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ABSTRACT

Functional Algorithm Simulation is a methodology for predicting the computation
and communication characteristics of parallel algorithms for a class of scientific problems,
without actually performing the expensive numerical computations involved. In this
paper, we use Functional Algorithm Simulation to study the parallel Fast Multipole
Method (FMM), which solves the N-body problem. Functional Algorithm Simulation
provides us with useful information regarding communication patterns in the algorithm,
the variation of available parallelism during different algorithmic phases, and upper
bounds on available speedups for different problem sizes. Furthermore, it allows us to
predict the performance of the FMM on message-passing multiprocessors with topologies
such as cliques, hypercubes, rings, and multirings, over a wider range of problem sizes and
numbers of processors than would be feasible by direct simulation. Our simulations show
that an implementation of the FMM on low-cost, scalable ring or multiring architectures
can attain satisfactory performance.
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1. Introduction

Functional Algorithm Simulation [5,14] is a new methodology for predicting the
computation and communication characteristics of parallel algorithms for a class of
scientific problems, without actually performing expensive numerical computations.
To explore the Functional Algorithm Simulation we built the Functional Algorithm
Simulation Testbed (FAST), a software prototype system that performs approxi-
mate simulations of parallel executions. FAST runs on uniprocessor workstations
and has been used to evaluate a number of interesting and important scientific al-



gorithms [1,8,10] mapped onto message-passing multiprocessors. In this paper we
present a case-study conducted with FAST for the parallel Fast Multipole Method
[1], which solves the N-Body problem in two dimensions. We use the information de-
rived with FAST to evaluate and analyze the relative performance of the algorithm
on different interconnection topologies.

Performance is critical in parallel computing. Gaining an understanding of per-
formance issues for challenging parallel algorithms like the FMM, however, requires
the description and analysis of their parallel execution on realistic sets of data.
This is a difficult task for many reasons, including the high complexity of these
algorithms, the great volume of data needed to describe computations and commu-
nications performed during parallel execution, and the low availability of high-end
multiprocessor systems.

Numerous research projects have collected and studied communication and com-
putation patterns from challenging applications [3.,4,17]. Most proceed by conduct-
ing instrumentation and performance monitoring on top of parallel software and
hardware platforms. This approach has its obvious merits as it addresses the per-
formance assessment of programs running on existing systems. It is accompanied,
however, by inevitable drawbacks: the conclusions sought may be influenced by the
underlying architectures, programming models, and implementation. Experimenta-
tion with different interconnection topologies requires the porting of applications to
different multiprocessors, thus incurring a very high cost. Moreover, it is practically
impossible to study the scalability of parallel algorithms and architectures on top
of existing systems. In this paper, we show how Functional Algorithm Simulation
addresses these issues in a study of the Fast Multipole Method. The remainder of
the paper is organized as follows: Section 2 presents the basic concepts of Func-
tional Algorithm Simulation and the structure of FAST. Section 3 describes the Fast
Multipole Method and the study of the FMM with FAST; additionally, it presents
an assessment of the parallel performance of the FMM on different interconnection
networks. Finally, Section 4 summarizes our results and conclusions.

2. Functional Algorithm Simulation

Functional Algorithm Simulation [13] models and evaluates parallel executions
by reproducing the skeletons of parallel computations and using them to extract
their basic computation and communication patterns. It is basically a method for
approximately simulating real parallel executions. It can also be considered as an
accurate simulation of a theoretical model that accounts for communication costs
and limited communication bandwidth, such as LogP [6]. The common algorithmic
property necessary for Functional Algorithm Simulation to apply is the ability to
determine the set of expensive calculations and data exchanges from input infor-
mation, at the initialization phase of the algorithm. before the actual numerical
computations take place. Another underlying assumption is that the initialization
phase takes an insignificant portion of the overall parallel time. Both assumptions
are valid for many important scientific algorithms [1,8,9,10].
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Figure 1: The Front-End and the Back-End of FAST.

