
The Naive Bayesian Classifier

Anders Holst
Erik Ylipää

August 7, 2015

In this assignment you will implement a naive Bayesian classifier. The naive Bayesian clas-
sifier is one of the most simple machine learning algorithms, which nevertheless gives sur-
prisingly good results for many classification tasks. Furthermore, it is suitable in a streaming,
distributed, massive data context, since it is a compact model that does not grow with the
data, it can be incrementally updated as new data arrives, and it can be implemented in a dis-
tributed way. Here we will not deal with the distributed implementation, but it will support
incremental updating in case of streaming data.

1 THEORETICAL BACKGROUND OF THE NAIVE BAYESIAN CLASSIFIER

The naive Bayesian classifier is a statistical machine learning method. The approach is to try
to calculate the probability that a certain feature vector x belongs to a class Ck ,k ∈ K , where K
is the set of classes. To minimize the number of wrong classifications, we should then select
the class with the highest probability as our classification of the feature vector. Below we
denote the dimensionality of x, i.e. the number of features, with d .

Formally the probability of class Ck given x is denoted:

P (Ck |x).

To calculate the class probability, we first rewrite the probability using Bayes theorem:

P (Ck |x) = P (x|Ck)P (Ck)

P (x)

Next we note that we only need to find the class with the highest probability, and since
the denominator P (x) in the expression is the same for all classes when classifying a specific

1

feature vector x, it has no effect on the relative ordering of the class probabilities, and can
be ignored. So we remove it and change the equal sign into the symbol ∝ which means
proportional to:

P (Ck |x) ∝ P (x|Ck)P (Ck)

Here P (Ck) is the probability of observing class Ck , i.e. the proportion of all entities to clas-
sify that belong to class Ck . P (x|Ck) is the probability distribution of the features x given that
the entity belongs to class Ck . Although this distribution is easier to handle than P (Ck |x) di-
rectly, it is problematic when the number of features is high, since a high dimensional prob-
ability distribution requires much more training samples (exponentially in the number of
dimensions) to estimate reliably.

To solve this we make a simplifying “naive” assumption: that all the features are indepen-
dent of each other (within each class). Then we can express the joint probability distribution
over all features in the vector as a product of probability distributions for each feature sepa-
rately:

P (Ck |x) ∝ P (Ck)
∏

i
P (xi |Ck)

This means that for each class, instead of trying to estimate an d-dimensional probabil-
ity distribution (combinatorial complexity), we simplify it into estimating d 1-dimensional
probability distributions, one for each feature. This is the naive Bayesian classifier.

Note that the classifier given above uses a series of multiplication of probabilities. Multi-
plying many small values represented as floating point values in the computer can quickly
lead to underflow, which means that the result is smaller than the floating point format can
handle and will be truncated due to rounding. A common way to handle this is to use the
logarithm of the probabilities instead. That will turn the product of probabilities into a sum
of log probabilities instead, which is much more numerically stable to use:

log(constant ·P (Ck |x)) = log(P (Ck))+∑
i

log(P (xi |Ck)) (1.1)

(Note that since the logarithm is a monotonically increasing function, the class with the
highest probability is still the class with the highest value of the right hand side above, so
there is usually no need to actually calculate the probability on the left hand side.)

The machine learning task now consists of two steps: First, given a training set of feature
vectors and their corresponding class labels, estimate the probability distributions P (Ck) and
P (xi |Ck), and then use these estimations in Equation (1.1) to find the most probable class
label for an unlabeled feature vector.

2 ESTIMATING THE PROBABILITIES

The naive Bayesian classifier can handle both discrete and continuous valued features. When
the features xi are discrete, we can estimate the probability P (xi |Ck) as the ratio that each
value xi takes to all values of xi for a given class Ck . This essentially amounts to keeping a
count of the times we have seen a particular value of xi for each class. The same method can

2

be used to estimate the class probabilities P (Ck), i.e as the number of occurrences of each
class divided by the total number of seen samples:

P̂ (Ck) = nk

ntot
(2.1)

If xi instead is continuous, we need to use a continuous probability density function to
estimate the distribution. This is often done by using a Gaussian distribution since it only
depends on the mean and variance of the feature, which is easy to compute. This is what we
will use in this task, since all features are continuous valued in the selected data sets.

The probability for a value xi given a class Ck using a Gaussian distribution is:

P (xi |Ck) = 1√
2πσ2

i k

exp(− (xi −µi k)2

2σ2
i k

)

Where µi k and σ2
i k is the mean and variance for feature xi in the class Ck . To estimate µi k we

use the mean of the observed values of feature i in klass k:

µ̂i k =
∑

j x j i

nk

where here j goes over all feature vectors belonging to class k.
Similarly, to estimate σ2

i k we use the unbiased sample variance:

σ̂2
i k =

∑
j (x j i − µ̂i k)2

nk −1

However, we will need to have incremental versions of these estimates here: To make the
classifier work in a streaming data context, the estimates should get gradually updated based
on their previous values and the new observation. Iterative versions of the estimates look like:

σ̂2
i k ←

{
nk−1

nk
σ̂2

i k +
(xi−µ̂i k)2

nk+1 nk > 0

0 otherwise
(2.2)

µ̂i k ← µ̂i k +
(xi − µ̂i k)

nk +1
(2.3)

nk ← nk +1 (2.4)

(Note that all the right hand sides in the assignments above refer to the old values of the
variables, so make sure to update them in the right order to not confuse old and new values.)

