Ovid: A Browser for Grids

Marios Dikaiakos and Artemakis Artemiou

Department of Computer Science, University of Cyprus, Nicosia, Cyprus
Email: mdd@ucy.ac.cy, csOlaa2@ucy.ac.cy

1 Introduction and Rationale

The formulation of parallel computing models has been a key topic of parallel
computing research. Models abstract concepts such as the performance char-
acteristics of hardware and system-software, the scheduling of tasks to proces-
sors, the size of input data and their partitioning. Typical abstractions include:
graphs modeling the interconnection topology of multiprocessor systems and
the structure of parallel programs, parameters like the number of processors in
a multiprocessor system, the CPU processor speed, and the communication la-
tency between two processors, etc. Parallel computing models can be used for
the design of parallel algorithms and the performance analysis of parallel com-
putations [4].

Developing models is a challenging task because the “right” models must
remain simple and must have a proper level of abstraction, striking a balance
between the incorporation of all significant capabilities and costs of parallel
computation, and the omission of less important aspects and properties [4, 15].
Several approaches have been developed for modeling parallel computations the-
oretically and for proving theorems about parallel program complexity, such as
the P-RAM [7], LogP [2], and the CTA [15]. Proposed theoretical models, how-
ever, have limited practical applicability: in order to provide mathematical ab-
stractions amenable to analytical treatment and theorem proving, theoretical
models often rely on unrealistic assumptions about parallel-machine properties
or neglect important factors that affect application performance, such as the
choice of parallel programming models and communication libraries [15]. More-
over, the theoretical treaty of realistic parallel applications that combine multiple
algorithms and complex data structures is difficult and rarely provides analyt-
ical solutions. Consequently, application developers wishing to explore a wide
space of system and program configurations, without having to incur the costs
of implementation and testing, resort to modeling tools based on software-based
abstractions of parallel architectures and programs [4,3,8,9,12].

With the emergence of the Grid [5] as a wide-scale, distributed computing
infrastructure for resource sharing and coordinated problem solving in dynamic,
multi-institutional Virtual Organisations (VOs), the problem of modeling re-
sources and computations is placed in a totally new context. The dynamic na-
ture, the heterogeneity, the complexity, the scale, and the open architecture of
the Grid make the use of modeling abstractions of Grid infrastructures and com-
putations an essential condition for harnessing the Grid. Modeling abstractions

for the Grid must hide the numerous details involved in Grid computations, while
maintaining and providing application developers with high-level “views” of im-
portant aspects of Grids. Even though efforts to formulate models for describing
Grid infrastructures and computations have appeared in recent literature [11],
we believe that the feasibility of effective theoretical models for the Grid is ques-
tionable; furthermore, that the scope of such models will be different from that of
parallel computing models. Arguably, a Grid application developper will be inter-
ested in high-level (summary) representations of numerous aspects involved in a
Grid computation, besides the complexity analysis of a given algorithm mapped
upon a homogeneous abstract machine model. Issues of interest may include the
capacity of resources available in sites participating to a Virtual Organization,
the measured performance of Grid nodes and VOs, the average network distance
and bandwidth between two nodes, the network topology linking the nodes of
a VO, the type of job queues available at a given site, usage and charging poli-
cies followed by different sites and VOs, the availability of software libraries,
histories of resource availability and usage, representations of workflow-like Grid
computations, etc.

The need for effective Grid abstractions will result to a variety of model-
ing tools capturing essential aspects of Grid infrastructure and computation. In
contrast to the implementation of traditional parallel computing modeling tools,
which represent and store their modeling abstractions in internal data struc-
tures, we anticipate that Grid modeling tools will encode their abstractions in
open, standardized, and extensible metadata formats. Another important dif-
ference between Grid and parallel computing modeling tools will be their typi-
cal scenarios of use. Parallel computing modeling tools are used in parametric
studies that involve “model executions,” i.e., analytic calculations, trace-driven
or event-driven simulations, etc. Model executions provide estimates of perfor-
mance metrics that describe the scalability of a computation with respect to
input size and machine configuration, its computation-to-communication ratio,
its bottlenecks, etc. In contrast, the emphasis of Grid modeling tools will be
on the representation and integration of modeling abstractions for the different
issues that pertain to the deployment of a computation on the Grid: infrastruc-
ture capacity and availability, measured performance of Grid resources, policies
enforced by various Grid nodes, statistics of previous job runs, the availability of
software libraries invoked by the computation, etc. The complexity and diversity
of these issues make it very hard to derive “metrics” that can be used effectively
by Grid application developers. Therefore, we anticipate a shift in the paradigm
of modeling-tools functionality and use, from model execution to model naviga-
tion. We define as model navigation the process undertaken by an end-user who
wishes to browse through the space of models and parameters, which represent
abstractly the factors that affect the deployment and execution of a computation
on the Grid. Such a navigation process must be supported by a simple graphical
user interface representation and a core set of simple interaction primitives.

