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Stream Processing




Stream Processing Engines

e Streaming Application
— Online Machine Learning
— Real Time Query Processing
— Continuous Computation

e Streaming Frameworks
— Storm, S4, Flink Streaming, Spark Streaming



Stream Processing Model

* Streaming Applications are represented by
Directed Acyclic Graphs (DAGs)
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Data Streams

m = <timestamp, key, value>
Head = <14477912, 046-XXXX817, 217>
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Stream Grouping

* Key or Fields Grouping (Hash Based)
— Single worker per key
— Stateful operators

e Shuffle Grouping (Round Robin)

— All workers per key
— Stateless Operators

e Partial Key Grouping
— Two workers per key
— MapReduce-like Operators



Key Grouping

* Key Grouping
e Scalable %
* Low Memory v/
* Load Imbalance %



Shuffle Grouping

e Shuffle Grouping
* Load Balance v/
e Memory O(W) %
e Aggregation O(W) %



Partial Key Grouping
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e Partial Key Grouping
e Scalable %
* Low Memory v/
* Load Imbalance %



Partial Key Grouping
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Problem Formulation

Input is a unbounded sequence of messages from a key
distribution

Each message is assigned to a worker for processing (i.e.,
filter, aggregate, join)

Load balance properties
— Memory Load Balance

— Network Load Balance

— Processing Load Balance

Metric: Load Imbalance
I(t) = max(L;(t)) — ayg(Li(t)), for 2 € W
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High Level Idea

O splits head from the tail

Rank kn (pn)
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How to find optimal threshold?

* Any key that exceeds the capacity of two
workers require more than two workers pi 2

2/(n)

 We need to consider the collision of the keys
while deciding the number of workers

 PKG guarantees nearly perfect load balance
for p1<1/(5n)



How to find optimal threshold?
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How many keys are in the Head?

* Plots for the number of keys in Head for two
different thresholds
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How many workers for the Head?

* D-Choices: adapts to the frequencies of the
keys in the Head

* W-Choices: allows all the workers for the keys
in the head

 Round-Robin: employs shuffle grouping for
the keys in the Head



How many workers for the Head?

 How to assign a key to set of d workers?

* Greedy-d: uses d different hash functions
— generate set of d candidate workers
— assign the key to least loaded of those workers

* |In case of W-Choices, all the workers are the
candidate for a key



How to find the optimal d?

 We can write our problem as an optimization
problem

minidmize f(d;D,0) =d x |Hp.el

subject to ;ll[l(m)] <eE€.




How to find optimal d?

e We can rewrite the constraint

olt] 3o 3ot

i<h h<i<‘H‘ l>‘H‘

* Forinstance for the first key with p:
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How to find optimal d?

e We can rewrite the constraint

Soel2] 3 nol2) Tn=(2)

i<h h<is‘H‘ i>‘H‘

where

hxd
b=n—n(n_1)
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What are the values of d?
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Memory Overhead

* Compared to PKG
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Memory Overhead

» Compared to SG
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Experimental Evaluation

* Datasets
Dataset Symbol Messages Keys 01(%)
Wikipedia WP 22M 2.9M 9.32
Twitter ™™ 1.2G 31M 2.67
Cashtags CT 690k 2.9k 3.29
Zipf ZF 10 10%,10°,10° o =

2.z ?
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Experimental Evaluation

* Algorithms

Symbol  Algorithm Head vs. Tail

D-C D-Choices
w-C  W-Choices Specialized on head
RR  Round-Robin

PKG Partial Key Grouping

SG  Shuffle Grouping Treats all keys equally

25



How good are estimated d?

Comparison of estimated d versus the minimal

experimental value of d
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Imbalance I(m)

Imbalance [(m)

Load Imbalance for Zipf
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Load balance for real workloads

 Comparison of D-C, WC with PKG in terms of
load balance

Imbalance I(m)
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Load Imbalance over time

e Load imbalance over time for the real-world
datasets
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Throughput on real DSPE

* Throughput on a cluster deployment on
Apache Storm for KG, PKG, SG, D-C, and W-C
on the ZF dataset
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Latency (ms)

4500

4000
3500 r
3000
2500
2000 r
1500
1000 -
500 | p

Latency on a real DSPE

Latency (on a cluster deployment on Apache
Storm for KG, PKG, SG, D-C, and W-C
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Conclusion

* We propose two algorithms to achieve load
balance at scale for DSPEs

e Use heavy hitters to separate the head of the
distribution and process on larger set of
workers

* Improvement translate into 150% gain in
throughput and 60% gain in latency over PKG
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