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Abstract

In this paper we describe PKDGRAV, a parallel hierarchical tree-structured code
used to conduct cosmological simulations on shared-memory and message-passing multi-
processors. We explore performance traits of cosmological N-Body simulations on 32K to
1.3 million particles, running PKDGRAV on KSR-2 and Intel Paragon multiprocessors
with up to 128 nodes. We quantify the computation and communication requirements
of PKDGRAYV and study its scalability. We show that the shared-memory implementa-
tion performs and scales better than the message-passing. We investigate the causes of
poor scalability of the Paragon implementation and identify an implementation-specific
performance bottleneck in the software cache mechanism pertinent to the Paragon im-
plementation.

1 Introduction

The N-Body problem addresses the evolution of systems of particles (bodies) under the
influence of Newtonian gravitational forces. N-Body simulations proceed for hundreds or
thousands of time-steps, each time-step computing the force on every particle and updating
its position in space. Efficient algorithms for the N-Body problem construct a hierarchical
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description of the mass distribution (a tree) and traverse it performing exact or approxi-
mate calculation of interactions. The parallel implementation of these hierarchical methods
entails expensive, unstructured computations on huge data-sets and non-uniform communi-
cations [1, 2, 24, 28]. Consequently, a lot of attention has been focused upon the development
and performance evaluation of parallel N-Body algorithms [1, 4, 13, 32]

The purpose of this paper is to explore the performance behavior of PKDGRAV, a
“production-quality,” tree-structured, gravity code running on message-passing (INTEL
Paragon) and shared-memory (KSR-2) multiprocessors. PKDGRAV is being developed by
the High-Performance Computing and Communications group at the University of Wash-
ington, for NASA’s Earth and Space Sciences Project. The goal of this effort is to conduct
parallel cosmological N-Body simulations, to calculate the nonlinear final states of theories
of structure formation, to design and analyze observational programs, and to assess the per-
formance of state-of-the-art parallel machines [24]. In our work, we investigate basic traits
of cosmological N-Body simulations of practical interest, quantify their computation and
communication requirements, and study their scalability. Furthermore, we analyze causes
of bad performance and identify significant bottlenecks. Finally, we seek to understand the
practical limitations of parallel algorithms employed, and assess the overhead introduced by
their parallel implementation. Such a study is critical for guiding program and algorithmic
design towards the achievement of faster, more portable, and higher quality cosmological
simulations [24]. Moreover, it is helpful in exploring software and hardware aspects of
state-of-the-art parallel computers that affect application performance, and in comparing
the relative merits of different architectural and programming paradigms.

So far, a number of research projects have focused on studying the performance of paral-
lel, hierarchical N-Body algorithms [18, 29, 10, 11, 22]. Conducting performance analyses of
such parallel applications, however, is a difficult task for a variety of reasons, including the
high computational requirements of these algorithms, the great volume of instrumentation
data, the intrusiveness of instrumentation, and the low availability of large multiprocessor
systems. To cope with these problems, most studies focus on “kernels” of N-Body codes,
examine problem-instances of small data-sets, produce a few performance metrics over a
small range of problem and machine sizes, or rely on analysis, simulation and modeling.
Our approach differs, as: 1) We examine parallel codes developed and used by Astronomers
to conduct research in Astrophysics (see [24]). 2) We run and evaluate these codes on data-
sets of astrophysical interest. 3) We use parallel machines with the same architecture and
size with those employed for “production” runs.

We take this approach because we are interested primarily in the efficient parallel im-
plementation of the tree-codes developed by our group, rather than in conducting a more
theoretical study of tree-algorithms. Notably, experience has shown that, when it comes
to practical parallel performance, physical details are important. For example, the parallel
times of two N-Body simulations of similar size running on the same architecture, can be
very different if different criteria of physical accuracy are used ' . Moreover, our experiments
show that interesting bottlenecks appear only on runs involving many processors and large

!For a discussion on accuracy criteria of N-Body simulations, see the N-Body Constitution in [24]



data-sets; that is, on runs of practical interest!

The rest of the paper is organized as follows. The next section gives a brief survey
of cosmological N-Body simulation and the hierarchical tree-algorithm employed in PKD-
GRAV. In Section 3 we discuss our experimental methodology. In Section 4 we present our
measurements, explore the performance traits of the codes, and discuss performance bot-
tlenecks. Section 5 looks at scaling issues for the INTEL Paragon implementation. Finally,
Section 6 presents our conclusions and summarizes our results.