In this paper, we present initial efforts to design and develop Owid, a tool
for modeling, visualizing, and browsing properties of Grid infrastructures. At

| Grid VO
VO Services
(Resource Broker/ VO server)

| site

Computing
Element

Storage
Element

Computing
Element

[|
| | [HworkerNode]

| | Hworker Node]

Fig. 1. A model of a Grid infrastructure.

the heart of Ovid lies an abstraction of the Grid infrastructure, modelled as
a constellation of clusters that belong to different Virtual Organizations (see
Figure 1). This model reflects the architecture of the European DataGrid and
CrossGrid testbeds [6]. Inside Ovid, this model is represented as an ontology [13]
described in RDF Schema [1,10]. The ontology is instantiated with the help of a
plug-in, which invokes various Grid Information Services [14] and retrieves values
of model parameters. In addition to the main ontology model of the Grid infras-
tructure, Ovid supports other models of relevance to the Grid, which are also
represented in RDF/S and instantiated by special plug-in modules. In particular,
the first prototype implementation of Ovid integrates abstractions that represent
the membership of cluster-sites to Virtual Organizations and the performance
properties of Grid nodes, described in terms of metrics derived by experiments
conducted with the GridBench suite of Grid benchmarks [16]. Both the VO and
the GridBench models are represented in RDF/S. The former is instantiated
with queries to the Grid Information Services of available VOs. The later is in-
stantiated with queries to a service that provides access to an XML database
with GridBench specifications and results from GridBench experiments.

Ovid comprises a user interface module, which undertakes the graphical rep-
resentation of its supported models. The graphical representation of the Grid-
infrastructure model is used as an “index” to the properties of other abstractions
supported by Ovid and as a basis for their graphical representation. Starting from
the Grid-infrastructure model’s graphical representation and using a pointer, the
end-user is able to navigate through the properties of other Grid-related models.
The graphical representations of these models and of their interrelationships are
stacked upon the Grid-infrastructure graphical model, according to visualization
guidelines associated with each model. The GUI of Ovid implements a number
of primitive operations that enable end-users to “zoom” in or out of a model,
selecting the proper focus and level of abstraction.

In this paper, we present a brief overview of early implementation effort for
Ovid. We describe the functionality provided by Ovid, its software design, the

representation of the core Grid infrastructure model, and current implementation
status.

2 Towards a First Prototype

We have started implementing a prototype of Ovid, based on the ideas presented
above. The functionality of this prototype is described below.

When running Ovid, the end-user is presented with a main control panel,
which can be used for selecting and running a plug-in that will instantiate the
Grid infrastructure ontology. Currently there are three available plug-ins (see
Figure 2): a) One consists of a MDS Query module that performs direct queries
to MDS servers of various VOs. b) A Direct file retrieval module for retrieving
information captured by previous MDS queries and stored on disk. ¢) A Random
data module, which allows the experimenting with arbitrary Grid configurations.

Ovid - Control Panel

Select input module for running Ovid:

[MDS Queries| | [Directfie retrievat |

Random data input

Other Ovid options
Enable VO Switcher

Other System options
Exit to System

Fig. 2. Ovid: Control Panel.

A second panel, provides a selection of visualization modules, which deter-
mine the presentation of values on top of the Grid-infrastructure graphical rep-
resentation. Examples of possible modules are: a graph displaying benchmark
results, text describing Grid resources, etc. If no module is selected, Ovid uses
a default representation with the name of the selected component and the site
in which it belongs to.

Ovid’s main screen displays all the nodes of Virtual Organizations in a faded
out form. This mode is called ” Compact Mode”. The end-user can use a “VO
Switcher” panel for selecting one or more Virtual Organizations. Upon selec-
tion of a VO, the nodes of this VO are activated on screen and allow further

_=x1

* Compact Mode

Fig. 3. Main Screen (Compact Mode).

interaction via the GUI (see Figure 3). For instance, when the user clicks at the
center of a node of a selected VO, Ovid switches into an “Expanded Mode,” in
which the selected node is displayed isolated, providing more details about its
characteristics and status (Figure 4. The user can select the “Back” button to
return back to Compact Mode.

