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Abstract—Fog Computing is emerging as the dominating
paradigm bridging the compute and connectivity gap between
sensing devices and latency-sensitive services. However, experi-
menting and evaluating IoT services is a daunting task involving
the manual configuration and deployment of a mixture of geo-
distributed physical and virtual infrastructure with different
resource and network requirements. This results in sub-optimal,
costly and error-prone deployments due to numerous unex-
pected overheads not initially envisioned in the design phase
and underwhelming testing conditions not resembling the end
environment. In this paper, we introduce Fogify, an emulator
easing the modeling, deployment and large-scale experimentation
of fog and edge testbeds. Fogify provides a toolset to: (i) model
complex fog topologies comprised of heterogeneous resources,
network capabilities and QoS criteria; (ii) deploy the modelled
configuration and services using popular containerized descrip-
tions to a cloud or local environment; (iii) experiment, measure
and evaluate the deployment by injecting faults and adapting
the configuration at runtime to test different ‘“what-if’ scenarios
that reveal the limitations of a service before introduced to the
public. In the evaluation, proof-of-concept IoT services with real-
world workloads are introduced to show the wide applicability
and benefits of rapid prototyping via Fogify.

Index Terms—Fog Computing, Internet of Things

I. INTRODUCTION

IoT devices have the potential to change the way we
monitor, understand, and interact with our physical world,
bringing it closer to cyberspace [1]. Data collected by and
retrieved from IoT devices are essential in building online,
delay-sensitive services in various application domains, such
as public transportation [2], industrial robotics [3], and content
streaming [4]. However, IoT devices have inherent constraints,
such as their limited processing power, small storage capacity
and poor reliability, along with the restricted bandwidth and
high latency of network links that connect them to centralised
Cloud infrastructures. These raise several challenges for the
development, deployment and operation of delay-sensitive,
IoT-oriented applications [5]. Fog Computing represents an
effort to mitigate some of these challenges pushing part of the
computation and storage necessary for IoT applications closer
to these devices and to the network’s edge. Nevertheless, this
push creates new challenges in application development.

Usually, IoT applications consist of fine-grained services
that communicate and cooperate with each other [6]. These
services utilize compute and network resources along the path
that connects the Edge to the Fog and the Cloud. The hetero-
geneity of Fog devices, the non-uniform network bandwidth
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of edge and mobile networks and the high resource variability
that arises because of physical faults, bandwidth saturation,
network uncertainty, energy consumption and device mobility
must be taken into account in service placement as they
affect the performance and reliability of applications [7], [8].
Consequently, the design, deployment, and evaluation of IoT-
driven applications becomes a complex and costly endeavor for
researchers and engineers, since it requires the exploration of
numerous conditions and parameters through repeatable and
controllable experiments on a combination of physical and
virtual testbeds that are hard to configure and scale [7].

Researchers seek solutions to model and analyze the behav-
ior of infrastructure and services [9], [10], with development
kits [7], and a handful of simulators or emulators that cover
different infrastructure layers, from the network [11]-[13] and
up to the Cloud [9], [14]. Most of these tools are built as
extensions of existing Cloud simulators and/or focus on spe-
cific aspects of Fog modeling: resource heterogeneity, service
scheduling etc. Therefore, following the evaluation of a Fog-
based application with existing simulation or emulation tools,
an application developer needs to re-invest substantial effort to
develop and deploy the application on a real testbed. Moreover,
existing tools would have left many unanswered questions
regarding key pains of today’s IoT services, ranging from fog
node mobility, fault management and energy consumption to
quality of service monitoring, cost of operation, and privacy-
related restrictions in data movement [15], [16].

The focal point of our work is to introduce Fogify, an
interactive Fog Computing emulation framework that enables
the repeatable, measurable and controllable modelling, de-
ployment and experimentation of IoT services under realistic
environment assumptions, faults and uncertainties. To illustrate
the wide applicability of the Fogify framework, we extensively
evaluate various Fog deployments originating from ML-based
object detection and intelligent transportation, with real-world
workloads, QoS objectives and runtime uncertainties.

Towards this, the main contributions of this paper are:

« A comprehensive model specification tailored to the
unique characteristics of fog environments. The model
expressivity enables developers to design, customize and
configure complex fog deployments, including resource
heterogeneity, network capabilities, operating regions,
energy consumption and data movement restrictions.

« A thorough experimentation pattern in which “what-
if” scenarios are described to fine-tune and reveal service
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strengths and limitations before introduced in production.
Specifically, developers can inject faults, entity and in-
frastructure downtime, network uncertainties, stress spe-
cific devices, adjust the workload, restrict data movement
and adapt the entire configuration at runtime.

o An open-source and scalable fog emulator [17] with
extensible and customizable interfaces that enables the
deployment of modelled Fog environments on a local host
or Cloud infrastructure. To ease the description of fog en-
vironments, Fogify adopts and extends the Docker Com-
pose infrastructure-as-code specification to support the
“fogified” model specification. When an emulated testbed
is requested, the system allocates resources as isolated
containerized processes, provisions network connectivity
among entities, configures the infrastructure based on the
modelled description accordingly, and deploys enablers
for runtime assessment (“what-if”’ scenarios). With this,
the deployment can emulate the direct behavior of an
actual geo-distributed fog environment.

« A monitoring and post experiment analysis system that
enables the measurement and evaluation of the deploy-
ment. Through that, developers inspect low-level mon-
itoring metrics of emulated nodes, expose application-
specific metrics and, finally, compose and analyze more
complex models, such as energy consumption models,
QoS models and monetary costs.

The rest of the paper is structured as follows: Section II
presents technological aspects related to fog computing. Sec-
tion III introduces the Fogify Framework, while Section IV
illustrates our modeling specification and Section V describes
the system implementation. A comprehensive experimentation
is illustrated in Section VI. Finally, Section VII presents the
related work and Section VIII concludes the paper.

II. BACKGROUND & CHALLENGES
A. Background

1) Fog Continuum: Figure 1 depicts a high-level overview
of an exemplary fog topology. The lower level, denoted as the
“Edge”, comprises sensing devices that monitor the physical
environment and which are embedded therein or within fog
nodes, such as drones and vehicles. Typically, sensing devices
generate raw data on a continuous basis, e.g., a sensor residing

on a video surveillance device may generate 6Mbps of video
content, which means the data payload easily reaches the
magnitude of 500 GB in less than a week. The generated data
can be modelled as an infinite timestamped data stream that the
sensors transmit to more powerful Fog Nodes through various
protocols, such as MQTT, Bluetooth, 4G, LoRa, etc. [15].