2 The Parallel k-D Tree Gravity Code

The N-Body problem addresses the gravitational evolution of astrophysical systems. It
models the dynamical changes of a continuous mass distribution by approximating it with a
number of particles interacting solely under the influence of gravity. The most computation-
ally expensive part of this calculation is comprised of %N(N — 1) gravitational interactions
between the N particles that represent the mass distribution; these interactions must be
performed for 500 to 10,000 time-steps for typical astrophysical simulations. The values
of choice for N are critical for the quality of astrophysical simulation results (see Figure 1
%), It is important to use values of N that do not compromise the validity of models for
the set of physical phenomena under investigation. To this end, N should be greater than
10 for computations aiming at determining cosmological parameters through simulation of
clusters of galaxies (like the density of the Universe) [24]. Other useful N-Body simulations
conducted by our group use N equal to 250,000 for Local Group runs, 1.3 million (10,000
time-steps) for a Virgo cluster of galaxies (Figure 1), and 3 million (700 time-steps) for a
100Mpc CDM Cosmological Volume.

Improvements in the performance and quality of N-Body simulations has been sought
in four general areas: 1) faster calculation of the gravitational accelerations; 2) multi-
stepping, which is the reduction in number of time steps taken by particles in regions of the
simulation where longer dynamical times are expected [25, 24]; 3) volume renormalization,
where regions of interest are identified and populated with a greater density of particles
than the surrounding volume [20, 21]; 4) the use of parallel and vector supercomputing
techniques.

The need for rapid calculation of the gravitational accelerations has led to two basic
approaches. The first uses grid techniques, relying mainly on the speed of FFT algorithms
for the calculation of the gravitational field. This class includes the PM, P3M [17] and
AP3M [9] algorithms. The other approach uses multipole expansions within a hierarchical
description of the mass distribution (a tree). This second class includes well known algo-
rithms such as the Barnes-Hut tree code [1, 2], the Fast Multipole Method [13, 14] and
other variants including the Parallel k-D Tree Gravity code (PKDGRAV).

All of the approaches mentioned above set some level of approximation in their accuracy
of the calculated gravitational accelerations. Therefore, the comparison of the relative

2This picture is in color; if the reviewer does not get a a hard-copy color version of it, he/she could find
it online on our WWW site (URL: http://www-hpcc.astro.washington.edu/)



67 thousand particles

Figure 1: A comparison of a CRAY simulation with 67 thousand particles, to a KSR-
1 simulation with 1.3 million particles, shown at a redshift of 2. The CRAY run was
performed with a vectorized tree-code, whereas the KSR run used the PKDGRAYV code.

efficiency of different approaches is hard, because one has to take into account factors
like the type of the physical problem under study, and acceleration-error distributions and
correlations. For this reason, such a comparison is not attempted in this article. Instead,
we focus on performance results for PKDGRAYV that correspond to error tolerances which
we have found to be adequate for typical astrophysical problems.

2.1 The k-D Tree Structure

The central data structure in PKDGRAYV is a tree structure which forms the hierarchical
representation of the mass distribution. Unlike the more traditional oct-tree used in the
Barnes-Hut algorithm, we use a k-D tree [3], which is a balanced binary tree. The root-cell
of this tree represents the entire simulation volume. Other cells represent rectangular sub-
volumes that contain the mass, center-of-mass, and quadrupole moment of their enclosed
regions.

To build the k-D tree, we start from the root-cell and bisect recursively the cells through
their longest axis, so that an equal number of particles lie in each sub-volume, and that
quadrupole moments of cells are kept to a minimum (see Figure 2). This bisection is accom-
plished using Hoare’s median finding algorithm, which is an O(NN) average time operation
per level of the tree, making the tree building process an O(Nlogy(N)) operation. The
depth of the tree is chosen so that we end up with at most 8 particles in the leaf cells (buck-
ets). We have found this number to be near optimal for the parallel gravity calculation.
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Figure 2: Two-dimensional k-D Tree distributed over four processors.

Several factors motivated the use of k-D tree structure over the classical oct-tree. The
simplicity of the structure and the availability of fast median finding algorithms allow for
a very efficient tree-construction. Pointers are unnecessary since each node in the tree can
be indexed so that the finding of children, parent and sibling nodes are simple bit-shift
operations. The use of buckets, by which only 2[ N/8] nodes are required, makes the tree
structure memory-efficient. Most significantly, it can be extended to a parallel, distributed
tree structure in a very natural way.