2.1. Fast Algorithm Simulation Testbed (FAST)

FAST is a prototype system running on workstations and implementing the prin-
ciples of Functional Algorithm Simulation. Its key structure is a weighted task-flow
graph that describes computations occurring during the execution of the algorithms
studied and reveals all medium-grain parallelism available. The difference between
this approach and exact simulation (trace-driven or direct) lies in the fact that our
system does not simulate every single instruction, but only procedure calls that
would be performed in a real execution. FAST relies on knowledge of the algorithm
and of the data-structures it constructs when provided with some specific set of
input data. It uses this knowledge to interpret procedure calls as “black boxes”
with known processing times and dependency constraints.

By not doing the numerical calculations, FAST achieves significant savings in
terms of processor cycles and disk space. For example, a Functional Algorithm Sim-
ulation of an instance of the SIMPLE computational fluid dynamics benchmark [10]
took 0.63 secs to complete on a Sparcstation. The same instance took 9.8 secs to
run on one iPSC/2 node. Considering that exact simulation is approximately 100 to
1000 times slower than actual execution [12], we deduce that Functional Algorithm
Simulation decreases the simulation time by two to three orders of magnitude. These
savings enable us to increase the flexibility of simulations, study the performance
and scalability of algorithms on parallel machines with thousands of processors,
and compare the performance of different interconnection networks under realistic
traffic loads.

FAST is split in two parts: a front-end and a back-end (see Figure 1), described
in the following sections. A detailed description, along with information on validat-
ing its accuracy and its application on other algorithms can be found in [5,13,14].



2.2. Front-End

The task-flow graph generation is accomplished by the front-end in two phases
(see Figure 1, left). The first one depends on the algorithm studied: given a se-
quential implementation, the user modifies it by inserting code that will produce
dynamically the set of calculations and communications that define the correspond-
ing parallel execution. The modified program is the first phase of FAST’s front-end
for the specific algorithm. Running this program on some appropriate input con-
figuration produces an architecture-independent Intermediate Representation (IR)
of the parallel execution. The Intermediate Representation is given in terms of a
simple intermediate language comprised of IR-operations and Send/Receive com-
munication primitives. Each IR-operation is an abstraction of a “medium-grain”
group of successive numerical instructions. These groups correspond to the ba-
sic computational blocks of the algorithm. Send/Receive primitives correspond to
data-dependences between IR-operations and represent the data-flow.

In the second phase of the front-end, a parser transforms the Intermediate Repre-
sentation into a weighted task-flow graph which follows the Macro-Dataflow model
of computation [11]. Task-nodes in the graph contain a number of Intermediate
Representation primitives. Their “boundaries” are defined by Send and Receive
primitives occurring in the IR. The tasks start executing upon receipt of all incom-
ing data and continue to completion without interruption. Upon completion their
results are forwarded to adjacent nodes. Edges correspond to Send-Receive pairs
and represent the data dependencies between the nodes. The annotation of the
task-flow graph is straightforward. Nodes are assigned the sum of the costs of their
corresponding IR-operations. Edges are assigned weights that represent the number
of bytes “carried” by those edges from their source to their destination nodes.

2.3. Back-End

The back-end of FAST (see Figure 1, right) receives the output from the front-
end and maps the task-flow graph onto a message-passing multiprocessor architec-
ture. The mapping process is accomplished in a number of successive steps: first,
FAST maps the task-flow graph onto an idealized architecture with a number of
processors equal to the number of tasks, forming a fully-connected network ( “abun-
dant” clique). The resulting graph is called the parallel-execution graph and is
subsequently passed through clustering, a stage that seeks to minimize the commu-
nication overhead of the parallel execution, without sacrificing parallelism [11,16].
Clustering is NP-Complete [11]; therefore, FAST provides several different cluster-
ing heuristics [15]. After clustering, FAST performs a mapping of the clustered
parallel-execution graph onto a message-passing architecture with a number of pro-
cessors specified by the user. The mapping problem is also NP-complete [11]. To
map the task-clusters onto processors, FAST includes another set of heuristics [15].

A few different interconnection schemes are available in the current version of
FAST: a “limited” clique (a clique with a limited number of processors), a ring,
various multirings, and a binary hypercube.
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Figure 2: Decomposition of a two-dimensional space of particles and the corre-
sponding quadtree created by the Fast Multipole Method.