Fog nodes encompass compute and network components,
such as gateways and access points. At the Fog layer, nodes
are usually organized hierarchically. The lower sub-layers con-
sist of lower-capacity physical devices, such as single-board
computers (SBCs) or Industrial IoT Gateways [18] [19]. These
devices are placed near the “edge” devices, usually in the same
local network. Their role is to capture and possibly do low-cost
processing on incoming data streams with the goal of easing
the pressure on “last mile” networks, mediating between the
Edge and “latency-far” clouds [20]. Processing data “locally”
is critical for latency-sensitive services, such as road safety
and autonomous driving, which require latency less than 50ms
that cannot be achieved via back-and-forth communication
with cloud data centers [21]. The capabilities of Fog nodes
increase when moving from lower to higher levels in the Fog
layer. Finally, at the top layer of the infrastructure exists the
Cloud that has (theoretically) unlimited resources and stable
connections between interconnected entities.

2) IoT services: usually adopt the microservices architec-
ture paradigm, where the business logic of an application is
decomposed into smaller modules (services), which run as in-
dependent processes and intercommunicate using lightweight
communication mechanisms [22]. Microservice execution typ-
ically relies upon lightweight virtualization technologies, such
as containerization, to cope with Fog-node Operating System
heterogeneity and enhance IoT service portability [23]. Thus,
each (micro-) service is realized as an independent container
that runs on a physical or virtual node.

B. Design and Deployment Challenges of loT Microservices

Application developers who wish to develop, deploy, and
manage IoT services over a Fog infrastructure are faced with
a number of challenges:

Evaluation of the proper devices can be costly: A wide
range of physical devices can be deployed in the Fog layer
including: (i) single board micro-controllers (e.g., Raspberry Pi
’s, Odroids, DragonBoards) with limited capabilities (1-4 cores
@ 1.5GHz with 1-4GB RAM); (ii) industrial routers and IoT
Gateways (e.g., Industrial Routers, HPE GL20 IoT Gateway);
or even (iii) cloudlets deployed on embedded devices with
increased processing power (e.g., 2-8 cores @ 4GHz with
8-32 GB RAM). The prices of these devices vary widely,
from $35 for a Raspberry Pi 3 B+ to $2000 for Cisco 800
Series Routers [21]. Therefore, from the outset, the selection
of and experimentation with different devices of choice for an
optimal application setup requires the exploration of numerous
alternatives and a significant investment in time and money.

Configuration is time-consuming and complicated: Follow-
ing the hardware selection, service operators are expected to
manually setup, connect, configure, and test every physical
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Fig. 2: A High-Level Overview of the Fogify Emulator

and virtual device of the infrastructure, although infrastructure
may be spread throughout a wide geographic area or entail
mobile components. The configuration and installation process
itself needs to ensure that software dependencies related to
virtualization and application software are respected, networks
are properly instantiated, and the functionality of the system is
thoroughly tested. Moreover, often, legal concerns regarding
the protection of data impose the implementation of additional
requirements for network device-specific configurations that
ensure the geographic or administrative separation of estab-
lished networks. To the best of our knowledge, there is no
established and standardized way to automate this process,
which is cumbersome and shifts resources from service devel-
opment to infrastructure configuration.

Network heterogeneity’s impact: The network path from the
Edge to the Cloud entails a variety of network technologies,
from optical fiber, satellite or Internet links that interconnect
Fog and Cloud elements, to wireless or wired local network
links that connect edge nodes [24]. Connectivity technologies
at the edge vary a lot in terms of bandwidth, with wireless
protocols like Bluetooth, Zigbee and LoRa offering 2 Mbps,
250 Kbps and 50 Kbps max bandwidth, respectively [25],
while more stable wireless links like WiFi offering up to 95
Mbps (Section VI). The network latency between Fog nodes
varies from under 3ms inside data-centers [26] to less than
15ms for one-hop wireless connections [24], to over 100ms
for links between Edge and Cloud. Inside the data-center,
virtual and physical machines can present intra-rack and inter-
rack bandwidth of up to 10 Gbps with low network delays
(1.26ms and 2.43ms respectively) [26]. Heterogeneity in net-
working technologies, bandwidth and latency must be taken
into account in service design and placement [8]. However, the

interplay between these factors and their impact on Cloud-Fog-
Edge service performance has not been fully explored [19],
[27] and, to a large extent, can only be investigated on top of
a real deployment, which incurs significant effort and cost.
Availability concerns: Cloud operators strive to achieve
very high availability with a combination of resource over-
provisioning, intelligent elastic scaling, and sophisticated man-
agement tools [28]. Nevertheless, even in a stable datacenter,
network device failures can cause up to 29% of significant and
user-impacting incidents [29]. As we move out of the highly
regulated datacenter environment and towards the Edge, opera-
tional conditions become more challenging: over-provisioning
at the Fog layer is limited, proper maintenance and continuous
monitoring are harder to achieve, cheaper devices have worse
reliability profiles, frequent network disconnections become
the norm, and devices operate in conditions that are not easily
controlled, with over-heated or defective edge devices resulting
in inefficient execution of IoT services [19], [20]. Finally, the
adoption of virtualization increases the multi-tenancy, but, at
the same time, may lead to unexpected processing interference
to the co-located services [30]. In fact, failures, network uncer-
tainties and processing interference are extremely difficult to
be reproduced because they are unexpected and wide-spread
in a non controllable environment.

Infrastructure monitoring requires external tools or soft-
ware: Finally, aspects like QoS, energy consumption and
running monetary cost related to a Fog infrastructure are
crucial in the development and design phase. For instance, the
power consumption of a micro-controller (e.g., a Raspberry Pi)
doubles when the compute load is at max capacity, compared
to when the device is in idle state [1]. Another crucial factor
of energy consumption is data transfer, since it consumes 10-
12% of the energy in data centers and it can reach up to 50%
in Fog infrastructures [26] [31]. To capture the desired metrics
the developer should deploy monitoring systems and/or even
physical sensors, which may further increase configuration
complexity, deployment pain or even monetary cost.

III. THE FOGIFY FRAMEWORK
A. Fog Emulation Framework Objectives

Developers of Fog-based applications, who seek to explore
application performance and configuration under various op-
erational conditions, can overcome the challenges mentioned
above by using infrastructure and application emulation before
undertaking the deployment and testing on real testbeds.
Emulation is a process that realizes the behavior of a platform,
device or infrastructure on a host device or host infrastructure,
at a fraction of the real deployment cost. A Fog computing
emulator has to provide an execution environment that captures
realistically the conditions and behavior of a Fog application
deployment, focusing on the following features:

Resource Heterogeneity: the ability to emulate Fog nodes
with heterogeneous resources and capabilities.

