
A Performance Analysis Framework for

Mobile Agent Systems

Marios D. Dikaiakos George Samaras

Department of Computer Science

University of Cyprus, CY-1678 Nicosia, Cyprus

fmdd,cssamarag@ucy.ac.cy

Abstract. In this paper we propose a novel performance analysis ap-

proach that can be used to gauge quantitatively the performance char-

acteristics of di�erent mobile-agent platforms. We materialize this ap-

proach as a hierarchical framework of benchmarks designed to isolate

performance properties of interest, at di�erent levels of detail. We iden-

tify the structure and parameters of benchmarks and propose metrics

that can be used to capture their properties. We present a set of micro-

benchmarks, comprising the lower level of our hierarchy, and examine

their behavior when implemented with commercial, Java-based, mobile

agent platforms.

1 Introduction

Quantitative performance evaluation is crucial for performance \debugging,"
that is the thorough understanding of performance behavior of systems. Results
from quantitative performance analyses enhance the discovery of performance
and scalability bottlenecks, the quantitative comparison of di�erent platforms
and systems, the optimization of application designs, and the extrapolation of
properties of future systems. The quantitative performance evaluation of mobile-
agent systems is much harder than the analysis of more traditional parallel and
distributed systems. To study MA-system performance, one should take into ac-
count issues such as [4]: the absence of global time, control and state information;
the complicated architecture of MA platforms; the variety of distributed comput-
ing (software) models applicable to mobile-agent applications; the diversity of
operations implemented and used in MA-based applications; the constinuously
changing resource con�guration of Internet-based systems, and the impact of is-
sues a�ecting the performance of Java, such as interpretation versus compilation,
garbage collection, etc.

In this context, we focus on the quantitative performance evaluation of mo-
bile agents. In particular, we introduce a performance analysis approach that
can be used to gauge the performance characteristics of di�erent mobile-agent
platforms used for the development of systems and applications on Internet. This
approach de�nes a \hierarchical framework" of benchmarks designed to isolate
performance properties of interest, at di�erent levels of detail. We identify the

T. Wagner and O.F. Rana (Eds.): Infrastructure for Agents, LNAI 1887, pp. 180–187, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



A Performance Analysis Framework for Mobile Agent Systems 181

structure and parameters of benchmarks and propose metrics that can be used
to capture their properties. We implement these benchmarks with a number of
Java-based, mobile agent platforms (IBM's Aglets [3], Mitsubishi's Concordia
[6], ObjectSpace's Voyager [5], and IKV's Grasshopper [2]) and run various ex-
periments. Experimental results provide us with initial conclusions that lead to
further re�nement and extension of benchmarks and help us investigate the per-
formance characteristics of the platforms examined. The remaining of this paper
is organized as follows: Section 2 describes our performance analysis framework.
Section 3 introduces the hierarchy of benchmarks we de�ned to implement this
framework, and presents our experimental results from the lower layer of bench-
marks, the micro-benchmarks. We conclude in Section 4.

2 A Performance Analysis Framework

Basic Elements

To analyze the performance of mobile-agent platforms, we need to develop an
approach for capturing basic performance properties of these platforms. These
properties should be de�ned independently of the various ways each particular
mobile-agent API can be used to program and deploy applications and sys-
tems on Internet. To this end, our approach focuses on basic elements of MA
platforms that implement the functionalities commonly found and used in most
MA environments. Also, it seeks to expose the performance behavior of these
functionalities: how fast they are, what is their overhead, if they become a per-
formance bottleneck when used extensively, etc. For the objectives of our work,
the basic elements of MA platforms are identi�ed from existing, \popular" im-
plementations [2, 5, 6] as follows:

{ Agents, which are de�ned by their state, implementation (bytecode), capa-
bility of interaction with other agents/programs (interface), and a unique
identi�er.

{ Places, representing the environment in which agents are created and exe-
cuted. A place is characterized by the virtual machine executing the agent's
bytecode (the engine), its network address (location), its computing re-
sources, and any services it may host (e.g., a database gateway or a Web-
search program).

{ Behaviors of agents within and between places, which correspond to the
basic functionalities of a MA platform: creating an agent at a local or remote
place, dispatching an agent from one place to another, receiving an agent
that arrives at some place, communicating information between agents via
messages, multicasts, or messenger agents, synchronizing the processing of
two agents, etc.

Application Kernels

Basic elements of MA environments are typically combined into application

kernels. Application kernels de�ne scenarios of MA-usage in terms of a set of
places participating in the scenario, a number of agents placed at or moving



182 M.D. Dikaiakos and G. Samaras

between these places, a set of interactions of agents and places (agent move-
ments, communication, synchronization, resource use). Essentially, application
kernels describe solutions common to various problems of agent design. These
solutions implement known models of distributed computation on particular ap-
plication domains [8]; they represent widely accepted and portable approaches
for addressing typical agent-design problems [1]. Typically, application kernels
are the building blocks of larger applications; their performance properties a�ect
the performance behavior of applications.

