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 Abstract 

• Social networks are being used by millions of people and 

there is a dramatic increase in online social networks (OSN) 

such as Facebook users. 

• Some of the information on these sites might contain 

malicious links and can lead to security risks such as, identity 

theft and cyber stalking 

• Users can not verify the authenticity of the sender 

•  We need a mechanism to detect risky users with weird 

behavior , which might be attackers or, victims and users in 

collusion network that damage caused by real users, not 

automated programs on OSNs 

• At this purpose, we characterize and understand some kind 

of risky behaviors to have a measure of risk in OSN  

• We propose a model for risk assessment based on 

anomalous behavior detection  in online social network.  

 Two Phase Anomaly Detection 
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 Features: 

• Community Discriminative Features:  
• Gender 

• Education Level 

• Number of Friends 

• Activity Level 

• Nationality 

•Behaviour Features: 
• Friendship Rate Per Longevity (FRPL) 

• Average Number of mutual friends (ANMF) 

• Balance Number of Friends,  Average number of mutual 

friends (BNFANMF) 

• Comments Rate Per Longevity (CRPL) 

• Number of comments that the user is starter (NCS) 

• Post Rate Per Longevity (PRPL) 

• Average Propagation Speed of Post Items (APSP) 

• Average Propagation Speed of Liked Items (APSL) 

• Balance No of Comment, No of like on comment (BNCNLC) 

• Balance Out, IN (BOI) 

• Balance Post: (Send & Received) (BPSPR) 

• Likes Rate Per Longevity & Propagation Speed of Liked Items 

(LRPLPSL) 

• Balance Number of Posts, Propagation Speed of Post Items 

(BNPPSP) 

 Main Contribution 

• Anomalous patterns:  

• We show that anomalous users obey some surprising 

patterns which gives us confidence to declare as risky the 

ones that deviate. 

• Scalability:  

• Clustering algorithm are scalable, unsupervised method for 

anomalous behavior detection. Low computation cost: 

O(n×m), where n is the number of cluster features (around 

14), and m is the number of users in the data set. 

• Effectiveness:  

• Experiment results show a Low False Positives, Low False 

Negatives and High Detection Rate. It should be robust 

under various attack strategies.  

 Results 

• Recall(R)=TP/(TP + FN)‏,  Precision(P) =TP/(TP + FP)  

• F-measure= 2*R*P/(R+P)‏ 

 Future work 

• Our approach is based on a distributed, cluster-based anomaly 

detection algorithm.  

• Data in many anomaly detection applications may come from 

many different sources 

• A key problem is how to minimise the communication overhead 

and energy consumption in the network when identifying 

anomalous behaviors.  
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• EM algorithm computes  a maximum likelihood to estimate 

parameters such as mean and standard deviation.  
• Expectation Phase: the algorithm computes the membership 

probability 

• Maximization Phase: the algorithm updates mixture model 

parameters to maximize the likelihood of the data 

• Risky level associated with a user x is given by the that 

user belong to his\her cluster. The result of this probability is 

PredictCaseLikelihood  that is the result of  anomaly 

detection model.   
 

 

 

Mapping Features - Anomalous Users 

•Attackers: Attackers are anomalous users that try to exploit 

OSN directly to propagate malware and to carry out scams. They 

include:  

• Socialbots or sybil attacks 

• Identity Clone Attack  

• Cyberbullying attack  

•Victims: In this kind of anomalies, attackers indirectly propagate 

some malicious links in the network. Users compromised by 

attackers in order to propagate malware in the network. They are: 

• Compromised account attacks  

• Socware  

• Creepers  

• Clickjacking 

•Users in collusion networks: users that use black market 

applications‏or‏collaborative‏services‏to‏unfairly‏boost‏each‏other’s‏

likes in collaborative services. Users on these services earn virtual 

credits for liking Facebook pages posted by other users. 

• The damage of these types of social anomalies is caused by 

real users, not attackers and automated programs. 

•Popular Users: Detecting popular users in OSN can be 

similar to detect anomalous users.  