Network Link Heterogeneity: the ability to control the link
quality, such as latency, bandwidth, error rate, etc., and even
reproduce node-to-node and node-to-network connections.
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Controllable Faults and Alterations: the ability to change
a running topology by injecting faults, alter network quality,
and inject (varying) workload and compute resources.
Any-scale Experimentation: the emulation execution envi-
ronment should be scalable from topologies with a limited
number of nodes, capable to run on a single laptop or PC, to
hundreds or thousands nodes, running on a whole cluster.
Monitoring Capabilities: an emulation framework must col-
lect, manage, and process metrics from emulated Fog Nodes,
network connections, and application-level information.
Rapid Application Deployment: the functional prototype of
an application should demand no modifications to its business
logic in order run on a fog emulation framework.

Our aim is to provide a framework that goes beyond the
current state-of-the-art in Fog emulators so that users can
emulate key aspects of Fog environments with minimum
effort. Specifically, Fogify enables service operators to solely
focus on the evaluation and testing of their services, with
simplified deployment and management of scalable IoT mi-
croservices on top of the emulated environment. Emulating
an execution environment involves configuring the underlying
services, application deployment, monitoring, and providing
the ability for run-time changes. Fogify takes care of all the
above (resource and network link heterogeneity; controllable
faults and alterations) and removes the burden of having to
deal with these challenges from the users.

B. Fogify Overview

Figure 2 depicts a high-level, abstract overview of the
Fogity architecture. The deployment starts, at the SDK level,
with the description of an IoT microservices application,
workload, and Fog topology. The services of an application
and the workload generator are containerized services provided
by the user and described in a docker-compose file. Docker-
compose is a specification for “infrastructure-as-code,” which
helps define services and their execution parameters, prior to
deployment. Fogify extends the docker-compose specification
so that it encapsulates a wide variety of Fog infrastructure
properties such as computing resources, network capabilities,
QoS constraints, and placement policies. Users still develop
their application using familiar docker constructs with the
added functionality of Fogify not affecting portability. This
means that a Fogify enhanced description will run in any
docker runtime environment without any alterations, however
users will lose the functionality offered by Fogify.

When an application is ready for deployment, the Fogify
Controller acts as the coordinator between the SDK and
the execution environment. Specifically, the Controller per-
forms the validation of the submitted description to detect
potential problems such as insufficient underlying resources.
If there are no violations, the Controller provisions the Fog
nodes and overlay mesh networks inter-connecting emulated
devices, instantiates the (micro-) services, and disseminates
(any) network restrictions to Fogify Agents at the execution
layer. To achieve this, the Controller communicates via the Or-
chestrator Connector with the Resource Management Layer.
The connector translates the model specification to underly-
ing orchestration primitives for the Cluster Orchestrator. The
Cluster Orchestrator guarantees the streamline execution of
the containerized services over the Fog environment. In a
nutshell, the Cluster Orchestrator manages the local Docker
Engine process of each Fog node and controls the containers’
execution. In the current Fogify prototype, we utilize Docker
Swarm as the Orchestrator. However, our model specification
is generic and capable of encapsulating other orchestrators
(e.g., Kubernetes), by implementing new connectors. Fogify
Agents are lightweight processes deployed on every cluster
node. Every agent consists of three modules, each with a
specific role: (i) a server, receives requests from the Fogify
Controller and proceeds with the execution at the host node;
(ii) a listener, listens for updates via the container socket; when
an emulated device connects to a network this task applies
the proper network QoS, and (iii) monitoring, captures perfor-
mance and user-defined metrics in a non-intrusive manner.

In the runtime phase, Fogify enables developers to apply
Actions to their IoT microservices, such as ad-hoc faults and
topology changes. Faults and changes include network con-
nectivity alterations, interference injection, device down-time,
scaling actions, etc. Furthermore, developers can introduce
“what-if” Scenarios, which comprise sequences of scheduled
Actions that influence deployed devices and networks. When
Actions and Scenarios are submitted, the Fogify Controller
coordinates their execution with the Cluster Orchestrator and
the respective Fogify Agents. Developers are encouraged to
store Actions and Scenarios for future execution rather than
just using the SDK for “one-off” Action submission.

A key feature of Fogify is that it goes beyond Fog emulation
by also supporting the runtime monitoring and assessment
of the deployment and scheduled scenarios. Fogify captures
performance metrics in a non-intrusive manner, directly from
Docker containers and users are free to define and submit
app-level metric updates through the Fogify Agent listening
interface. All monitored metrics are stored at the Agent’s local
storage. The local storage minimizes data retrieval time by ap-
plying a compound indexing scheme for efficient execution of
time-range queries. Users can then extract metrics to generate
useful insights about QoS, cost, and predictive analytics. This
is achieved through the Fogify SDK, which retrieves local
metrics to an in-memory data structure providing exploratory
analysis methods that produce plots and summary statistics.
Finally, since the SDK can retrieve metrics and inject actions
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to Fogify in a programmable manner, users can integrate new
functionalities related to their business logic.

IV. MODEL SPECIFICATION

The Fogify model is composed of: (i) Fog Templates,
enabling the description of IoT services, Fog resources and
networks; (ii) the Fog Topology, denoting how services run on
the Fog testbed; and (iii) the Runtime Evaluation, offering
run-time adaptation for the testbed. To provide interoper-
ability between docker-compose and Fogify, we extend the
docker-compose specification (v3.0) by introducing a new
section named, x—fogify, supporting container deployments
to seamlessly work in both Fogify and the docker engine.

To better understand the Fogify model specification, let us
consider an example IoT application inspired from the trans-
portation domain. Figure 3 depicts vehicles moving across city
regions with each vehicle equipped with sensors monitoring
critical components, e.g., tire pressure, brakes, road condition,
and a GPS sensor reporting vehicle location and speed. The
generated data are transmitted to nearby Multi-Access Edge
Computing (MEC) nodes, which aggregate, analyse and notify
local drivers for potential incidents and traffic congestion.
After analysis at the MEC level, insights are propagated to
a high-end cloud server for global-scale analytics and training
of ML models for predicting vehicles’ maintenance.