Ovid implements a “mouse-over” functionality: when the mouse is over a
component, a tool tip appears providing extra information about the underlying
abstraction. For example when the mouse is over a worker node, it displays
whether the worker node is “Free,” “Busy” or “Down,” using a color encoding.
Other information can be easily displayed as well.

We are currently working in finalizing the software design, the functionality
of Ovid, the graphical interface, and the interaction primitives provided by Ovid.
In particular, we plan to implement: an input box that will enable the selection of
some view of the models supported by Ovid using textual or URI descriptions,
a “History” function for viewing the most recent navigation sessions, and a
“Favourites” function for storing parts of models of interest of the user.

Acknowledgement: This work was supported in part by the European Union
through contract number IST-2001-32243, under the CrossGrid project.

=* Expanded Mode

= 4
&
3, 2
=
&

3 4
S I \ s
;‘ \ ;‘
& &

& 3
3 2
a 4
Ly . D

Fig. 4. Ovid: Expanded Mode.

References

1. D. Brickley and R.V. Guha (editors). RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Working Draft, October 2003. http://www.w3.org/TR/rdf-
schema/.

2. D. Culler, R. Karp, D. Patterson, et al. LogP: Towards a Realistic Model of Parallel
Computation. In Proceedings of the Fourth ACM Sigplan Simposium on Principles
and Practice of Parallel Programming, May 1993.

3. M. Dikaiakos, A. Rogers, and K. Steiglitz. Functional Algorithm Simulation of the
Fast Multipole Method: Architectural Implications. Parallel Processing Letters,
6(1):55-66, 1994.

4. Marios Dikaiakos, Anne Rogers, and Kenneth Steiglitz. Performance Modeling
through Functional Algorithm Simulation. In G. Zobrist, K. Bagchi, and K. Trivedi,
editors, Advanced Computer System Design, chapter 3. Gordon and Breach, 1998.

5. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International J. Supercomputer Applications, 15(3),
2001.

6. Fabrizio Gagliardi, Bob Jones, Mario Reale, and Stephen Burke. European Data-
Grid project: Experiences of deploying a large scale testbed for E-science applica-
tions. Lecture Notes in Computer Science, 2459:480-499, 2002.

7. A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University
Press, 1988.

10.

11.

12.

13.

14.

15.

16.

B. R. Helm, A. D. Malony, and S. Fickas. Capturing and Atomating Performance
Diagnosis: The Poirot Approach. Technical Report CIS-TR-93-25, Department of
Computer and Information Science, University of Oregon, November 1993.

R. B. Irvin and B. P. Miller. A Performance Tool for High-Level Parallel Pro-
gramming Languages. In Proceedings of the IFIP WG 10.3 Working Conference
on Programming Environments for Massively Parallel Distributed Systems, pages
31.1-31.15, April 1994.

F. Manola and E. Miller (editors). RDF Primer. W3C Working Draft, October
2003. http://www.w3.org/TR/rdf-primer/.

Z. Nemeth and V. Sunderam. Characterizing Grids: Attributes, Definitions, and
Formalisms. Journal of Grid Computing, 1:9-23, 2003.

D.M. Nicol and J.C. Townsend. Accurate Modeling of Parallel Scientific Com-
putations. In Proceedings of the International Conference on Measurement and
Modeling of Computer Systems, pages 165—-170, May 1989.

N. Fridman Noy and D. McGuinness. Ontology Development 101: A Guide to
Creating your First Ontology. Technical Report KSL-01-05, Stanford Knowledge
Systems Laboratory, October 2001.

B. Plale, P. Dinda, and G. von Laszewski. Key Concepts and Services of a Grid In-
formation Service. In Proceedings of the 15th International Conference on Parallel
and Distributed Computing Systems (PDCS 2002), 2002.

Lawrence Snyder. Experimental validation of models of parallel computation. In
A. Hofmann and J. van Leeuwen, editors, Special Volume 1000, Lecture Notes in
Computer Science, pages 78-100. Springer Verlag, 1995.

G. Tsouloupas and M. Dikaiakos. GridBench: A Tool for Benchmarking Grids.
In Proceedings of the 4th International Workshop on Grid Computing (Grid2003).
IEEE Computer Society, November 2003. To appear.

