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 To motivate the Bloom-filter idea, consider a 
web crawler. 

 It keeps, centrally, a list of all the URL’s it has 
found so far. 

 It assigns these URL’s to any of a number of 
parallel tasks; these tasks stream back the URL’s 
they find in the links they discover on a page. 

 It needs to filter out those URL’s it has seen 
before. 
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 A Bloom filter placed on the stream of URL’s will 
declare that certain URL’s have been seen 
before. 

 Others will be declared new, and will be added 
to the list of URL’s that need to be crawled. 

 Unfortunately, the Bloom filter can have false 
positives. 

 It can declare a URL has been seen before when it 
hasn’t. 

 But if it says “never seen,” then it is truly new. 
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 A Bloom filter is an array of bits, together with a 
number of hash functions. 

 The argument of each hash function is a stream 
element, and it returns a position in the array. 

 Initially, all bits are 0. 
 When input x arrives, we set to 1 the bits h(x), 

for each hash function h. 
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 Use N = 11 bits for our filter. 
 Stream elements = integers. 
 Use two hash functions: 

 h1(x) = 

 Take odd-numbered bits from the right in the binary 
representation of x. 

 Treat it as an integer i. 

 Result is i modulo 11. 

 h2(x) = same, but take even-numbered bits. 
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Stream 
element 

h1 h2 
Filter contents 

  25 = 11001                   5                2                          00100100000 

00000000000 

159 = 10011111            7                0                          10100101000 

585 = 1001001001     9                7                          10100101010 



 Suppose element y appears in the stream, and 
we want to know if we have seen y before. 

 Compute h(y) for each hash function y. 
 If all the resulting bit positions are 1, say we 

have seen y before. 
 If at least one of these positions is 0, say we 

have not seen y before. 
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 Suppose we have the same Bloom filter as 
before, and we have set the filter to 
10100101010. 

 Lookup element y = 118 = 1110110 (binary). 
 h1(y) = 14 modulo 11 = 3. 
 h2(y) = 5 modulo 11 = 5. 
 Bit 5 is 1, but bit 3 is 0, so we are sure y is not in 

the set. 
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 Probability of a false positive depends on the 
density of 1’s in the array and the number of 
hash functions. 

 = (fraction of 1’s)# of hash functions. 

 The number of 1’s is approximately the number 
of elements inserted times the number of hash 
functions. 

 But collisions lower that number slightly. 
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 Turning random bits from 0 to 1 is like throwing 
d darts at t targets, at random. 

 How many targets are hit by at least one dart? 
 Probability a given target is hit by a given dart = 

1/t. 
 Probability none of d darts hit a given target is 

(1-1/t)d. 
 Rewrite as (1-1/t)t(d/t) ~= e-d/t. 
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 Suppose we use an array of 1 billion bits, 5 hash 
functions, and we insert 100 million elements. 

 That is, t = 109, and d = 5*108. 
 The fraction of 0’s that remain will be e-1/2 = 

0.607. 
 Density of 1’s = 0.393. 
 Probability of a false positive = (0.393)5 = 

0.00937. 
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 Suppose Google would like to examine its 
stream of search queries for the past month to 
find out what fraction of them were unique – 
asked only once. 

 But to save time, we are only going to sample 
1/10th of the stream. 

 The fraction of unique queries in the sample != 
the fraction for the stream as a whole. 

 In fact, we can’t even adjust the sample’s fraction to 
give the correct answer. 
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 The length of the sample is 10% of the length of 
the whole stream. 

 Suppose a query is unique. 

 It has a 10% chance of being in the sample. 

 Suppose a query occurs exactly twice in the 
stream. 

 It has an 18% chance of appearing exactly once in 
the sample. 

 And so on …  The fraction of unique queries in 
the stream is unpredictably large. 
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 Our mistake: we sampled based on the 
position in the stream, rather than the value 
of the stream element. 

 The right way: hash search queries to 10 
buckets 0, 1,…, 9. 

 Sample = all search queries that hash to 
bucket 0. 

 All or none of the instances of a query are selected. 

 Therefore the fraction of unique queries in the 
sample is the same as for the stream as a whole. 
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 Problem: What if the total sample size is 
limited? 

 Solution: Hash to a large number of buckets. 
 Adjust the set of buckets accepted for the 

sample, so your sample size stays within 
bounds. 
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 Suppose we start our search-query sample at 
10%, but we want to limit the size. 

 Hash to, say, 100 buckets, 0, 1,…, 99. 

 Take for the sample those elements hashing to 
buckets 0 through 9. 

 If the sample gets too big, get rid of bucket 9. 
 Still too big, get rid of 8, and so on. 
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 This technique generalizes to any form of data 
that we can see as tuples (K, V), where K is the 
“key” and V is a “value.” 

 Distinction: We want our sample to be based on 
picking some set of keys only, not pairs. 

 In the search-query example, the data was “all key.” 