A. Fog Templates

To model the aforementioned scenario, Fogify provides the
templates primitive. Figure 4 depicts an example, where
the user denotes IoT application services and defines desired
Fog node and network capabilities. In our scenario, the appli-
cation is composed of 3 services. Services are self-contained
binaries, made up of libraries, tools, and dependencies for the
codebase. Hence, a Service template (Fig. 4 (D) is used to
represent the application services (mec-svc and cloud-svc) and
the workload generator emulating the set of aforementioned
sensors (car-workload). Next, the Nodes template is used to
define Fog resources. In our scenario we have 3 different types
of nodes (car, cloud, and mec). The Node template allows
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users to describe the resource characteristics of a physical
or virtual host, including properties for the Processor,
Memory, and Storage. For example, the mec-node (Fig.
4 (2) has 4 cores at 1.5GHz, 4GB RAM and 32GB disk.
The Network template is used to define inter-connecting
mesh networks and links among Fog nodes. Fog nodes can be
directly connected via an emulated physical link and/or belong
to the same network administrative domain. The Network
template provides the Capacity, which restricts the number
of connected devices on a network, and a set of default
Network QoS features. In regards to QoS, one can specify
Downlink and Uplink connectivity properties. We note that
although our focus is not on specific network protocols (e.g.,
bluetooth, LoRa, etc), Fogify provides pre-compiled templates
for various protocols with the most critical QoS constraints
defined, such as Latency, Bandwidth, Packet Drops,
Error Rate, and Reordering. Moreover, Fogify enables
users to denote the latency distribution of a network link.
Specifically, Fogify provides an extensible collection of la-
tency distributions, including uniform, gaussian, pareto and
paretonormal. Furthermore, users are able to upload network
trace files via the SDK, so that Fogify adopts a custom latency
distribution. Since the Fogify model is not bound to specific
technologies but only to QoS constraints, it can easily describe
even connectivity for technologies that have yet to-be tested.
Figure 4 (3) depicts the definition of the mec-net-1 network,
which has maximum capacity 1000 nodes, and default network
QoS are: for downlink bandwidth 10Mbps, network delay of
15ms and 1% error rate, while the uplink bandwidth is SMBps.

B. Fog Topology

Templates only describe the provisioning of services and
resources, lacking information on how a Fog topology is
realised and interconnected, and where services are placed.
So Fogify provides the Topology primitive, enabling users
to specify a set of Blueprints, which is a combination
of a Node, Service, set of Networks, replicas and a
label. For instance, the blueprint of Fig. 5 (D) material-
izes two vehicles (replicas: 2) that are connected to the mec-
net-1 network and run the car-workload service. Similarly, the
user describes all components from the application scenario
illustrated in Figure 3. The combination of services, nodes and
templates allows users to create more complex topologies.
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Furthermore, Blueprints support the overriding of (i)
network-level QoS properties; and (ii) the properties of specific
network links. Altering network-level QoS will affect the
traffic between all Fog Nodes of the network, whereas link-
level overrides will affect only the network traffic of the
specific link. For instance, in Fig. 5 ), the traffic from mec-
node-1 to the car-node-at-mec-1 in the Network mec-net-1 will
experience 50ms network latency while the network QoS for
the rest of nodes will be the default network QoS of mec-net-1.

C. Runtime Evaluation Model

The aforementioned model abstractions enable the rapid
prototyping of emulated Fog deployments. However, Fog de-
ployments are usually neither statically provisioned nor stable.
This instability highly impacts the execution of IoT services,
especially in uncontrollable domains. Fogify addresses this
challenge by providing runtime Actions & Scenarios.

An Action is a process that changes properties of a
running Fog Topology. To apply an action, Fogify uses the
Fog node label, the type of Action and any action pa-
rameters. There are three Action types, namely: scaling_ -
action, network action, and stress action. A
scaling action is either horizontal or vertical. Hori-
zontal scaling can be applied to mimic a virtual scaling
action, such as the spawning of a containerized service or
the failure of a Fog node. Vertical actions emulate transient
failures or fluctuations of the processing capabilities of a Fog
node. Furthermore, a network action refers to changes
in network QoS. Specifically, a network action can be seen
as an ad-hoc network fault, physical network interference,
connectivity uncertainty, or even a malicious attack. Finally, a
stress_action provides the ability to simulate workload
interference on a running Fog node. This is useful to evaluate
the behaviour of a service during workload variation and/or
interference from other services.

To enable the repeatable execution of a series of Actions,
Fogify provides the Scenario primitive. A Scenario is a
sequence of time scheduled actions that Fogify will execute
to emulate more complex user-driven experiments. Figure 6
depicts a scenario of a moving node (car-1), moving away

from a base station, with a two step connectivity degradation.
After 20s from the experiment start, the moving node becomes
distant from the others, thus the experienced network delay
becomes 50ms. The node continues to move away with the
same speed, so at the next 20s the experienced network
delay becomes 100ms. At this point, let us assume that
car-2 has an accident that destroys its compute unit so the
emulated node should be removed from the testbed, thus the
scenario performs a SCALE_IN action. Scenarios are written
in YAML format, with users executing them at anytime during
the evaluation. The latter enables experiment reproducibility,
aiding the rapid evaluation on different fog topologies.

V. FOGIFY IMPLEMENTATION DETAILS
A. The Fogify SDK

The Fogify Controller exposes a REST API for interacting
with the emulated testbed. We provide a python SDK with pro-
gramming primitives for interacting with the Fogify Controller.
Table I summarizes available SDK and API calls. The Fogity
SDK provides the ability to submit IoT service descriptions
adopting the Fogify model specification, manipulate service
execution by applying actions and submitting “what-if” sce-
narios, extract real-time monitoring data and assess running
deployments. Furthermore, the Fogify SDK has a set of built-
in analytics functions applicable on monitoring data, as well
as, plotting functionality for easing metric examination. With
the interactive changes of the topology and the inspection of
changes’ effects, Fogify SDK improves the programmability
of the platform and gives developers the opportunity to im-
plement their own components with more complex behavior,
such as external modules or connections with their tools.

B. Computational Resources Management

Container virtualization is used as the execution environ-
ment for emulated Fog nodes, due to their low computing
overhead and fast instance spawning time. Docker provides
a standardized way for building, sharing and executing con-
tainerized applications. Specifically, docker images are files
that package all the service’s code, dependencies, artifacts, etc.
Docker containers are the running instances of them. Thus,
we consider that the containers are the building blocks of a
microservice application and, in our framework, represent the
emulated execution environment for a service.

