
Cloud and Big Data Summer
School, Stockholm, Aug., 2015
Jeffrey D. Ullman

1. Easy parallel programming.
2. Invisible management of hardware and

software failures.
3. Easy management of very-large-scale data.

2

ÁA MapReduce job starts with a collection of inputs
of a single type.
ÁApply a user-written Map function to each input,

in parallel.

ÁMapper = application of the Map function to a single
input.

ÁUsually many mappers are grouped into a Map Task.

ÁThe output of the Map function is a set of 0, 1, or
more key-value pairs.
ÁThe system sorts all the key-value pairs by key,

forming key-(list of values) pairs.

ÁAnother user-written function, the Reduce
function, is applied to each key-(list of values).

ÁApplication of the Reduce function to one key and its
list of values is a reducer.

ÁOften, many reducers are grouped into a Reduce Task.

ÁEach reducer produces some output, and the
output of the entire job is the union of what is
produced by each reducer.

4

5

Mappers Reducers

Input Output

key-value
 pairs

ÁWe have a large file of documents, which are
sequences of words.
ÁCount the number of times each distinct word

appears in the file.

map(key, value):
// key: document ID; value: text of document
 FOR (each word w in value)
 emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers
 result = 0;
 FOR (each integer v on value-list)
 result += v;
 emit(result);

%ØÐÅÃÔ ÔÏ ÂÅ ÁÌÌ ΧȭÓȟ
ÂÕÔ ȰÃÏÍÂÉÎÅÒÓȱ ÁÌÌÏ×
local summing of
integers with the same
key before passing
to reducers.

8

Á MapReduce is designed to deal with compute
nodes failing to execute a Map task or Reduce
task.

Á Re-execute failed tasks, not whole jobs.
Á Key point: MapReduce tasks have the blocking

property: no output is used until task is
complete.

Á Thus, we can restart a Map task that failed
without fear that a Reduce task has already
used some output of the failed Map task.

1. Execution time of the mappers and reducers.
2. Communication cost of transmitting the

output of the mappers to the location of the
proper reducer.

ÁUsually, many compute nodes handle both sorts of
tasks in parallel, so there is little chance that the
source and destination of a key-value pair are the
same.

ÁOften, communication cost dominates.

9

Á! ǊŜŀƭ ǎǘƻǊȅ ŦǊƻƳ {ǘŀƴŦƻǊŘΩǎ /{опм Řŀǘŀ-mining
project class.
ÁData consisted of records for 3000 drugs.

ÁList of patients taking, dates, diagnoses.

ÁAbout 1M of data per drug.

ÁProblem was to find drug interactions.

ÁExample: two drugs that when taken together
increase the risk of heart attack.

ÁMust examine each pair of drugs and compare
their data.

11

ÁThe first attempt used the following plan:

ÁKey = set of two drugs {i, j}.

ÁValue = the record for one of these drugs.

ÁGiven drug i and its record Ri, the mapper
generates all key-value pairs ({i, j}, Ri), where j is
any other drug besides i.
ÁEach reducer receives its key and a list of the

two records for that pair: ({i, j}, [Ri, Rj]).

12

13

Mapper
for drug 2

Mapper
for drug 1

Mapper
for drug 3

Drug 1 data {1, 2}
Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data {1, 3}

Drug 2 data {1, 2}

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data {2, 3}

14

Mapper
for drug 2

Mapper
for drug 1

Mapper
for drug 3

Drug 1 data {1, 2}
Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data {1, 3}

Drug 2 data {1, 2}

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data {2, 3}

15

Drug 1 data {1, 2} Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data

Drug 2 data

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data

Á3000 drugs
Átimes 2999 key-value pairs per drug
Átimes 1,000,000 bytes per key-value pair
Á= 9 terabytes communicated over a 1Gb

Ethernet
Á= 90,000 seconds of network use.

16

ÁThe team grouped the drugs into 30 groups of
100 drugs each.

ÁSay G1 = drugs 1-100, G2 = drugs 101-нллΣΧΣ D30 =
drugs 2901-3000.

ÁLet g(i) = the number of the group into which drug i
goes.

17

ÁA key is a set of two group numbers.
ÁThe mapper for drug i produces 29 key-value

pairs.

ÁEach key is the set containing g(i) and one of the
other group numbers.

ÁThe value is a pair consisting of the drug number i
and the megabyte-long record for drug i.

18

ÁThe reducer for pair of groups {m, n} gets that
key and a list of 200 drug records ς the drugs
belonging to groups m and n.
ÁIts job is to compare each record from group m

with each record from group n.

ÁSpecial case: also compare records in group n with
each other, if m = n+1 or if n = 30 and m = 1.

ÁNotice each pair of records is compared at
exactly one reducer, so the total computation is
not increased.

19