 Hash keys to some number of buckets. 
 Sample consists of all key-value pairs with a key 

that goes into one of the selected buckets. 
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 Data = tuples of the form (EmpID, Dept, Salary). 
 Query: What is the average range of salaries 

within a department? 
 Key = Dept. 
 Value = (EmpID, Salary). 
 Sample picks some departments, has salaries 

for all employees of that department, including 
its min and max salaries. 
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 Problem: a data stream consists of elements 
chosen from a set of size n.  Maintain a count 
of the number of distinct elements seen so far. 

 Obvious approach: maintain the set of 
elements seen. 
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 How many different words are found among 
the Web pages being crawled at a site? 

 Unusually low or high numbers could indicate 
artificial pages (spam?). 

 How many unique users visited Facebook this 
month? 

 How many different pages link to each of the 
pages we have crawled. 

 Useful for estimating the PageRank of these pages. 
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 Real Problem: what if we do not have space to 
store the complete set? 

 Estimate the count in an unbiased way. 
 Accept that the count may be in error, but limit 

the probability that the error is large. 
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 Pick a hash function h that maps each of the n 
elements to at least log2n bits. 

 For each stream element a, let r(a) be the 
number of trailing 0’s in h(a). 

 Record R = the maximum r(a) seen. 
 Estimate = 2R. 
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 The probability that a given h(a) ends in at 
least i 0’s is 2-i. 

 If there are m different elements, the 
probability that R ≥ i is 1 – (1 - 2-i)m. 

Prob. a given h(a) 
ends in fewer than 
i  0’s. 

Prob. all h(a)’s 
end in fewer than 
i  0’s. 
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 Since 2-i is small, 1 - (1-2-i)m ≈ 1 - e-m2   . 
 If 2i >> m, 1 - e-m2  ≈ 1 - (1 - m2-i) ≈ m/2i ≈ 0. 
 If 2i << m, 1 - e-m2   ≈ 1. 

 Thus, 2R will almost always be around m. 

-i 

First 2 terms of the 
Taylor expansion of e x 

-i 

-i 
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 E(2R) is, in principle, infinite. 

 Probability halves when R -> R+1, but value 
doubles.  

 Workaround involves using many hash 
functions and getting many samples. 

 How are samples combined? 

 Average? What if one very large value? 

 Median? All values are a power of 2. 
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 Partition your samples into small groups. 

 O(log n), where n = size of universal set, suffices. 

 Take the average within each group. 
 Then take the median of the averages. 
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 Suppose a stream has elements chosen from a 
set of n values. 

 Let mi be the number of times value i occurs. 
 The kth moment is the sum of (mi)

k over all i. 
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 0th moment = number of different elements in 
the stream. 

 The problem just considered. 

 1st moment = count of the numbers of 
elements = length of the stream. 

 Easy to compute. 

 2nd moment = surprise number = a measure of 
how uneven the distribution is. 
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 Stream of length 100; 11 values appear. 
 Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9.  

Surprise # = 910. 
 Surprising: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1.  Surprise 

# = 8,110. 
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 Works for all moments; gives an unbiased 
estimate. 

 We’ll just concentrate on 2nd moment. 
 Based on calculation of many random variables 

X. 

 Each requires a count in main memory, so number is 
limited. 
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 Assume stream has length n. 
 Pick a random time to start, so that any time is 

equally likely. 
 Let the chosen time have element a in the 

stream. 
 X = n * ((twice the number of a’s in the stream 

starting at the chosen time) – 1). 

 Note: store n once, count of a’s for each X. 
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 2nd moment is Σa(ma)2. 

 E(X ) = (1/n)(Σall times t n * (twice the number 

of times the stream element at time t  

appears from that time on) – 1). 
 = Σa (1/n)(n)(1+3+5+…+2ma-1) . 
 = Σa (ma)2. 

Time when 
the last a 
is seen 

Time when 
penultimate 
 a is seen 

Time when 
the first a 
is seen Group times 

by the value 
seen 
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 We assumed there was a number n, the 
number of positions in the stream. 

 But real streams go on forever, so n changes; it 
is the number of inputs seen so far. 
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1. The variables X have n as a factor – keep n 
separately; just hold the count in X. 

2. Suppose we can only store k counts.  We 
cannot have one random variable X for each 
start-time, and must throw out some start-
times as we read the stream. 

 Objective: each starting time t is selected with 
probability k/n. 
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 Choose the first k times for k variables. 
 When the nth element arrives (n > k), choose it 

with probability k/n. 
 If you choose it, throw one of the previously 

stored variables out, with equal probability. 
 Probability of each of the first n-1 positions 

being chosen: 
    (n-k)/n * k/(n-1) + k/n * k/(n-1) * (k-1)/k = k/n 

n-th position 
not chosen 

Previously 
chosen 

n-th position 
chosen 

Previously 
chosen 

Survives 