The performance traits of an application kernel depend on the characteristics
of its constituent elements, and on how these elements are combined together
and in
uence each other. For example, an application kernel could involve an
agent residing at a place on a �xed network and providing database-connectivity
services to agents arriving from remote places over wireless connections. This
kernel may exist within a large digital library or e-commerce application. It may,
as well, belong to the \critical path" that determines end-to-end performance of
that application. To identify how the kernel a�ects overall performance, we need
to isolate its performance characteristics: what is the overhead of transporting
an agent from a remote place to a database-enabled place, connecting to the
database, performing a simple query, and returning the results over a wireless
connection. Interaction with the database is kept minimal, is we are trying to
capture the overhead of this kernel and not to investigate the behavior of the
database.

Investigating the performance of \popular" application kernels can help us
explain the behavior of full-blown applications built on top of these kernels. Con-
sequently, a study of application kernels has to be included in our performance
analysis framework and should focus on simple metrics capturing basic per-
formance measurements, overheads, bottlenecks, etc. For performance analysis
purposes, we de�ne application kernels corresponding to the Client-Server model
of distributed computing and its extensions: the Client-Agent-Server model, the
Client-Intercept-Server model, the Proxy-Server model, and variations thereof
that use mobile agents for communication between the client and the server.
More details on these models are given in [7, 8]. Besides the Client-Server family
of models, we de�ne application kernels that correspond to the Forwarding and
the Meeting agent design patterns, de�ned in [1, 3]. We choose the Forwarding

and Meeting patterns, because they can help us quantify the performance traits
of agents and places in terms of their capability to re-route agents and to host
inter-agent interactions.

Parameterization

To proceed with performance experiments, measurements and analyses, after
the identi�cation of basic elements and application kernels, we need to specify
the parameters that de�ne the context of our experimentation, and the met-

rics measured. Parameters determine: a) The workload that drives a particular
experiment, expressed as the number of invocations of some basic element or
application kernel. Large numbers of invocations correspond to intensive use of
the element or kernel during periods of high load. b) The resources attached to



A Performance Analysis Framework for Mobile Agent Systems 183

participating places and agents: the channels connecting places, the operating

system and hardware resources of each place, and the functionality of agents and

places.

The exact de�nition of parameters and parameter-values depend on the par-

ticular aspects under investigation. For example, to capture the intrinsic perfor-

mance properties of basic elements, we consider agents with limited functionality

and interface, which carry the minimum amount of code and data needed for

their basic behaviors. These agents run within places, which are free of addi-

tional processing load from other applications. Places may correspond either

to agent servers with full agent-handling functionality or to agent-enabled ap-

plets. The latter option addresses situations where agents interact with client-

applications, which can be downloaded and executed in a Web browser. Partici-

pating places may belong to the same local-area network, to di�erent local-area

networks within a wide-area network, or to partly-wireless networks. Di�erent

operating systems can be considered.

Parameters become more complicated when studying application kernels. For

instance, when exploring the Client-Server model, we have to de�ne the resources

to be incorporated at the place which corresponds to the server-side of the model.

Resources could range from a minimalistic program acknowledging the receipt

of an incoming request, to a server with full database capabilities.

Application Frameworks

Following an investigation of intrinsic performance properties of application

kernels, it is interesting to examine how these kernels behave when employed in

a real application. To this end, we need to enhance application kernels with the

full functionality required by application domains of interest, such as database

access, electronic auctions, etc. We call these adapted kernels, application frame-

works. To experiment with application frameworks, we need to use realistic

rather than simple workloads. Such workloads can be derived either from traces

of real applications or from models of real workloads.

A Hierarchical Performance Analysis Approach

In view of the above remarks, we propose the analysis of MA-performance at

four layers of abstraction as follows: At a �rst layer, exploring and characterizing

performance traits of Basic Elements of MA platforms. At a second layer, investi-

gating implementations for popular Application Kernels upon simple workloads.

At a third layer, studying Application Frameworks, that is, implementations of

application kernels which realize particular functionalities of interest and run

on realistic workloads. Last but not least, at a fourth layer, studying full-blown

Applications running under real conditions and workloads.

This hierarchical approach has to be accompanied by proper metrics, which

may di�er from layer to layer, and parameters representing the particular context

of each study, i.e., the processing and communication resources available and

the workload applied. It should be noted that the design of our performance

analyses in each layer of our conceptual hierarchy should provide measurements

and observations that can help us establish causality relationships between the



184 M.D. Dikaiakos and G. Samaras

conclusions from one layer of abstraction to the observations at the next layer
in our performance analysis hierarchy.