Realistic Fog node emulation requires the isolation among
operating services and constraining computing resources. On
the one hand, container-based virtualization offers the desired
level of isolation by executing a containerized service as an
isolated process in a user-space on the host OS. The Docker
engine abstracts the related reachable resources from every
running container such as process IDs, network interfaces,
hostnames, etc. On the other hand, the Docker engine restricts
the processing capabilities of running containers by utilizing
Linux Control Groups (cgroups). A cgroup is a Linux kernel
mechanism managing OS resource allocation for specific pro-
cesses (e.g., CPU, RAM). Even if tools for resource constrain-
ing exist, the mapping of the desired emulated restrictions to



SDK Function (API Path) [ Method | Description

Control functions

Host A Host B

Al
packets

deploy (/topology/) POST Deploys a specification file

undeploy (/topology/) DELETE | Remove the fog infrastructure

Actions & Scenario functions

stress (/action/stress/) POST Inject stress workload on fog
instances

h_scaling_up POST Starts N fog instances

(/action/scaling/horizontal/)

h_scaling_down POST Stops N fog instances

(/action/scaling/horizontal/)

v_ scaling POST Alters the processing capabili-

(/action/scaling/vertical/) ties of a running node

update _network POST Updates network QoS

(/action/network/)

delay_ distribution POST Creates a new delay distribu-

tion which will be utilized in
the experiments

(/delay-distribution/)

scenario__execution - Executes a scenario (currently

supported only by FogifySDK)

Monitor functions

get_metrics (/metrics/) GET Retrieve metrics

clean metrics (/metrics/) DELETE | Removes all stored data

TABLE I: Fogify’s Python SDK & API reference

low-level host characteristics is not always an easy task. For
some resources, like memory, the mapping is straight-forward.
For instance, an Edge device with 2GB RAM will be mapped
to a 2GB constrained container. However, for resources like
CPU, the mapping is not so obvious. Let us assume that we
would like to emulate a Fog node equipped with 2 cores @
1.5GHz on a host equipped with a more powerful processor,
e.g. 10 cores @ 3.6GHz. The question that arises is: How
to restrict container computing capabilities to emulate the
computing power of a Fog node? To address this, we introduce
a generic CPU power metric, the cumulative clock rate (CCR),
which is the number of clock cycles a processor executes per
second multiplied by the number of its cores:

CCR = Cores x Cycles (1

With the host and emulated node CCR, we compute the CPU
rate between them which illustrates the portion of the host
processor power that will be occupied by the emulated node:

emu_nodeccr

CPUrate = (2)

hOStCCR

Fogify translates the C'PU,.4¢ to the container cgroup CPU
quota. Specifically, cgroups restrict the container CPU alloca-
tion by specifying how long the container can run over a fixed
interval less or equal to the host clock speed. In a nutshell, the
Linux Process Scheduler measures how long the container has
run in the current interval, and when its total runtime reaches
the quota, the container is throttled. When a new interval starts,
the scheduler renews the container runtime. Thus, we consider
the container compute interval equal to the C PU,.4¢.

Fogify enables the configuration of an over-subscription
percentage for compute resources. Thus, when a user opts
for a 20% over-subscription, if sufficient resources exist, the
emulated nodes occupy their C' PU,.4;. , otherwise, they share
at most 20% of the CPU time. In this way, Fogify emulates
large topologies even on a single host, permitting via a user-
defined parameter a tradeoff between compute performance
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Fig. 7: Low-level network shaping of Fogify

and experiment scale. In conclusion, Fogify creates all cgroups
quotas, builds the configuration and submits it to the Cluster
Orchestrator. At this point, we note that the emulated deploy-
ment will not be feasible only if the underlying resources do
not meet the minimum provisioning requirements, bounded by
the ability of Fogify to run Docker on each fog node.

C. Network Shaping

To establish connectivity between containers on different
hosts and emulate isolated networks, Fogify creates an overlay
mesh network for each network description (Fig. 7). Every
overlay network is realized as a Virtual eXtensible LAN
(VXLAN) (D which is extended in software across the un-
derlying network, connecting separate hosts while using an
http routing mesh. To achieve the connectivity between the
emulated Fog nodes, Fogify creates a new network namespace
() on each host. A network namespace is comprised of an
isolated virtual network stack and a virtual bridge (3. The
virtual bridge acts as an interconnecting interface between
the VXLAN tunnel endpoints of different hosts. When Fogify
connects a container to a network, it creates a virtual ethernet
adapter (veth) connected to the local virtual bridge @. Inside
each container, there is an emulated Ethernet endpoint (eth)
(), one for each network, and this endpoint is mapped to
the external veth. It is on these Ethernet endpoints that Fogify
places and applies the different user-defined QoS network rules
by utilizing various traffic flow tools such as the Linux nsenter
tool [32], the token bucket filter [33] and tc-tool [34]. To
achieve this, Fogify enables through the Linux kernel of the
container, an intermediate functional block device, or simply
ibf interface (), that handles and separates all traffic filtering
for both uplink and downlink network connections (7).

When the uplink and downlink traffic are separated, Fogify
enables the QoS enforcement, redirecting packets to the re-
spected network queues of the container. Fogify utilises class-
ful queuing disciplines (qdisc) to filter and redirect packets to
a particular network QoS queue. The classful qdisc allows
the definition of a tree-based structure (8), where the root
is the network interface (physical or virtual) and nodes are
classes. When traffic reaches a network interface, it traverses
the tree nodes by following the packet filtering. Filters redirect
the packet flow to mapped nodes, found on the leaf level of
the tree. Every leaf outputs the traffic to a network queue
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with the desired QoS characteristics. To be manageable, each
queue has an identifier assigned by Fogify. With this identifier,
the Fogify Agent employs a network rule on a specific
queue to emulate network QoS (i.e., latency, bandwidth, drop
rate). Fig. 7 (9 depicts an example of a network rule that
Fogify applies to a network queue. This rule will affect
the network queue with queue_id that is placed in the
network namespace of the container with process identifier
container process_id. The latter restricts bandwidth
up to 5 kbps, assigns a per packet latency of 5ms with 1ms
deviation, with values following the normal distribution.

The emulation of network characteristics becomes even
more complex if the emulated nodes are placed on different
hosts. For example, in Figure 7, containers A and C represent
Fog Nodes A and C, respectively, and are connected to
the same network. In this case, the Fogify Agent, located
within FN-A on Host-A, is not provided with the essential
information regarding FN-C. In an attempt to overcome this
situation, Fogify Agents inspect the modeling definition of
a network link in cases when a new container is spawn. If
any link is likely to influence an instance that is placed on
a different host, the Agent sends a notification to the Fogify
Controller. The Fogify Controller disseminates the network
update to the appropriate agents. In the example, the Host-B
Agent is about to send a notification to the Controller and,
subsequently, the Controller will send an update to the Agent
of Host-A. For Fog topologies comprised of more than one
network, the same process is adopted for each mesh network.

D. Monitoring

Fogify embraces the sidecar architecture paradigm to per-
form seamless and efficient monitoring [35]. The sidecar
paradigm enables Fogify to add monitoring capabilities to
an IoT service with no additional configuration to the actual
business logic. An overview of the Fogify monitoring flow is
depicted in Figure 8 with an agent located on each host and
operating as a long-running process that retrieves monitoring
data. Both performance and app-level metrics, along with their
periodicity, can be customized accordingly by the user.

