
Cloud and Big Data Summer
School, Stockholm, Aug., 2015
Jeffrey D. Ullman

 To motivate the Bloom-filter idea, consider a
web crawler.

 It keeps, centrally, a list of all the URL’s it has
found so far.

 It assigns these URL’s to any of a number of
parallel tasks; these tasks stream back the URL’s
they find in the links they discover on a page.

 It needs to filter out those URL’s it has seen
before.

2

 A Bloom filter placed on the stream of URL’s will
declare that certain URL’s have been seen
before.

 Others will be declared new, and will be added
to the list of URL’s that need to be crawled.

 Unfortunately, the Bloom filter can have false
positives.

 It can declare a URL has been seen before when it
hasn’t.

 But if it says “never seen,” then it is truly new.

3

 A Bloom filter is an array of bits, together with a
number of hash functions.

 The argument of each hash function is a stream
element, and it returns a position in the array.

 Initially, all bits are 0.
 When input x arrives, we set to 1 the bits h(x),

for each hash function h.

4

 Use N = 11 bits for our filter.
 Stream elements = integers.
 Use two hash functions:

 h1(x) =

 Take odd-numbered bits from the right in the binary
representation of x.

 Treat it as an integer i.

 Result is i modulo 11.

 h2(x) = same, but take even-numbered bits.

5

6

Stream
element

h1 h2
Filter contents

 25 = 11001 5 2 00100100000

00000000000

159 = 10011111 7 0 10100101000

585 = 1001001001 9 7 10100101010

 Suppose element y appears in the stream, and
we want to know if we have seen y before.

 Compute h(y) for each hash function y.
 If all the resulting bit positions are 1, say we

have seen y before.
 If at least one of these positions is 0, say we

have not seen y before.

7

 Suppose we have the same Bloom filter as
before, and we have set the filter to
10100101010.

 Lookup element y = 118 = 1110110 (binary).
 h1(y) = 14 modulo 11 = 3.
 h2(y) = 5 modulo 11 = 5.
 Bit 5 is 1, but bit 3 is 0, so we are sure y is not in

the set.

8

 Probability of a false positive depends on the
density of 1’s in the array and the number of
hash functions.

 = (fraction of 1’s)# of hash functions.

 The number of 1’s is approximately the number
of elements inserted times the number of hash
functions.

 But collisions lower that number slightly.

9

 Turning random bits from 0 to 1 is like throwing
d darts at t targets, at random.

 How many targets are hit by at least one dart?
 Probability a given target is hit by a given dart =

1/t.
 Probability none of d darts hit a given target is

(1-1/t)d.
 Rewrite as (1-1/t)t(d/t) ~= e-d/t.

10

 Suppose we use an array of 1 billion bits, 5 hash
functions, and we insert 100 million elements.

 That is, t = 109, and d = 5*108.
 The fraction of 0’s that remain will be e-1/2 =

0.607.
 Density of 1’s = 0.393.
 Probability of a false positive = (0.393)5 =

0.00937.

11

 Suppose Google would like to examine its
stream of search queries for the past month to
find out what fraction of them were unique –
asked only once.

 But to save time, we are only going to sample
1/10th of the stream.

 The fraction of unique queries in the sample !=
the fraction for the stream as a whole.

 In fact, we can’t even adjust the sample’s fraction to
give the correct answer.

13

 The length of the sample is 10% of the length of
the whole stream.

 Suppose a query is unique.

 It has a 10% chance of being in the sample.

 Suppose a query occurs exactly twice in the
stream.

 It has an 18% chance of appearing exactly once in
the sample.

 And so on … The fraction of unique queries in
the stream is unpredictably large.

14

 Our mistake: we sampled based on the
position in the stream, rather than the value
of the stream element.

 The right way: hash search queries to 10
buckets 0, 1,…, 9.

 Sample = all search queries that hash to
bucket 0.

 All or none of the instances of a query are selected.

 Therefore the fraction of unique queries in the
sample is the same as for the stream as a whole.

15

 Problem: What if the total sample size is
limited?

 Solution: Hash to a large number of buckets.
 Adjust the set of buckets accepted for the

sample, so your sample size stays within
bounds.

16

 Suppose we start our search-query sample at
10%, but we want to limit the size.

 Hash to, say, 100 buckets, 0, 1,…, 99.

 Take for the sample those elements hashing to
buckets 0 through 9.

 If the sample gets too big, get rid of bucket 9.
 Still too big, get rid of 8, and so on.

17

 This technique generalizes to any form of data
that we can see as tuples (K, V), where K is the
“key” and V is a “value.”

 Distinction: We want our sample to be based on
picking some set of keys only, not pairs.