2.2 Calculating Gravity

PKDGRAV calculates the gravitational accelerations using the well known tree-walking
procedure of the Barnes-Hut algorithm [2], except that it collects interactions for entire
buckets rather than single particles. Thus, it amortizes the cost of tree traversal for a
bucket, over all its particles. In the tree building phase, PKDGRAYV assigns to each cell of
the tree an opening radius about its center-of-mass. This is defined as,

2BIII'<1X
Topen = \/g 9 + Beenter (1)

where Bpax and Beepter are the maximum distances from a particle in the cell to the center-
of-mass and center-of-cell respectively. 6 is a user specified accuracy parameter which is
similar to the traditional 6 parameter of the Barnes-Hut code; notice that decreasing 8 in
Equation 1, increases rqpen-

The opening radii are used in the Walk phase of the algorithm as follows: for each bucket
B;, PKDGRAV starts descending the k-D tree, “opening” those cells whose 7open intersect
with B; (see Figure 3). If a cell is “opened,” then PKDGRAV repeats the intersection-test
with B; for the cell’s children. Otherwise, the cell is added to the particle-cell interaction
list of B;. When PKDGRAV reaches the leaves of the tree and a bucket B; is opened, all of
Bj’s particles are added to the particle-particle interaction list of B;. Once the tree has been
traversed in this manner we can calculate the gravitational acceleration for each particle of
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Figure 3: Opening radius for a cell in the k-D tree, intersecting bucket By and not bucket
Bj. This cell is “opened” when walking the tree for B;. When walking the tree for Bs, the
cell will be added to the particle-cell interaction list of Ba.

B, by evaluating the interactions specified in the two lists. PKDGRAYV uses a second-order
multipole expansion to calculate particle-cell interactions.

Periodic Boundary Conditions

One disadvantage of tree codes is that they must deal with periodic boundary conditions
explicitly, unlike grid codes where this aspect is taken care of implicitly. Although this
adds complexity to any tree code, it is possible to incorporate periodic boundary conditions
efficiently by using approximations to the Ewald summation technique [16, 12]. PKDGRAV
differs significantly from the prescription given by [16], which is ill suited to a parallel code.
Due to the mathematical technicality of the method we do not provide further description
here except stating that it is ideally suited to parallel computation [30].

2.3 Parallel Aspects of the Code
2.3.1 Domain Decomposition

Achieving effective parallelism requires that work be divided equally amongst the processors
in a way which minimizes interprocessor communication during the gravity calculation.
Since we only need a crude representation for distant mass, the concept of data locality
translates directly into spatial locality within the simulation. Each particle can be assigned a
work-factor, proportional to the cost of calculating its gravitational acceleration in the prior
time-step. Therefore, during domain decomposition, we divide the particles into spatially
local regions of approximately equal work.

Experience has shown that using a data structure for the domain decomposition that
does not coincide with the hierarchical tree for gravity calculation, leads to poor mem-
ory scaling with number of processors and/or tedious book-keeping. That is the case, for
instance, when using an Orthogonal Recursive Bisection (ORB) tree for domain decompo-
sition and an oct-tree for gravity [28]. Current domain decomposition techniques for the
oct-tree case involve forming “costzones,” that is, processor domains out of localized sets of
oct-tree cells [29], or “hashed oct-trees” [31]. PKDGRAV uses the ORB tree structure to



represent the domain decomposition of the simulation volume. The ORB structure is com-
pletely compatible with the k-D tree structure used for the gravity calculation (see Figure
2). Instead of a median finder, a root finder is used to recursively subdivide the simulation
volume so that the sums of the work-factors in each processor domain are equal. Once this
has been done, each processor builds a local tree from the particles within its domain. This
entire domain decomposition and tree building process are fully parallelizable and incur
negligible cost to the overall gravity calculation.

2.3.2 Parallel tree-walking phase

The Walk phase starts from the root-cell of the domain decomposition tree (ORB tree),
each processor having a local copy of this tree, and descends from its leaf-cells into the local
trees stored on each processor. PKDGRAV can index the parent, sibling and children of
a cell. Therefore, it can traverse a k-D tree stored on another processor in an architecture
independent way. Non-local cells are identified uniquely by their cell index and their domain
number (or processor identifier). Hence, tree walking the distributed data structure is
identical to tree walking on a single processor, except that PKDGRAYV needs to keep track
of the domain number of the local tree upon which the walk is performed. Interaction
lists are evaluated as described earlier, making Walk the only phase where interprocessor
communication takes place, after the domain decomposition.

2.3.3 The Machine Dependent Layer
A small library of high level functions called MDL (Machine Dependent Layer) handles all

parallel aspects of the code. This keeps the main gravity code architecture-independent
and simplifies porting. For example, MDL provides a memory swapping primitive to move
particles between processors during domain decomposition. Furthermore, MDL provides
memory sharing primitives allowing local arrays of data to be visible to all processors.
These primitives support access to non-local cells and particles during the Walk phase. In
particular, a procedure called md1Aquire can be used to request and receive non-local data
by providing an index into a non-local array, and an identifier for the processor that owns
that array. On the KSR, we rely on the shared address space to implement mdlAquire.