Fogify captures performance metrics directly from the con-
tainerized process by inspecting the containers’ sysfs (pseudo-
files), without any interruption or overhead to running ser-
vices. Pre-defined metrics available by Fogify include CPU
time, memory usage, disk I/O, and network traffic, among
others. Users can expose application-level metrics for their
IoT services. This is achieved by exposing metric updates, in
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JSON format, to a file (fogify.metrics.json) via the container
root directory interface. Fogify will then retrieve them via
a lightweight monitoring probe. The monitoring agent calls
the probe in each interval, with the probe “reading” metric
updates. When the agent retrieves the data, it stores them to
the monitoring storage.

Since the user can define metrics that are not known
beforehand, we have created an extensible and metric agnostic
storage scheme that consists of two entities, the Record
and the Measurement. A Record has two fields, the
Fog node Label, as described in the modeling section,
and the timestamp of the interval that the measurements
are captured. Furthermore, Measurement has two fields: a
Metric Name, that characterises both basic and application-
level metrics, and its value that is a numeric value that
the metric has at the specific timestamp. One Record has
multiple measurements so there is a one-to-many relation
between them. This allows Fogify to have an arbitrary number
of monitoring metrics in each interval. Furthermore, we set a
compound range index (identifier-timestamp), which increases
the performance in time-range queries for specific instances
that are the most common queries in our system. Finally,
the stored data can be retrieved via the Fogify REST API or
the SDK. A monitoring metric request can include time-range
queries and filters for specific services or instances. The fast
filtering minimizes the response time of Fogify and reduces
the size of data that needs to be processed from analytic tools.

VI. EVALUATION

This section introduces a study evaluating the Fogify feature
set. First, we provide experiments to assess Fogify’s ability to
realistically emulate computing resources, network links and
data processing tasks on top of different testbeds. Next, our
experiments focus on the deployment and runtime scenario
assessment of an IoT microservice-based application utilizing
a real-world workload for geo-distributed vehicle tracking.

A. Realistic Emulation

1) Computing Performance Emulation: In this experiment,
we investigate how Fogify handles user-desired computing
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preferences by emulating a Fog node equipped with 4 cores @
1.4GHz and 1GB RAM (Raspberry Pi 3 features), on top of a
host featuring 16 cores @ 2.4GHz and 16GB RAM. According
to the CCR metric (Section V), the emulated Fog node will
occupy 15% of the host’s total processing power, ample for
running cpu-intensive workloads. We inject CPU stress actions
accounting for 25%, 50%, 75% and 100% CPU utilization of
the emulated Fog node for a duration of 5Smin for each action.
Figure 9 depicts the results by providing a box-plot per stress
test where the median CPU usage is denoted by the line in the
box, while the box length extends between the first and third
quantile. From the results, despite small deviations, we observe
favorable results when comparing the desired CPU with the
emulated utilization for the 25%, 50% and 75% stress tests
(medians are 25.80%, 50.44%, 74.31%). A slight performance
deviation is observed for the 100% CPU stress test, where
the median of the emulation is 92.29%. Moreover, since the
host environment is more powerful than the emulated node,
Completely Fair Scheduler (CFS), which is the default linux
kernel CPU scheduler responsible for limiting CPU utilization,
can “borrow” CPU cycles from future periods, so we even
observe some utilization values over 100% of the available
quota. This test shows that the Fogify emulator can mimic the
utilization of emulated computing resources quite accurately,
with only small performance deviations observed on emulated
Fog nodes for workloads approaching 100% CPU usage.

2) Network Link Emulation: In this experiment, we in-
vestigate how accurately does Fogify emulate network link
behavior. First, we setup a real infrastructure comprised of the
following: (i) a Raspberry Pi 3 with 4 cores @ 1.4GHz and
1 GB RAM connected to a router via Ethernet; (ii) a laptop
equipped with an i7-6500U processor with 4 cores @ 2.5GHz
connected via WiFi with the same router; (iii) a VM allocated
from the Azure datacenter in London with 4 vCPUs and 8GB
RAM; and (iv) a VM allocated from the AWS datacenter
in Paris with the same capabilities. The router, raspberry
and laptop are physically located in the same room. Next,
we measure, with perf3 [36], the network bandwidth of the
laptop-raspberry (local network) and laptop-London (internet)
connections. The mean measured bandwidth is 94Mbit/s and
3Mbits/s , respectively. Afterwards, we proceed with emulating

the aforementioned topology using Fogify and measuring net-
work link bandwidth as emulated by Fogify. Figure 11 depicts
the comparison of the real and emulated deployment for both
the local network and Internet connections. From this figure,
we observe that the emulated links’ bandwidth, 89.1Mbit/s and
2.92Mbit/s respectively, follow the real connections with only
modest deviations (~3%).

In the next experiment, we focus on replicating real delay
distributions. For this, we use the Linux ping tool [37] over
2000 intervals and capture the response time between: (i) the
laptop and London VM,; (ii) the laptop and Paris VM; (iii) the
laptop and local router via wifi; and (vi) the raspberry and local
router via Ethernet. Afterwards, we inject the captured delay
traces distributions to Fogify, and reproduce the experiment
over the emulated topology. Figure 10 depicts the probability
density of the real and emulated delay traces for the Paris
VM. We clearly identify that the real and emulated trace are
very close with the emulated trace missing only some extreme
values that the real trace includes (in particular, 14 values with
latency just above 75ms). To further evaluate the delay repli-
cation, Figure 12 features the box plots of all traces (real and
emulated). We see that the emulation follows the real network
delay, despite a small overhead (~200us). This overhead is due
to establishing the virtual network stack and interfaces with the
desired rules (Section V-C). However, for very low Ethernet
delays (~2ms) the 200us account for 10-12%. Hence, when
emulating low-latency links this overhead takes an evident toll
which becomes more evident as we approach the limits of
the physical network. In conclusion, Fogify emulation achieves
near to real-world network link capabilities, with only outliers
not captured in emulated network traces and a slight overhead
in low-latency connections.

3) Data Processing Emulation Realism: For this experi-
ment, we benchmark an application that conducts object classi-
fication using a deep learning model. Specifically, we evaluate
two deployments: (i) Cloud-only, where the application sends
images from the user device to the Cloud for classification;
(i) Edge-Cloud, where the application sends images to a
local edge device for pre-processing (image resizing) prior to
the cloud classification. For the classification, we adopt the
YOLOV3 toolkit for fast object detection [38]. We specifically
note that, to run the classification process over Fogify no
alterations to the codebase are required. As infrastructure,
we use the aforementioned London Server as the Cloud
service, the Raspberry as the Edge device and the laptop
as the user device. The workload generator submits to the
application 2 images over 40 consecutive time intervals, with
UltraHD and 1080p resolution respectively. For evaluation,
Fogify monitored the mean processing and network time.