In addition to the number of processors and the network topology, the user
provides our system with a set of hardware parameters. These parameters are
used to transform the weights assigned to nodes and edges of the task-flow graph
into processing times and message latencies. They include cycles-per-instruction
counts, clock-speeds, communication bandwidth, communication overhead, etc. In
the current version of FAST, we used hardware parameters characteristic of INTEL’s
iPSC/2 and iPSC/860 multiprocessors.

3. Functional Algorithm Simulation of the FMM

3.1. The Fast Multipole Method

The Fast Multipole Method (FMM) [1] solves the N-body problem, i.e., it calcu-
lates the forces exerted on each particle by the whole ensemble of particles lying in
a 2- or 3-dimensional data space. These forces determine new locations for the par-
ticles in each small time-step. Forces can be either gravitational or coulombic. The
FMM has wide applications in astrophysics, molecular dynamics and computational
fluid dynamics.

The brute-force method for N-body computations evaluates all pairwise inter-
actions and thus its sequential complexity is O(N?) per time-step, where N is the
number of particles (bodies). The FMM evaluates all interactions to within a fixed
roundoff error and has an average time-complexity per time-step of O(N). Its cen-
tral strategy is the hierarchical decomposition of the data-space in the form of a
quadtree (or octtree for the 3-dimensional case). This hierarchical decomposition
is used to cluster particles at various spatial lengths and compute interactions with
other clusters that are sufficiently far away by means of series expansions (see Fig-
ure 2).

For a given input configuration of particles, the sequential FMM first decom-
poses the data-space in a hierarchy of blocks and computes local neighborhoods and
interaction-lists involved in subsequent computations. Then, it performs two passes
on the decomposition tree. The first pass starts at the leaves of the tree, computing
multipole expansion coefficients for the gravitational field. It proceeds towards the
root accumulating the multipole coeflicients at intermediate tree-nodes. When the
root is reached, the second pass starts. It moves towards the leaves of the tree, ex-
changing data between blocks belonging to the neighborhoods and interaction-lists
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calculated at tree-construction. At the end of the downward pass all long-range
interactions have been computed; subsequently, nearest-neighbor computations are
performed to take into consideration interactions from nearby bodies. Finally, short-
and long-range interactions are accumulated and the total forces exerted upon par-
ticles are computed. The algorithm repeats the above steps and simulates the
evolution of the particle system for each successive time-step.

In hierarchical N-body methods in general, and FMM in particular, the largest
portion of the computation time is spent in the force calculation procedure, that
is, in the operations performed during the traversal of the decomposition tree. The
time spent in the tree-construction phase is not significant. Moreover, parallelisim
can only be exploited within one time-step.

As mentioned earlier, FAST does not perform the bulk of the numerical cal-
culations involved in the Fast Multipole Method computation. Hence, it has no
means of computing the new locations of particles after one time-step. Execution
of the FMM for a sequence of time-steps, however, can be studied with a sequence
of FAST-simulations on input configurations of particles that correspond to the
time-steps of interest. These configurations can be extracted from real N-Body
simulations.

3.2. Setup of Simulations

We have employed two different input configurations of particles for our simu-
lations. One corresponds to an approximately uniform particle distribution, repre-
sentative of Molecular Dynamics applications, and the other corresponds to non-
uniform particle distributions (Plummer), typical of Astrophysics simulations.

In addition to particle locations, two algorithmic parameters must be specified
at the input of FAST: one is the number of multipole expansion coefficients sought
and the other is the number of particles per quadtree leaf. In the simulations
presented here, the size of the multipole expansions was set to ten coefficients. This
guarantees highly accurate results for the corresponding actual FMM computation
and, at the same time, maintains the low time complexity of the Fast Multipole
algorithm with respect to the brute-force method.