On distributed memory machines, such as the INTEL Paragon and IBM’s SP-2, we
maintain a local software cache on each processor. When a processor requests a cell or
particle that is not in its cache, the request is sent to the appropriate processor that owns
the data. While waiting for the data to be sent back, the requesting processor handles
cache-requests sent from other processors. The owner processor sends back a cache line
comprised of more than a single cell or particle, in an attempt to amortize the effects of
latency and message passing overhead. This cache line is inserted into the local cache, and
a pointer to the requested element is returned. To improve responsiveness of the software
cache, after every tenth access to the cache MDL checks whether any requests for data have
arrived; if so, it services these first.



3 Experimental Methodology

In this section we present the framework that we used to study the performance character-
istics of the N-Body codes under investigation.

3.1 Parameters employed

A number of parameters determine the accuracy and validity of the physical conclusions
drawn from cosmological simulation results; the same parameters affect parallel simulation
performance. The most important are: the number of particles IV; the accuracy parameter
of the “opening criterion” 6; Redshift, which determines the spatial configuration of particles
at the beginning of the simulation; and nSteps, the total number of time-steps for which
the N-Body algorithm is executed. These parameters define a wide range of possible runs.
For the simulations presented in this paper we used the values of Table 1.

N 0 Redshift | nSteps
32,768 to 1,300,000 | 0.55 49 2

Table 1: Physical parameters used in our simulations.

The maximum number of particles of a large simulation is constrained by the processor-
cycles available for the computation of gravitational interactions and by the main memory
required to store the particles and the tree structure. These constraints become more
stringent when conducting performance experiments: in general, less computing-time is
dedicated to performance monitoring; instrumented codes are slower; instrumentation in-
creases memory consumption and traces take large amounts of disk space. Nevertheless, we
can run a larger number of simulations on smaller data-sets and collect enough evidence to
extrapolate the behavior of the “production-runs.” In this paper we present results for N
ranging from 32,768 to 1,300, 000.

We use a Redshift value of 49, which corresponds to the initial configuration of particles
used in the cosmological simulations of our group. This configuration is spatially uniform;
therefore, we are conducting further experiments for a Redshift of 2, which corresponds to
highly clustered particle-configurations. 3

We run the tree-codes only for two time-steps due to limitations on available multipro-
cessor resources. This is not a problem from the performance analysis standpoint, however,
because the parallel execution of the tree-algorithm has very similar performance character-
istics across successive time-steps: particles move slowly from time-step to time-step and,
thus, the overall particle-configuration changes very slowly. We use 2 time-steps instead
of 1, because the domain decomposition in the first time-step is conducted after assigning
all particles with an identical work-factor. From the second time-step and on, PKDGRAV
assigns each particle with a work-factor proportional to the time spent computing its ac-
celeration in the previous time-step. Running simulations for two time-steps allows us to
examine any possible effects that this may have.

3The results will be included in the final draft.



Processor INTEL i860XP Custom VLSI
Clock cycle 50MHz 40MHz

Data Cache 16KB 256KB
Instruction Cache 16KB 256KB
Memory per Node 32MB 32MB

Peak Mflops per sec per node | 75 80

Topology Mesh Ring
Operating System OSF/1 Release 1.0.4 | KSR OS

Table 2: System characteristics.

0 is set to 0.55 because, for the simulation experiments of interest, extensive tests showed
that this value guarantees satisfactory error-bounds for physical criteria defined by As-
tronomers (e.g. relative and absolute acceleration error).

3.2 Parallel Platforms employed

The tree-codes were initially developed in C, for the KSR’s shared-memory paradigm
(pthread libraries) and later ported to the PVM message-passing library [23]. Due to the
large overhead of PVM runs on networks of workstations, we ported the programs onto
INTEL’s NX message-passing library, in order to assess their performance on the Paragon
scalable message-passing environment. We conducted our experiments on two different plat-
forms: a 64-processor Kendall Square Research KSR-2 multiprocessor [5] and a 16-processor
INTEL Paragon system [7]. Both machines are installed in the Department of Computer
Science-Engineering at the University of Washington. We also used the INTEL Paragon of
the San Diego Supercomputing Center (with a maximum queue size of 256 nodes).

