picture/premise

Well resourced nodes act as super-peers

incentives (could be): reputation within an interest
community, ability to monetize (e.g., using ads), …

New nodes use superpeers for storage, until they get
established in the system

so that the super-peers are not over-burdened, or become
a bottleneck for established peers, …

Superpeers help coordinating, finding storage partners, etc.

SuperNova: Super-peers Based Architecture for
Decentralized Online Social Networks

Rajesh Sharma and Anwitaman Datta

School of Computer Engineering, Nanyang Technological University, Singapore.
{raje0014,Anwitaman}@ntu.edu.sg

Abstract. Recent years have seen several earnest initiatives from both academic
researchers as well as open source communities to implement and deploy decen-
tralized online social networks (DOSNs). The primary motivations for DOSNs
are privacy and autonomy from big brotherly service providers. The promise of
decentralization is complete freedom for end-users from any service providers
both in terms of keeping privacy about content and communication, and also from
any form of censorship. However decentralization introduces many challenges.
One of the principal problems is to guarantee availability of data even when the
data owner is not online, so that others can access the said data even when a
node is offline or down. Intuitively this can be solved by replicating the data on
other users’ machines. Existing DOSN proposals try to solve this problem using
heuristics which are agnostic to the various kinds of heterogeneity both in terms
of end user resources as well as end user behaviors in such a system. For instance,
some propose replication at friends, or at some other peers based on other heuris-
tics such as reciprocal storage among nodes with similar availability, or storage
in a global DHT realized using all peers’ resources. In this paper, we argue that
a pragmatic design needs to explicitly allow for and leverage on system hetero-
geneity, and provide incentives for the resource rich participants in the system
to contribute such resources. To that end we introduce SuperNova - a super-peer
based DOSN architecture. Super-peers can help (i) bootstrap new peers who are
yet to have/find any friends by either providing them storage space, (ii) maintain-
ing a directory of users, so that users can find friends in the network by name or
interests, (iii) help peers find other peers to store their content in case they don’t
have adequate friends to do so, or if their friends are already overloaded. We en-
vision a self-organizing system, where nodes that provide substantial resources
can gain reputation, and be elevated to the status of super-peers. Users may want
to become super-peers out of altruism (they want DOSNs to succeed), for the
sake of the reputation (e.g., being an influential member for an interest based
community) as well as potentially to monetize their special roles (e.g., run adver-
tisements). While proposing the SuperNova architecture, we envision a dynamic
system driven by incentives and reputation, however, investigation of such incen-
tives and reputation, and its effect on determining peer behaviors is a subject for
our future study. In this paper we instead investigate the efficacy of a super-peer
based system at any time point (a snap-shot of the envisioned dynamic system),
that is to say, we try to quantify the performance of SuperNova system given any
(fixed) mix of peer population and strategies.

Keywords: System architecture, Super-peers, Storage, Self-organization

ar
X

iv
:1

10
5.

00
74

v2
 [

cs
.S

I]
 2

5
M

ay
 2

01
1

Sharma et al, Comsnets 2012

Representative result
(a) Cumulative Availability (b) Individual Availability

(c) System Performance

Fig. 2. Comparison for Friend’s Time (FT) and Total Time (TT) for Deviation (D) and
NonDeviation (ND)

compared to a node which has scattered his data, like by selecting some strangers as
well. This observation is reinforced with the help of Figure 2(c), where the total per-
centage of nodes for ”excellent” plus ”very good” in case of friends after introducing
deviation (FD) becomes less than the total excellent nodes without introducing the de-
viation (FND). If we consider the total time as a measure to find availability, we notice
that there is not much difference in performance (excellent plus very good) between no
deviation (NDTT) and when deviation is introduced (TTD). This can be attributed to
the fact that if a node spread his data to nodes other than friends, then he will be less
affected by the deviation and thus he can either choose strangers, and if strangers are
not willing to do so he can take help of super-peers.
2. Comparison of Flat Vs Super-peer architectures: We also compare our approach
to a flat scheme where there are no super-peers, in contrast to our architecture. In the
absence of a trusting authority like super-peers, it is difficult to keep a strangers’ list or
trust information regarding strangers for finding suitable store-keepers. However, to do
a fair comparison with the flat scheme, we assume that nodes can convince strangers
to store their data using a reciprocity scheme [16]. This assumption works well with

Take with a huge pinch of salt: artificial data to drive simulations, with too many parameters …

Moving forward

dynamic/social data store
High availability
High consistency
High rate of data updates
Small volume of data

Security modules
Encryption
access control
…

Social modules
Analytics
Search/Navigation
Recommendation
…

…

…

Bulk
(static)
data

storage

Full-fledged
(D)OSNLight weight P2P OSN

P2P overlay with basic services: DHT lookup, peer-sampling, etc.

Could be even
(multi-)cloud based.

Can be a small dynamic clique
maintained aggressively