We propose three layers of benchmarks for the implemention of the hierarchi-
cal Performance Analysis Framework introduced in the previous sections. These
benchmarks correspond to the �rst three levels of the hierarchy described earlier:

{ Micro-benchmarks: short loops designed to isolate and measure perfor-
mance properties of basic behaviors of MA systems, for typical system con-
�gurations.

{ Micro-kernels: short, synthetic codes designed to measure and investigate
the properties of Application Kernels, for typical applications and system
con�gurations.

{ Application Kernels: instantiations of micro-kernels for real applications.
Here, we involve places with full application functionality and employ realis-
tic workloads complying to the TPC-W speci�cation (see http://www.tpc.org

3 Micro-benchmarks and Experimentation

We present in more details the suite of proposed micro-benchmarks and a sum-
mary of experimental results derived by these benchmarks. Further information
about micro-kernels, application kernels and experimental results can be found
in [7, 4]. The basic components we are focusing on are: a) mobile agents, used
to materialize modules of the various distributed computing models and agent
patterns; b) messenger agents used for 
exible communication, and c) messages
used for eÆcient communication and synchronization. Accordingly, we de�ne the
following micro-benchmarks:

{ AC-L: Captures the overhead of agent-creation locally within a place.
{ AC-R: Captures the overhead of agent-creation at a remote place.
{ AL: Captures the overhead of launching agents towards a remote place.
{ AR: Captures the overhead of receiving agents that arrive at a place.
{ MSG: Captures the overhead of point-to-point messaging.
{ MULT: Captures the overhead of message multicasting.
{ SYNCH: Captures the overhead of synchronizing two agents with message-
exchange.

{ ROAM: Captures the agent-travelling overhead.

These micro-benchmarks involve two places located at di�erent computing nodes,
agents with the minimum functionality that is required for carrying out the be-
haviors studied, and messages carrying very little information between agents.
Table 1 presents the parameters and metrics for our benchmarks: \Loop size"
de�nes the number of iterations included in each benchmark. \Operating Sys-
tem" and \Place Con�guration" represent the resources of each place involved
in our experimentation. We have conducted experiments on PCs running Win-
dows 95 and Windows NT. In most experiments, places were agent servers. We
also conducted experiments where one of the places was an agent-enabled Java



A Performance Analysis Framework for Mobile Agent Systems 185

Table 1. Micro-benchmark Parameters and Metrics

applet. Channel con�guration speci�es whether the two places involved reside
at the same LAN, at two di�erent LANs, or if one of the places gets connected
to the other via a wireless link.

As shown in Table 1, we measure three di�erent metrics. Total time to
completion is a raw performance metric, which can provide us with some in-
sight about the performance characteristics of the basic element studied by each
benchmark. It can also help us identify bottlenecks as the load (loop size) is
increased, and test the robustness of each particular platform. Average timings
provide estimates of the overhead involved in a particular behavior of a MA
system, i.e., the cost of sending a short message, of dispatching a light agent,
etc. Finally, peak rates provide a representation of the performance capacity of
MA platforms, based on the sustained performance of their basic elements.

The number of parameters involved in our micro-benchmarks lead to a very
large space of experiments, many of which may not be useful or applicable. We
have experimented with four commercial platforms: IBM's Aglets, Mitsubishi's
Concordia, ObjectSpace's Voyager and the Grasshopper by IKV. We tried var-
ious parameter settings before settling to a small set of micro-benchmark con-
�gurations that provide useful insights. Fig. 1 displays the average times for
micro-benchmarks AC and AL (in msec). AC was executed on a PC running
Windows 95. AL was executed on two PCs running Windows 95 and residing
at the same LAN, with a small traÆc-load. From these �gures we can easily see
that, in terms of performance, Concordia and Voyager are more optimized than
Aglets and Grasshopper. For Concordia, Voyager and Grasshopper, the average
time it takes to create and dispatch an agent varies greatly with loop size. This
can be attributed to the fact that MA platforms cache the bytecodes of classes
loaded during agent creation and dispatch. Therefore, repeated invocations of the
same primitive cost less than the initial ones. As the loop size increases beyond
a certain point, however, the agent servers hosting the benchmark start fac-
ing overloading problems (shortage of memory, higher book-keeping overheads,
etc.), leading to a degradation in performance. Behavior changes from one plat-
form to the other, since some systems employ di�erent techniques to cope with
overloading.