The KSR-2 is a “Cache Only Memory Architecture” multiprocessor with 40MHz custom-
built processors, configured as a hierarchy of slotted, packetized rings with 32 processors
on each leaf-level ring. The KSR processor can execute two instructions per cycle; one
instruction can be an address calculation, load/store or branch and the other can be either an
integer or floating-point instruction. KSR-2 provides a shared address space with physically
distributed memory. Memory modules of each node are playing the role of a very large,
hardware-managed cache. Cache coherence is provided through a hierarchical directory
scheme which enforces sequential consistency.

The INTEL Paragon is a scalable message-passing system, based on the INTEL i860XP,
50MHz microprocessor. The i860 has independent integer and floating point units, and
the floating point unit has an independent pipeline adder and multiplier. Communication
between the processors is carried through a mesh interconnection network with 200 MByte-
per-second links. Table 2 summarizes the basic system characteristics of the KSR-2 and the
INTEL Paragon multiprocessors.



Machine Size (P)

1 2 4 8 16 32 64 60

N Intel | ksr Intel | ksr Intel | ksr Intel | ksr Intel | ksr Intel | ksr | Intel | ksr

32k 69 102 || 111 181 || 201 348 || 313 668 || 458 1040 || na 1724 || na 2340

67k 63 99 112 187 || 199 361 || 361 675 || 551 1182 || 486 1854 || na 3267

125k 84 95 143 178 || 244 323 || 450 628 || 715 1101 || 964 1865 || 442 3378

250k || 56 82 101 156 || 184 292 (| 333 528 || 537 1004 || 461 1694 || 409 2232

500k || 47 72 92 132 || 169 243 || 301 502 || 486 921 462 1557 || 448 na

1.3M || na na na na na na na na 154 315 333 na 242 na

Table 3: Science Rate (in particles per seconds).

3.3 Performance Characteristics sought

A first goal of our study is to identify system requirements of the tree-codes in terms of
running time, memory allocation, and sustained communication rates. We are interested in
examining the scaling of these requirements with increasing problem and machine sizes and
in comparing the relative performance of available parallel architectures. A second goal is to
discover and identify bottlenecks of the cosmological simulation that hinder its performance.
A third goal is to attribute performance bottlenecks either to the algorithms employed, their
parallel implementation, or the inherent limitations of the multiprocessors used. Also, we
are interested in studying various aspects of the scalability of PKDGRAYV. Finally, we need
to describe PKDGRAV’s performance in terms of metrics of “physical significance.” For
instance, it is more relevant to use the number of gravitational interactions performed per
second as an estimate for the aggregate performance of a certain parallel machine, than
the count of bare Mflops per second. Notably, in the case of tree-structured gravitational
algorithms, the Mflop rate does not characterize accurately the performance of the parallel
codes, because these involve also a large number of integer and/or pointer operations during
tree-walking.

With the above goals in mind, we instrumented the tree-codes to generate and collect
application traits characterizing their computation, communication, and memory require-
ments, and their scalability. To gather “raw” performance data, we measured running times
for the execution of the N-Body algorithm, as well as the execution of the most important of
its phases. We instrumented malloc to keep track of dynamically allocated memory. In the
case of INTEL’s Paragon message-passing multiprocessor, we instrumented communication
routines manually to collect communication traces. Furthermore, we used the performance
monitoring environment on the INTEL Paragon [26]: Xipd [8] for automatic instrumentation
and trace collection and Paragraph [15] for performance visualization. On the KSR-2, we
used manual instrumentation only, because the pmon monitoring libraries failed to produce
reliable data.

10
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Figure 4: Running Times of two time-step simulations.

4 Performance Measurements

In this section, we summarize results from our performance experiments and assess the
system requirements of the tree-codes examined. In early runs, it turned out that the
INTEL Paragon sequential performance was twice as slow as that of the KSR, regardless
of the value of N. This is partly due to the use of IEEE floating-point arithmetic on the
Paragon. To improve performance, we compiled the tree-codes on the Paragon with the
-knoteee option. We expect that this does not affect severely the accuracy of Paragon
simulations.

4.1 Processing

Figure 4 presents measurements of the running times of two simulations with 250,000 and
500,000 particles respectively, proceeding for two time steps. Table 3 gives the Science Rate,
an application-oriented performance metric defined as the number of particles N over the
time it takes to complete one time-step of a cosmological simulation [6]. From Figure 4 and
Table 3 we can easily see that KSR-2 outperforms the INTEL Paragon, both in terms of
absolute Science Rate figures as well as in terms of the scaling of the Science Rate with
the number of available processors. In particular, the Science Rate on the KSR-2 increases
as we scale the machine size to 60 processors, whereas on the Paragon it starts decreasing
over 16 processors. This can be seen also in Figure 4, where the running time on the
Paragon levels-off as we scale the number of available processors to values larger than 16.
We elaborate on this in the next section.