The choice of the quadtree granularity affects many aspects of the parallel exe-
cution: the available parallelism and its granularity, communication overhead, the
computation-to-communication ratio, and the overall parallel time. From our mea-
surements with FAST, we concluded that small granularities (fewer than ten parti-
cles per quadtree leaf) lead to relatively high communication overhead, very small
computation-to-communication ratios, and thus to larger parallel times. On the
other hand, granularities larger than twenty particles per leaf result in larger se-
quential tasks and limit the available parallelism. In this paper, we present results
derived with a quadtree granularity of fifteen particles per leaf, unless stated other-
wise. This choice achieves good parallel time for the hardware parameters adopted,
over a wide range of problem sizes.
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Figure 3: Data about the limiting scalability of the parallel FMM

3.3. Profiling of the FMM

The clustering stage of FAST (Figure 1) creates the clustered parallel-execution
graph, which describes the processing of the Multipole Method on a parallel archi-
tecture with a clique interconnection and as many processors as task-clusters. From
the parallel-execution graph we can easily estimate the parallel time of the execu-
tion, and thus measure the speedups achieved on an abundant clique and assess the
scalability of the parallel algorithm. In Figure 3 (left), we present parallel execu-
tion times for problems of 2,000 to 40,000 bodies distributed according to uniform
and Plummer distributions. The times in this diagram correspond to the minimum
estimates from a set of FAST experiments with different clustering heuristics.

In Figure 3 (right), we present the available speedup sustained by a parallel
implementation of the Fast Multipole Method, as the problem size increases and
abundant hardware resources are accessible. This represents an estimate of the
scalability of the algorithm with respect to problem size. In that sense, the parallel
FMM is scalable because for larger problem sizes, greater speedups can be achieved
if more processors, memory, and links are available. The parallel FMM would
not be scalable if speedups leveled off for larger problem sizes; this would signal
the existence of significant sequential parts, rapidly increasing with the problem
size. Moreover, we notice that in the non-uniform case (Plummer distribution) the
available speedup increases more slowly with problem size than in the uniform case:
non-uniformity results in higher and “tighter” decomposition trees and thus in less
available parallelism.

From the parallel-execution graph we can also extract the profile of active tasks
and busy links during parallel execution on the abundant clique. This profile re-
veals characteristics inherent to the algorithm at hand and is not influenced by
partitioning and mapping to a specific multiprocessor. Experiments with differ-
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Figure 4: Execution Profiles for a 15,000-particles problem (Uniform distribution).

ent clustering heuristics led to similar results and conclusions (see [5]). Figure 4
presents such a profile for a parallel execution of the Fast Multipole Method on a
problem instance with 15.000 particles distributed according to the uniform distri-
bution, fifteen particles per quadtree-leaf, and a ten coefficient approximation. In
this case we used a clustering technique combining heuristics from [11] and [16].
Profiles from non-uniform distributions have similar shape.

From these plots it is clear that the parallel execution has three phases: a short
phase at the beginning is defined by a large number of active tasks indicating a high
degree of available parallelism. This is followed by a long period during which the
available parallelisin is very low. The execution ends in a third, long phase where
the number of active tasks is high. Similar remarks hold for the channel utilizations
in the abundant clique. The first phase of the parallel execution corresponds to the
upward step of the Fast Multipole algorithm: in the beginning, many tasks calculate
the multipole coefficients at the leaves of the decomposition tree in parallel; the
results are sent to tasks accumulating these coeflicients in nodes at lower levels
of the tree and so on. As the algorithm moves towards the root, the number
of internal nodes decreases logarithmically and thus the number of parallel tasks
drops very quickly. In the second phase, the algorithm moves from the root of
the tree to its nodes, exchanging messages between nodes belonging to the same
neighborhoods. The available parallelism is very small initially and increases as
the algorithm approaches the quadtree leaves. In the final phase, nearest-neighbor
computations and message exchanges take place.

Another interesting observation relates to resource utilization of the abundant
clique. For instance, the parallel-execution graph of the above example has 2384
clusters and therefore, the corresponding abundant clique would have 2384 pro-
cessors and 5,681,072 unidirectional links. However, the average number of busy
processors over the parallel execution time is 308, that is, 12% of the processors in
the abundant clique. The average number of used links over time is as low as 51,
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Figure 5: Matrix Communication Patterns for the 15,000-particle problem.

which corresponds to 0.08% of the total number of links. Therefore, it is conceivable
that a much sparser architecture with fewer processors could achieve essentially the
same speedups as the abundant clique.