 In the search-query example, the data was “all key.”

 Hash keys to some number of buckets.
 Sample consists of all key-value pairs with a key

that goes into one of the selected buckets.

18

 Data = tuples of the form (EmpID, Dept, Salary).
 Query: What is the average range of salaries

within a department?
 Key = Dept.
 Value = (EmpID, Salary).
 Sample picks some departments, has salaries

for all employees of that department, including
its min and max salaries.

19

21

 Problem: a data stream consists of elements
chosen from a set of size n. Maintain a count
of the number of distinct elements seen so far.

 Obvious approach: maintain the set of
elements seen.

22

 How many different words are found among
the Web pages being crawled at a site?

 Unusually low or high numbers could indicate
artificial pages (spam?).

 How many unique users visited Facebook this
month?

 How many different pages link to each of the
pages we have crawled.

 Useful for estimating the PageRank of these pages.

23

 Real Problem: what if we do not have space to
store the complete set?

 Estimate the count in an unbiased way.
 Accept that the count may be in error, but limit

the probability that the error is large.

24

 Pick a hash function h that maps each of the n
elements to at least log2n bits.

 For each stream element a, let r(a) be the
number of trailing 0’s in h(a).

 Record R = the maximum r(a) seen.
 Estimate = 2R.

25

 The probability that a given h(a) ends in at
least i 0’s is 2-i.

 If there are m different elements, the
probability that R ≥ i is 1 – (1 - 2-i)m.

Prob. a given h(a)
ends in fewer than
i 0’s.

Prob. all h(a)’s
end in fewer than
i 0’s.

26

 Since 2-i is small, 1 - (1-2-i)m ≈ 1 - e-m2 .
 If 2i >> m, 1 - e-m2 ≈ 1 - (1 - m2-i) ≈ m/2i ≈ 0.
 If 2i << m, 1 - e-m2 ≈ 1.

 Thus, 2R will almost always be around m.

-i

First 2 terms of the
Taylor expansion of e x

-i

-i

27

 E(2R) is, in principle, infinite.

 Probability halves when R -> R+1, but value
doubles.

 Workaround involves using many hash
functions and getting many samples.

 How are samples combined?

 Average? What if one very large value?

 Median? All values are a power of 2.

28

 Partition your samples into small groups.

 O(log n), where n = size of universal set, suffices.

 Take the average within each group.
 Then take the median of the averages.

29

 Suppose a stream has elements chosen from a
set of n values.

 Let mi be the number of times value i occurs.
 The kth moment is the sum of (mi)

k over all i.

30

 0th moment = number of different elements in
the stream.

 The problem just considered.

 1st moment = count of the numbers of
elements = length of the stream.

 Easy to compute.

 2nd moment = surprise number = a measure of
how uneven the distribution is.

31

 Stream of length 100; 11 values appear.
 Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9.

Surprise # = 910.
 Surprising: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1. Surprise

= 8,110.

32

 Works for all moments; gives an unbiased
estimate.

 We’ll just concentrate on 2nd moment.
 Based on calculation of many random variables

X.

 Each requires a count in main memory, so number is
limited.

33

 Assume stream has length n.
 Pick a random time to start, so that any time is

equally likely.
 Let the chosen time have element a in the

stream.
 X = n * ((twice the number of a’s in the stream

starting at the chosen time) – 1).

 Note: store n once, count of a’s for each X.

34

 2nd moment is Σa(ma)2.

 E(X) = (1/n)(Σall times t n * (twice the number

of times the stream element at time t

appears from that time on) – 1).
 = Σa (1/n)(n)(1+3+5+…+2ma-1) .
 = Σa (ma)2.

Time when
the last a
is seen

Time when
penultimate
 a is seen

Time when
the first a
is seen Group times

by the value
seen

35

 We assumed there was a number n, the
number of positions in the stream.

 But real streams go on forever, so n changes; it
is the number of inputs seen so far.

36

1. The variables X have n as a factor – keep n
separately; just hold the count in X.

2. Suppose we can only store k counts. We
cannot have one random variable X for each
start-time, and must throw out some start-
times as we read the stream.

 Objective: each starting time t is selected with
probability k/n.

37

 Choose the first k times for k variables.
 When the nth element arrives (n > k), choose it

with probability k/n.
 If you choose it, throw one of the previously

stored variables out, with equal probability.
 Probability of each of the first n-1 positions

being chosen:
 (n-k)/n * k/(n-1) + k/n * k/(n-1) * (k-1)/k = k/n

n-th position
not chosen

Previously
chosen

n-th position
chosen

Previously
chosen

Survives