Another interesting remark is that, for our benchmarks, the single-processor perfor-
mance of the KSR-2 is approximately 1.5 times better than that of the Paragon. This is

11



Machine | Flop Count | Flop Rate (MFlops/sec)
Size (P) | in MFlops KSR-2 | Paragon

1 22803.4 12.07 7.87

4 23232.41 47.55 31.79

16 23661.73 190.95 | 127.69

32 24189.15 373.66 | 253.95

60/64 24247.75 579.34 | 512.64

128 24465.65 n/a 1029.27

Table 4: Mflop counts and rates: two time-steps, 250,000 particles.

Machine Size (P)

1 2 4 8 16
N Intel | ksr Intel | ksr Intel | ksr Intel | ksr Intel | ksr
32k 17.6 na 30.1 na 55.08 na 105.14 | na 205.2 na
67k 22.9 27.3 35.4 26 60.4 29.6 110.38 | 27 210.35 | 29
125k || 32.34 | 41.3 44.83 39.4 69.8 39.6 119.77 | 40 219.7 40
250k || 52.19 | 78.5 64.68 78.6 89.6 78.8 139.6 80.2 239.58 | 82.2
500k || 91.9 na 104.38 | na 129.36 | na 179.32 | na 279.29 | na

Table 5: Aggregate Memory Allocation (in MBytes)

attributed mainly to the substantially larger cache of the KSR-2 and the shared-memory
paradigm which allows a single-processor run to use memory pages residing on other pro-
cessors and, thus, to reduce paging. Both parallel codes, achieve a high Mflop/sec rate in
the floating-point intensive Interact phase of the algorithm. Table 4 presents the aggregate
number of flops and the flop rate for the Interact phase of a two time-step, 250,000-particle
simulation. To derive the flop count we measured the floating-point operations in the codes
examined. This gave a 34 flop count for a particle-particle interaction and a 71 flop count
for a particle-cell interaction.

4.2 Memory

To get an estimate of the memory requirements of cosmological simulations, we instrumented
malloc. The collected data are presented in Table 5. It is noted that most of the arrays
statically allocated on the KSR-2, are allocated dynamically on the Paragon for performance
reasons. On the other hand, floats are 8-bytes long on the KSR-2, and 4-bytes long on
the Paragon. This explains the higher memory consumption on single-processor KSR-2
runs. Things change drastically for larger pools of processors, because of the extra memory
allocated on every Paragon node for the implementation of “particle” and “cell” caches.
Each cache is 2 million bytes large. The object code is 1.34MB on the KSR-2 and 0.35MB
on the Paragon (both codes were compiled with the -O2 option).

12



B E [4 [8 [16 [32 |

32k 1.98 4.5 8.57 14.04 | 15.63
67k 3.75 8.87 | 15.67 25.75
125k || 5.19 11.25 | 18.62 | 30.86 | 30.57
250k || 9.1n/a | 19.52 | 31.69 | n/a 51.18
500k || 15.62 35 55.85 | 87.1 n/a

Table 6: Aggregate Communication Volume per time-step (in MBytes)

4.3 Communication

Table 6 gives information about the total volume of messages sent between processors dur-
ing our Paragon simulations. The left diagram of Figure 5 gives a pictorial representation of
data from this Table. As expected, the total communication traffic increases with problem
size and the number of processors. To estimate the average communication bandwidth that
each Paragon processor utilizes during cosmological simulation, we divide the average vol-
ume of communication per processor and time-step, over the average duration of a time-step.
We call this, per-processor communication rate; its values are presented in the right diagram
of Figure 5. On the Paragon, given its 200MBytes/sec node-to-router sustained bandwidth,
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Total Volume of Communication Per-processor communication rate

Figure 5: Volume of Communication

node-to-node communication does not become a bottleneck. Furthermore, even under the
more restrictive assumption of a random message traffic, the per-processor communication
rate does not exceed the sustainable per-processor bandwidth, which is determined by the
bisection width of the Paragon mesh [19, 27]. Another interesting remark from Figure 5

13
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Figure 6: Communication profile: 32 processors, 2 time steps, 125,000-particle simulation

(right) is that, in most cases, the per-processor communication rate decreases when increas-
ing the problem-size (N) and keeping the number of processors fixed. This means that the
communication-to-computation ratio decreases as the problem size gets bigger.