Similar remarks can be driven from Figure 2, which presents the average
times extracted for micro-benchmarksMSG and SYNCH. These benchmarks
were executed on PCs running Windows 95 and residing at the same LAN. From



186 M.D. Dikaiakos and G. Samaras

1 2 10 50 100 500 1000

Loop Size

1

10

100

T
im

e 
(m

se
c)

Average Times: [AC] Benchmark (log-log scale)

Concordia
Voyager
Aglets
Grasshopper

1 2 10 50 100 500 1000

Loop Size

100

1000

10000

T
im

e 
(m

se
c)

Average Times: [AL] Benchmark (log-log scale)

Concordia
Voyager
Aglets
Grasshopper

Fig. 1. Average timings for agent creation and launching.

1 2 10 50 100 500 1000

Loop Size

1

10

100

T
im

e 
(m

se
c)

Average Times: [MSG] Benchmark (log-log scale)

Concordia
Voyager
Aglets
Grasshopper

1 2 10 50 100 500 1000

Loop Size

10

100

T
im

e 
(s

ec
)

Average Times: [SYNCH] Benchmark (log-log scale)

Concordia
Voyager
Aglets
Grasshopper

Fig. 2. Average timings for MSG and SYNCH micro-benchmarks.

these diagrams we can easily see that the time to send and exchange messages
in Voyager is much shorter than in other platforms. Average message dispatch
and exchange times are leveling o� with loop size, due to caching of the classes
that comprise the message data structures. If loop size exceeds a certain level,
the messaging subsystems in all platforms start facing overloading problems
(Grasshopper and Voyager). Both Concordia and Voyager, however, prove to be
quite robust even under heavy load of agent or message transmissions. It should
be noted that, although not shown in the diagrams of Figures 2, messaging is
more robust and eÆcient under Windows NT, for all platforms tested.

Table 2 presents the peak rate of agent creation, agent dispatch, and message
dispatch for the MA platforms studied. From these numbers, we can easily see
that Concordia is a clear winner when it comes to the number of agents that
can be created at and dispatched from a particular agent server. Voyager, on



A Performance Analysis Framework for Mobile Agent Systems 187

Table 2. Peak Rates (Windows95)

Benchmark Concordia Voyager Aglets Grasshopper

Agent Creation (agents/sec) 3571.43 649.3 10.67 1.59

Agent Dispatch (agents/sec) 21 9.07 10.67 1.187

Message Dispatch (msg/sec) 40.9 869.56 20.7 141.44

the other hand, provides more than an order of magnitude higher capacity in

message dispatch than other platforms.

4 Conclusions

To our knowledge, our Performance Analysis Framework provides the �rst struc-

tured approach for analyzing the performance of mobile-agent systems quanti-

tatively, by focusing at the di�erent layers of a MA-based system's architecture.

Experiments with our micro-benchmark suite provide a corroboration of this

approach. Experimental results help us isolate the performance characteristics

of MA platforms examined, and lead us to the discovery and explanation of ba-

sic performance properties of MA systems. Furthermore, they provides a solid

base for the assessment of the relative merits and drawbacks of the platforms

examined from a performance perspective.

Acknowledgements: The authors wish to thank C. Spyrou and M. Kyriacou for

helping out with experiments.

References

1. Y. Aridov and D. Lange. Agent Design Patterns: Elements of Agent Application
Design. In Proceedings of Autonomous Agents 1998, pages 108{115. ACM, 1998.

2. M. Breugst, I. Busse, S. Covaci, and T. Magedanz. Grasshopper { A Mobile Agent
Platform for IN Based Service Environments. In Proceedings of IEEE IN Workshop
1998, pages 279{290, Bordeaux, France, May 1998.

3. D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison Wesley, 1998.

4. M. Dikaiakos and G. Samaras. Quantitative Performance Analysis of Mobile-Agent
Systems: A Hierarchical Approach. Technical Report TR-00-2, Department of Com-
puter Science, University of Cyprus, June 2000.

5. G. Glass. Overview of Voyager: ObjectSpace's Product Family for State-of-the-Art
Distributed Computing. Technical report, ObjectSpace, 1999.

6. R. Koblick. Concordia. Communications of the ACM, 42(3):96{99, March 1999.
7. G. Samaras, M. D. Dikaiakos, C. Spyrou, and A. Liverdos. Mobile Agent Platforms

for Web-Databases: A Qualitative and Quantitative Assessment. In Proceedings
of the Joint Symposium ASA/MA '99. First International Symposium on Agent
Systems and Applications (ASA '99). Third International Symposium on Mobile
Agents (MA '99), pages 50{64. IEEE-Computer Society, October 1999.

8. C. Spyrou, G. Samaras, E. Pitoura, and P. Evripidou. Wireless Computational
Models: Mobile Agents to the Rescue. In 2nd International Workshop on Mobility
in Databases & Distributed Systems. DEXA '99, September 1999.


	1 Introduction
	2 A Performance Analysis Framework
	3 Micro-benchmarks and Experimentation
	4 Conclusions
	References