Figure 13 depicts the results for the different scenarios
when deployed over the real and emulated infrastructure. In
particular, Figure 13 depicts both the processing and network
overhead for all scenarios. For the Edge-Cloud deployment,
the edge processing time is depicted as well. From the results
one can immediately identify that the emulation results closely
follow the real measurements with a deviation of less that 5%.
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The only exception is the network overhead increment in the
Cloud-only scenarios which resulted in a 8% deviation of the
overall experiment time. This limitation is due to bandwidth
emulation, where in the previous experiment we showed that
emulating low-latency links presents a performance penalty.
Consequently, when the volume of the data increases, the
overall network overhead becomes slightly more obvious.

B. IoT Microservice Evaluation

Next, we evaluate the use of Fogify in the emulation of
an envisioned IoT application that is driven by real-world
data. We assume a scenario with a fictional taxi-cab company
that would like to collect and analyse location-based data
from their taxi fleet in an attempt to optimize, in real-time,
operations, cab routing and subsequently increase revenue. For
this, the company purchases five MECs and places them in
five different regions inside a city (region-{1-5}), with taxis
sending sensed data to nearby MEC. Taxis can also travel
in the suburbs, where there are no reachable MEC, and in
which case data are forwarded directly to the Cloud via mobile
internet. An abstract overview of the topology is described in
Section IV and is depicted in Figure 3. The MECs are used
for data pre-processing and for producing in-time area-level
analytic insights based on the current area-operating taxis (e.g.
the number of occupied taxis per neighborhood). The entities
which take place in the experiment are the following:

« IoT workload-generator: reproduces the workload gen-
erated by each taxi, emulating the sensing data dispatch to
a nearby MEC or to the Cloud. Unless stated otherwise,
we use workload-generators in two different ‘profiles’:
one for taxis moving in the city connected with a MEC,
and one for taxis moving in the suburbs and communicat-
ing via mobile internet. Both generators produce a static
rate of 10 req/sec. The Car node definition is presented
in Fig. 5 (D, and each Car node is emulated as a Fog
node with 1 core @ 700MHz and 256MB RAM;

MEC Node service: captures incoming requests, com-
putes insights, in this use-case area-level analytics, and
forwards the results to Cloud. The MEC node blueprint
is illustrated in Fig 5 (@) with its capabilities are shown
in Fig. 4 @ (4 cores @ 1.4GHz and 4GB RAM).
Cloud server: gathers area-level data and computes the
final results. Fig. 5 (3) depicts the node definition (8 cores
@ 2.4GHz and 8GB RAM).

MECs and taxis placed in the same area, communicate with
each other through regional networks (one per area), while the
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MECs and suburb taxis communicate with the Cloud through
mobile connections. The definition of the regional networks
(e.g. mec-net-1) is depicted in Fig. 4 (3). The regional network
latency is 15ms and the maximum bandwidth is 10Mbps,
while the Edge-Cloud connection has 100ms delay and up
to SMbps bandwidth. According to the parameters of the
emulated application, the Cloud service queries the MECs for
updated area-level insights to produce a global overview every
Smin. A MEC is considered unreachable when the delay of
any sensing (or query) response exceeds 10s.

We utilize a publicly available, real-world dataset with 44M
routes from 13.5K NYC taxi cabs in the first half of 2018 [39].
Each vehicle is equipped with GPS tracking to record data for
each route. The dataset includes passenger number, charged
amount, tip, pickup/dropoff location, etc; in total, each record
captures 18 data items. Based on this application, we explore
the usability, extensibility, and observability of Fogify with
4 different scenarios. Initially, we show an example of the
extensibility of Fogify in terms of app-level metrics (Scenario
1). Then, we examine the monitoring and profiling capabilities
of Fogify (Scenario 2) and for the last two scenarios we
focus on (i) network uncertainties (Scenario 3), and (ii) scaling
actions and workload alterations (Scenario 4). In terms of
deployment effort, we were able to deploy the IoT applica-
tion with no changes to its codebase and a less than 30%
extra configuration written on application’s docker-compose
file. With Fogify model composition the deployment effort is
substantially lower compared to a real fog deployment.

1) Scenario 1 - Dynamic Taxi Pricing: Suppose that the
business analyst of the taxi-cab company wants to explore
alternative pricing models based on realistic data about taxi
rides. To produce a pricing model, the analyst needs to collect
the total number of trips per hour for each operating region
and for different operational scenarios. Fogify can compile
analytic insights from data produced by the emulation of
realistic scenarios, incorporate insights into pricing models and
visualise the results. To this end, we define and deploy on
Fogify the previous topology and the application components
that collect sensor data from the taxi-cabs, push them to
Fog nodes and the Cloud, and implement alternative pricing
models. The emulation is driven by realistic data fed into the
emulated application by a workload-generator that reproduces
the real dataset for a week (01/01-08/01). The workload-
generator exposes the total number of trips per hour that occur
in region-1 as an app-level metric that is fed into alternative
pricing functions. The top plot of Figure 14 depicts the number
of trips per hour and the bottom plot the running revenue of 3
different pricing models, namely: (i) 0.2 X n X m + 5, where
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n and m is the number of trips and the cumulative distance
of all trips, respectively, increased by a static initial charge
($5) (ii) 0.3 x n x m that follows the same notation and (iii)
the default pricing model. In conclusion, taxi-cab operators
can easily employ Fogify to produce and evaluate cost models
and analytic insights under a variety of operational condi-
tions, implementing adequate application-level metrics. This
analysis does not require deployment of the models onto the
actual infrastructure. Subsequent integration of the model of
choice onto the infrastructure is straightforward and does not
require additional, significant implementation effort.

2) Scenario 2 - Fog Node Profiling: In this scenario, we
investigate the impact towards Car node resource utilization, as
Cars move between areas w/o MEC communication. Figure 15
depicts the mean resource utilization for a Car node when
operating in the suburbs and then moving to region-I1. From
this, we immediately observe that despite a node being im-
posed to the same workload, how sensed data are disseminated
to recipients significantly impacts resource utilization. In this
case, a Car in the suburbs does not have the luxury of region-
level data offloading to a MEC and thus, must propagate
data to the cloud via a mobile Internet connection. However,
moving to region-1, we see a drop in both memory (56%) and
CPU utilization (36%) by propagating data to the cloud via a
regional connection established with the region-1 MEC. Node
profiling insights are highly beneficial to engineers not just for
capacity planning, but also for optimizing service and resource
placement (e.g., where and how many MECs to place).