Finally, we note that cosmological simulations produce bursty message traffic. This be-
comes clear from Figure 6, which displays the number of messages sent between processors
during the first two time-steps of a 500,000-particle simulation, running on a 32-processor
Paragon. Since the data presented here correspond to a Redshift of 49, the two communica-
tion bursts of Figure 6 are expected to be due to the filling of the MDL caches rather than to
domain decomposition. Further experiments, however, showed that the total parallel time
spent in tree-building is negligible and, thus, the effects of the observed message bursts to
parallel performance are not significant.

5 Scaling Issues

To investigate the scaling properties of the tree-codes, we plot the partition of the running
time to the three most time-consuming phases of the N-Body algorithm: Interact, Walk,
and Fwald. The diagrams in Figure 7 present the breakups for two time-steps of 125,000-
and 250,000-particle simulations. From the plots in Figure 7 we can see that the scaling of
the Interact and the Fwald phases is satisfactory on both platforms. The Walk phase, which
involves communication between processors, however, becomes the bottleneck to Paragon
performance, as we increase the number of processors over 16.

Figure 8, presents the relative speedups of the three phases of the algorithm, that is the
parallel execution time of a given phase over its sequential time on a single processor of the
same architecture, versus the number of available processors. Notably, the execution time
of the Walk phase on the Paragon is practically constant. Consequently, given the linear
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Figure 7: Fixed problem-size scaling of Interact, Walk, and Fwald on the KSR-2 and the
Paragon

scaling of the other two phases, the overall parallel time on the Paragon becomes eventually
bound by the time it takes to “walk” the k-D tree.

The poor scaling of the Walk phase on the Paragon could be attributed to communication
overhead. Indeed, a close look at the k-D tree algorithm shows that when we increase
the number of processors, there is an increase in the amount of non-local monopole and
quadropole interactions. This effect is reflected at the sublinear scaling of the Walk phase
on the KSR-2 (see Figure 8 - left) . The total lack of scaling on the Paragon, however, cannot
be a result either of the increase of non-local interactions, or of communication congestion.
Data concerning the communication rate (diagram on the right of Figure 5) make the latter
assumption unlikely. Further experimentation showed that this phenomenon is a result
of high-overhead in the MDL software cache that is implemented on the Paragon. Ways
of improving the MDL cache are under investigation. In particular, either a background
process running at real time priority or an interrupt handler may be required to implement
more efficiently the MDL cache-request handler.

6 Conclusions

In this paper we described PKDGRAYV, a parallel hierarchical tree-structured code used to
conduct cosmological simulations on shared-memory and message-passing multiprocessors.
To investigate the performance characteristics of PKDGRAV on the KSR-2 and the INTEL

Paragon multiprocessors, we performed a series of simulations on data-sets and machine-
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Figure 8: Speedup scaling of Interact, Walk, and Fwald on the KSR-2 and the Paragon
(250,000-particle simulation)

sizes of practical interest. Our experiments showed that the floating-point intensive part
of PKDGRAV reaches a performance of 1 GFlop/sec on a 128-processor Paragon and 0.5
GFlop/sec on a 60-node KSR-2, for a medium-sized problem. On the Paragon, communica-
tion traffic is bursty and the communication-to-computation ratio is very low and decreases
with problem size. Overall, the KSR-2 outperforms the Intel Paragon, both in terms of
absolute performance numbers as well as in terms of its scaling properties.

Further investigation showed that the cause of PKDGRAV’s poor scaling on the Paragon
comes from the Walk phase of the algorithm, where the distributed tree structure is tra-
versed. The poor scaling, however, is not inherent to the algorithm but lies on the software
caching mechanism used to implement sharing of data during cosmological simulation. A
redesign of the software cache is under way. Notably, both the Interact phase, which per-
forms the gravitational calculations, and Fwald, which deals with boundary conditions, scale
linearly with the number of processors on both platforms and for a large range of problem
sizes. Finally, the parallel time spent in domain decomposition and tree-construction is
negligible compared to the other phases.

References

[1] J. Barnes. An efficient N-body algorithm for a fine-grain parallel computer. In The Use of
Supercomputers in Stellar Dynamics, pages 175-180. P. Hut and S. McMillan, eds, Springer
Verlag, 1986.

16



2]

3]

[11]

[12]

[13]

[14]

Josh Barnes and Piet Hut. A hierarchical O(Nlog N) force-calculation algorithm. Nature,

324:446-449, December 1986.

J.L. Bentley. Multidimensional Binary Search Trees Used for Associative Searching. Commu-

nication of the ACM, 18(9), September 1975.
J.A. Board, Z.S. Hakura, W.D. Elliot, D.C. Gray, W.J. Blanke, and Jr J.F. Leathrum. Scalable

implementations of multipole-accelarated Algorithms for Molecular Dynamics. In Proceedings
of the 1994 Scalable High-Performance Computing Conference (SHPCC9/), pages 87-94. IEEE-
Computer Society Press, 1994.