The above parameters, i.e. the estimated mean µ̂i k and variance σ̂2
i k of each feature i for

each class k, together with the estimate of the class probabilities P̂ (Ck) of Equation (2.1), are
the parameters to estimate from the training data.

3

3 THE ASSIGNMENT TASK

The assignment project is a Flink Scala project. The assignment files can be downloaded from
the canvas web page. The project has a class called StreamingClassifier as its entrypoint.
The class you have to modify for the assignment is NaiveBayesModel where you need to
implement the following methods:

update This method is fed labeled samples. The update methods needs to update the mean,
variance and counters the sample class, as shown in eqs. (2.2) to (2.4).

predict This method is fed unlabeled samples. The method should output the class label
of the most likely class given the features. You need to use eqs. (1.1) and (2.1)

The places you need to add implementations are commented with the text:

// TODO: Write code here

3.1 TO SUBMIT

You should hand in the following for the assignment:

1. The file NaiveBayesModel.scalawhere you have implemented the update and predict

functions.

2. The last output window from the file prediction_output.txt as produced by the
command in 3.4. See figure 3.1 for an example of the output.

3.2 PREREQUISITES

You need to have flink and maven installed, if you are using the flink virtual machine, you
should have the necessary prerequisites. To simplify the following commands, we set up
some environmental variables below. If you are using the flink virtual machine (’eit-flink’),
you can run the following:

$ export FLINK_PATH=/home/eit/flink/build-target

If you have your own flink installation, point the variable to the root which contains the
flink installation (should have a bin directory).

3.3 BUILDING THE PROJECT

First you need to build the project. Navigate to the directory where you unzipped the project
(the project directory is named naive-bayes) and set a environmental variable pointing to
the current directory (which should be the project root):

$ export NB_PATH=$(pwd)

4

The project assumes you are using flink 0.10-SNAPSHOT. If you are using 0.9, you need to
change the dependencies in the pom.xml file. Now compile the project and generate a jar

using maven:

$ mvn clean package -Pbuild-jar

You will get a warning about POJO compliance, which can be ignored.

3.4 RUNNING THE PROJECT

Set an environmental variable for the data path. Make sure you are at the naive-bayes root
directory. Then give the command:

$ export NB_DATA_PATH=$NB_PATH/data

Before running the project, start the flink runtime system:

$ $FLINK_PATH/bin/start-local.sh

The compiled package ended up in the target directory. Use flink to run it:

$ $FLINK_PATH/bin/flink run $NB_PATH/target/streamingbayes-0.1.jar \

--training-data $NB_DATA_PATH/train.csv \

--test-data $NB_DATA_PATH/test.csv \

--output $NB_DATA_PATH/prediction_output.txt

This produces a text file with the performance of the classifier on the test data stream.
The stream is consumed in a sliding window, and the model is applied to all samples in
that window. After a window has been consumed, a summary is printed to the output file
($NB_DATA_PATH/prediction_output.txt). An example of such a window is given in fig-
ure 3.1.

The output shows how many samples the model has seen, as well as performance on the
test data. The confusion matrix shows a count of what label the model assigns (along the
columns), against the true label (the rows) of the matrix. A perfect predictor would give a
matrix which is diagonal. Any off-diagonal counts are prediction errors.

Sometimes the model predicts data on the test stream before it has seen any training
examples, in this case the parameters will be 0 or NaN.

Note: If the output file already exists, the execution will fail with a java.io.IOException.
You have to either remove the existing file or give an output path which doesn’t already ex-
ist.

3.5 THE DATA

The data directory at the project root contains a number of comma separated value (CSV)
files with data. The file train.csv and test.csv are used in the assignment. These are

5

==

Test window number: 4

Seen training examples: 391

Missclass ratio (incorrect predictions / total observations): 0,11500

Confusion matrix

Predicted label

_____0_____1

True label 0| 344 24

1| 22 10

Class probabilities:

0: 0,946

1: 0,054

Class means:

0: (49,514, 1,586, 39,992, 1,485, 0,955, 1,452, 10,328, 2,070, 1,237)

1: (63,238, 3,619, 31,619, 4,169, 1,729, 3,074, 10,507, 3,281, 1,190)

Class variances:

0: (583,400, 0,242, 29,486, 0,137, 0,195, 0,798, 13,313, 1,689, 2,418)

1: (522,690, 90,123, 68,748, 91,936, 0,066, 0,487, 16,366, 4,600, 0,602)

==

Figure 3.1: Example of a single frame from the prediction output file on a dataset with 2
classes. In the confusion matrix we see that the classifier has problems with the
positive class (label 1). It usually predicts that it belongs to the negative (label 0)
class.

based on synthetic data generated from a gaussian mixture model with only 2 dimensions
and 5 classes.

The python script src/main/python/generate_data.py can be used if you want to gen-
erate more test data. It depends on numpy.

The files unknown_train.csv and unknown_test.csv is a dataset based on real data, and
is much harder to accurately classify.

6

	Theoretical background of the naive Bayesian classifier
	Estimating the probabilities
	The assignment task
	To submit
	Prerequisites
	Building the project
	Running the project
	The data