3) Scenario 3 - Network Uncertainties: In this scenario let
us assume that the emulated topology after 2min of proper
operation, presents a problem with the region-1 MEC causing
a temporal network latency of 2s for a 3min interval. Next, the
MEC returns to the desired state for 2min, however, the prob-
lem reoccurs with the network latency reaching 20s for another
3min before returning again to normal state. Afterwards, tech-
nicians disconnect the MEC for repairing. Figures 16 and 18
illustrate the scenario timeline (including Fogify Actions)
and runtime resource utilization of the topology components.
Initially, we identify a throughput degradation between the 25-
30th intervals in both MEC.region-1.local-net and Car.region-
1.local-net plots. However, after the 30th interval, network
traffic increases to the previous level, since the latency does
not exceed the pre-defined 10s disconnect limit. Another
observation is that the return to normal state results in a data
transfer spike (60-65th intervals) for the MEC and Car nodes
due to queued requests. On the 75th interval, when the network
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latency is boosted to 20s, every Car node request to the MEC
fails. Since requests by Cars in region-1 experience delays over
10s, they transmit sensed data directly to the Cloud (75-110th
intervals Car.region-1.internet). In turn, we observe very low
traffic on the Carregion-1.local-net which is reasonable due
to the requests exchanged with the Cloud over the internet.
Moreover, the Cloud.cpu and Cloud.internet plots depict the
effect of directly receiving requests from the taxis operating
in region-1. Finally, on the 130th interval of the experiment,
the technicians remove the MEC in region-1. In this phase,
we observe a similar increase in the cloud CPU load and
network traffic as in the previous period (75-110th interval). In
conclusion, with network alterations and fault injections, users
comprehensively evaluate the execution of their services under
extreme conditions while identifying unpredictable outcomes of
imposed uncertainties to the service behavior.

4) Scenario 4 - Scaling Actions & Workload Changes: In
this scenario let us assume that during events (i.e., marathons),
a region’s taxis are restricted to neighboring areas. This
situation is modeled by moving region-2 taxis to region-1 after
3min of normal execution via a scale-in action on region-
2’s workload-generator and a scale-out action on region-1’s
workload-generator. Due to increased traffic, the Operations
Team decides to add another gateway (scale-out) for the
region-1 MEC at the 5th min. Finally, on the 8th min, half
of the workload of region-3 is transferred to the suburbs due
to an accident in region-3’s main highway. Figures 17 and 19
depict the scenario timeline and the resources utilization of
the topology components. By inspecting MEC.region-1.cpu
and MEC.region-1.local-net plots, on the 30th interval (load
moved from region-2 to region-1), the utilization in both are
increased. Furthermore, the region-2 MEC for the rest of
the experiment has zero network I/O in both MEC.region-
2.local-net and MEC.region-2.internet, whereas MEC.region-
2.cpu gives us the baseline utilization for the MEC service. On
the 50th interval, the scenario introduces (scale-out action)
a new instance of the region-1 MEC and, as we observe
on MEC.region-1.cpu and MEC.region-1.local-net, the CPU
utilization decreases. Finally, on the 90th interval, the in-
creased number of data, which goes directly from the suburbs
to the cloud, causes additional cpu and network utilization
to the Cloud (after 90th interval on plots Cloud.cpu and
Cloud.internet). To this end, down-time injections, scaling
actions and varying workload released insights about service
performance and resources utilization.
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Fig. 19: Metrics from Workload and Scaling Scenario

VII. RELATED WORK

D’ Angelo et al. [10], identify scalability, capacity plan-
ning, network configuration, “what-if” scenario assessment
and security testing as key challenges involved in prototyping
IoT simulation and emulation tools. To date, the majority of
IoT simulators are implemented as direct extensions of cloud
simulators. For example, iFogSim [9], EdgeCloudSim [14],
and IoTSim-Edge [40], are based on CloudSim [41], a pop-
ular open-source cloud simulator. iFogSim [9] provides IoT
device and fog resource modeling to enable the simulation of
scheduling policies based on several QoS criteria. Similarly,
FogTorchPi [8] is an IoT simulator that enables fog resource
modeling and the expression of QoS criteria, but it also
determines valid service placements by exploiting Monte Carlo
simulations. However, these toolkits do not take into account
fog node mobility, network uncertainty, as well as, energy
consumption modeling; key pains for today’s IoT services.

On the other hand, EdgeCloudSim and IoTSim-Edge [40]
provide modeling abstractions for fog mobility. FDK [7]
goes on step further and provides high-level interfaces for
allocating compute and network resources, abstracting the
complexities of fog computing from developers and enables
the rapid development of fog systems. To enable more realistic
testing of network configurations, a number of fog emulators
have been proposed by academia. For example, FogBed [11],
EmuFog [12], and EmuEdge [13], extend notable network
emulators (e.g., MiniNet [42]) to also support fog resource
and network heterogeneity. Nonetheless, since they are direct
descendants from network emulators, they inherit their restric-
tions, such as strict modeling (e.g., configuration of routers,
gateways, [P masks, etc). Most importantly, current emulators

feature bounded scalability, restricting the testbed to be run
on a single host (e.g., the developers’ laptop) and preventing
large-scale experimentation. Moreover, MockFog [43] is a fog
emulator that enables users to inject network faults at run-
time to evaluate the proper execution of an application under
faulty configurations. However, MockFog is tightly bounded
to OpenStack. Thus, despite the plethora of toolkits, no current
framework provides support for real-time monitoring and re-
producable and dynamic “what-if” scenario assessment. Most
importantly, all are limited to a single host testing environment
and cannot scale to support large-scale experimentation.
VIII. CONCLUSION

In this work, we introduced Fogify: an all-in-one Fog
emulator that facilitates the rapid prototyping, deployment, and
experimentation of IoT microservices over fog realms. Fogify
features a powerful modeling framework for Fog topology
definition that extends the docker-compose specification along
with enablers for large-scale experimentation. Furthermore, a
detailed description of the implementation aspects, such as
resource management, network shaping and monitoring, is
given. The evaluation of emulation accuracy displayed 3-8%
deviation between emulated and real Infrastructures. Finally,
we presented two real-world IoT workloads that demonstrate
the usability, extensibility, and observability of Fogify.

Our future work includes an extensive scalability evaluation,
which is currently only bounded by the Fogify Controller
with performance impacted by the number of Fogify agents,
emulated, and associated runtime actions undertaken.
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