Henry Burkhardt. Overview of the KSR1 computer system. Technical Report KSR-TR-9202001,
Kendall Square Research, February 1992.

Ray Carlberg. Personal communication, 1994.

Intel Corporation. Paragon XP/S product overview. Technical report, 1992.

Intel Corporation. Paragon’s Application Tools User’s Guide, June 1994,

H.M.P. Couchman. Mesh-refined P*M: a fast adaptive N-body algorithm. Astrophys. J.,
(389):453-463, 1992.

M. Dikaiakos, A. Rogers, and K. Steiglitz. Functional Algorithm Simulation of the Fast Multi-
pole Method: Architectural Implications. Parallel Processing Letters (accepted for publication),
1994.

Marios Dikaiakos. FAST: A Functional Algorithm Simulation Testbed. PhD thesis, Dept. of

Computer Science, Princeton University, January 1994.

H-Q Ding, N. Karasawa, and W.A. Goddard III. The reduced cell multipole method for
coulomb interactions in periodic systems with million-atom unit cells. Chemical Physics Letters,
196(1,2):6-10, August 1992.

L. Greengard and W. Gropp. A Parallel Version of the Fast Multipole Method. In Garry
Rodrigue, editor, Parallel Processing for Scientific Computing, pages 213 222. STAM, 1987.

Leslie Greengard. The rapid evaluation of potential fields in particle systems. PhD thesis, Yale
University, Cambridge, Mass., 1988.

M.T. Heath and J.A. Etheridge. Visualizing the Performance of Parallel Programs. IEEE
Software, 8(5):29 39, September 1991.

L. Hernquist, F. Bouchet, and Y. Suto. Application of the Ewald Method to Cosmological N-
Body Simulations. The Astrophysical Journal Supplement Series, 75:231-240, February 1991.

R.W. Hockney and J.W. Eastwood. Computer Simulation Using Particles. McGraw Hill, 1981.

Chris Holt and Jaswinder Pal Singh. Hierarchical N-body Methods on Shared Address Space
Multiprocessors. In Proceedings of the Seventh SIAM Conference on Parallel Processing for
Scientific Computing, pages 313-318. STAM, February 1995.

Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programmability. Mec-

Graw Hill, 1993.

Neal Katz, Thomas Quinn, Edmund Bertschinger, and James M. Gelb. Formation of quasars
at high redshift. Mon. Not. R. Astron. Soc., (270):L71-L74, 1994.

17



21]
[22]
23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

Neal Katz and Simon White. Hierarchical galaxy formation: overmerging and the formation of
an x-ray cluster. Astrophysical Journal, 412(2):412-455, 1993.

J. Katzenelson. Computational Structure of the N-Body Problem. SIAM Journal of Scientific
and Statistical Computing, 10(4):787-815, July 1989.

Oak Ridge National Laboratory. PVM &8 User’s Guide and Reference Manual, May 1993.

George Lake, Neal Katz, Thomas Quinn, and Joachim Stadel. Cosmological N-body Simulation.
In Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing,
pages 307-312. STAM. February 1995.

Thomas Quinn, Neal Katz, Joachim Stadel, and George Lake. Time stepping n-body simula-
tions. In preparation.

B. Ries, R. Anderson, W. Auld, K. Callaghan, E. Richards, and W. Smith. The Paragon
Performance Monitoring Environment. In Supercomputing 94, pages 850-859, 1994,

E. Rothberg, J.P. Singh, and A. Gupta. Working Sets, Cache Sizes and Node Granularity Issues
for Large-Scale Multiprocessors. In Proceedings of the 20th Annual International Symposium
on Computer Architecture, pages 14-25, May 1993.

J. K. Salmon. Parallel Hierarchical N-body Methods. PhD thesis, California Institute of Tech-
nology, 1990.
Jaswinder Pal Singh. Parallel Hierarchical N-Body Methods and their Implications for Multi-

processors. PhD thesis, Computer Systems Laboratory, Departments of Electrical Engineering
and Computer Science, Stanford University, March 1993.

Joachim Stadel and Tom Quinn. Pkdgrav: Using parallel computers for cosmological simula-
tions. In preparation.

Michael S. Warren and John K. Salmon. A Parallel, Portable and Versatile Treecode. In
Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing,
pages 319-324. STAM, February 1995.

F. Zhao and S.L. Johnsson. The Parallel Multipole Method on the Connection Machine. STAM
Journal of Sci. and Stat. Comput., 12:1420-1437, 1991.

18