This can be seen also from Figure 5: the plot to the left presents communication
patterns for the case where bodies are distributed uniformly, whereas the plot to
the right presents the patterns extracted from the non-uniform distribution case.
The horizontal and vertical axes correspond to processors of the abundant clique,
that is, to task-clusters of the clustered parallel-execution graph. Points in the plot
represent the occurrence of messages sent between the task-clusters; darker points
correspond to larger numbers of messages between the corresponding clusters.

3.4. Hypercube, Ring and Multiring Performance for the Fast Multipole Method

The communication patterns plotted in Figure 5 show that destination clusters of
messages dispatched from any task-cluster tend to belong to small neighborhoods
and have numberings close to the number assigned to the source cluster. This
observation suggests that a ring interconnection might achieve speedups comparable
to those achieved on a clique.

Using FAST, we mapped the clustered parallel-execution graphs onto clique,
hypercube, and ring interconnections with various numbers of processors. From
these experiments, we found that ring interconnections represent a cost-effective
architectural choice for implementing the Fast Multipole Method in parallel. For
example, in a 10,000-particle simulation with 15 particles per quadtree leaf and ten
coefficients, a 128-processor ring achieves 50% of the speedup of the clique with
only 1.57% of its links. In a 256-processor configuration, the ring achieves the 40%
of the clique speedup with only the 0.78% of its links.

Speedups measured on rings are not as high as the ones achieved on cliques,
simply because the ring is a much sparser interconnection and thus link-contention
causes extra delays in message propagation times. This is confirmed by the dia-
grams in Figure 6, which display the average message delay and message congestion
measured with FAST for the 10, 000-particle example (Plummer distribution). Con-
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Figure 6: Contribution of Congestion to Message Latency. Note the difference in
the y-axis (time scale) of the two diagrams.

gestion figures correspond to average time spent by each message while waiting in
queues because of link and network interface contention. From these graphs it is
clear that congestion constitutes the largest portion of message latencies measured
in the rings. On the other hand, communication contention in the cliques is prac-
tically nonexistent.

The above remarks suggest that spending extra hardware to reduce ring con-
tention might result in substantially improved speedups for the ring interconnection.
A straightforward way to reduce contention is by using multiring instead of single-
ring communication networks. Building such interconnections is feasible and much
cheaper than building cliques or hypercubes with the same number of processors.

Our functional simulations proved that multirings are also cost-effective: Fig-
ure 7 presents the speedups reported by FAST for the 10,000-particle problem
mapped on hypercubes and multirings with two to sixteen rings. It is clear that an
increase in the number of rings improves significantly the attained speedups. More-
over, it enhances the cost-effectiveness of the ring implementation: for instance, in
a 128-processor machine running the parallel FMM on 10, 000 particles distributed
according to the Plummer model, the four-ring achieves 83% of the speedup of the
clique with only 6.3% of its links. As another example, the 512-processor four-ring
achieves a speedup slightly larger than the one attained by a 256-processor clique.

4. Conclusions

In this paper, we described a case study of a parallel version of the Fast Multipole
Method with FAST, a software system implementing a new approach for modeling
the parallel execution of a class of important scientific applications. FAST enabled
us to perform an architecture-independent analysis of the algorithm over a large
number of realistic data sets and for various algorithmic parameters. Furthermore,
it provided us with useful information regarding communication patterns occurring
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Figure 7: Multiring Performance.

in the parallel execution, the variation of available parallelism during different algo-
rithmic phases, and upper bounds on available speedups for different problem sizes.
This information suggested that an interconnection topology as simple as the ring
can achieve satisfactory performance.

Subsequently, FAST allowed us to estimate the parallel performance of the FMM
on message-passing multiprocessors with hypercube, ring and multiring intercon-
nection topologies. Performance figures derived from the mapping of the FMM to
cliques were used to evaluate the effectiveness of the ring and multiring implementa-
tions. Our simulations showed that an implementation of the Multipole algorithm

on scalable ring or multiring architectures is cost-effective.
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