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Abstract—Internet-enabled physical devices with “smart” processing capabilities are becoming the tools for understanding the complexity
of the global inter-connected world we inhabit. The Internet of Things (IoT) churns tremendous amounts of data flooding from devices
scattered across multiple locations to the processing engines of almost all industry sectors. However, as the number of “things”
surpasses the population of the technology-enabled world, real-time processing and energy-efficiency are great challenges of the big
data era transitioning to IoT. In this article, we introduce a lightweight adaptive monitoring framework suitable for smart IoT devices
with limited processing capabilities. Our framework, inexpensively and in place dynamically adjusts the monitoring intensity and the
amount of data disseminated through the network based on a low-cost adaptive and probabilistic learning model capable of capturing
at runtime the current evolution and variability of the data stream. By accomplishing this, energy consumption and data volume are
reduced, allowing IoT devices to preserve battery and ease processing on cloud computing and streaming services. Experiments on real-
world data from cloud services, internet security services, wearables and intelligent transportation services, show that our framework
achieves a balance between efficiency and accuracy. Specifically, our framework reduces data volume by 74%, energy consumption by
at least 71%, while maintaining accuracy always above 89%.
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1 Introduction

R ecent advances in microelectronics, telecommunica-
tions and data mining have led to a growing adoption

of smart devices, which impact how we live and work [1].
These devices capture and exchange data streams with other
network-enabled devices and services, forming what is known
as the Internet of Things (IoT). From smart transportation
and home appliances, to retail innovations, surveillance, and
manufacturing, we are starting to see intelligence aggres-
sively deployed to produce real-time analytic insights. With
intelligence comes the need to compute at the edge, and a
variety of IoT offerings are opening up new and disruptive
opportunities [2]. However, to produce such an unprecedented
wealth of insights intense processing and constant data dis-
semination over the network are still required. This results
in increased energy consumption for IoT devices while cloud
services consuming IoT data are constantly overwhelmed and
struggle to be effective [3] [4].

As IoT spreads across almost all industries it triggers a
massive influx of big data [5]. According to Gartner [2], 8.4
billion IoT devices will be in use by the end of 2017, up 31%
from 2016, and will reach 21 billion by 2020. Despite attempts
to augment IoT devices with the power of the cloud there
still exist numerous inhibitors masked under constant data
processing and dissemination [6]. Even powerful organisations
equipped with high-performance processing engines reach
their limits as the volume and velocity of monitoring data
keeps increasing [7]. In addition, if IoT devices are battery-
powered then intense processing leads to increased energy
consumption and thus, less battery life [8]. Table 1 presents
such a case where power consumption triples as processing
and dissemination load are added to an IoT device. This is
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even more evident in IoT settings comprised of mobile edge
devices equipped with small batteries [4] [9]. For example, the
new generation of activity tracking wearables differ from their
predecessors in providing heartrate monitoring. Heartrate
monitoring is based on photoplethysmography (PPG) signal
analysis where green LEDs scatter light on the wrist which is
reflected by the arteries as the heart pumps blood. This results
in an AC signal processed by the wearable with peak detection
algorithms to estimate the current heartrate. This intense
process is the reason battery life on such devices has dropped
from 5-7 to 3-5 days [4]. Therefore, it is no wonder why taming
data volume and velocity, as well as, energy efficiency, are
considered as great challenges to overcome in IoT [10].

If a degree of inaccuracy can be tolerated, the remedy to
reduce data volume and network traffic between IoT devices
and cloud services, is to apply approximate and adaptive
monitoring techniques [11]. Adaptive sampling is the process
of dynamically adjusting the sampling rate based on a runtime
estimation model following the current data evolution, such
that when stable phases in the data stream are detected, the
sampling rate is reduced to ease processing and energy con-
sumption. In turn, when the evolution of the data fluctuates
in time, the sampling rate is increased to immediately capture
event violations. Filtering is the process of suppressing metric
value dissemination when consecutive values differ less than
a range of values. Hence, energy required to transmit values
over the network is reduced in favor of exact precision. In
turn, adaptive filtering is the process of dynamically adjusting
the filter to follow the monitoring stream variability without
requiring for users to pre-determine fixed filter properties.
At the same time, the volume and velocity of data reaching
IoT services is regulated to ease processing. Despite advances
in the field, current adaptive monitoring techniques are not
tailored for the challenges of IoT, since they either: (i) require
excessive profiling to configure optimal framework param-
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eters, a task difficult for users; (ii) present large runtime
footprints reducing the benefits of introducing adaptiveness in
the end; (iii) fail to acknowledge abrupt and transient shifts
in the data evolution or assume that once determined there
will be no shifts in the data value distribution; or (iv) require
coordination from server-side components.

To address these challenges we introduce the Adaptive
Monitoring framework1. AdaM is a lightweight framework
developed for software agents and IoT devices. AdaM, inex-
pensively and in place, dynamically adjusts the monitoring
intensity and the amount of data disseminated through the
network based on a runtime estimation model capturing the
current data evolution and variability. By accomplishing this,
energy consumption and data volume are reduced, allowing
IoT devices to preserve battery and ease processing at data
consuming services, while still preserving accuracy. To achieve
this, AdaM incorporates two algorithms, one for adaptive
sampling and one for adaptive filtering. Both algorithms
provide estimations, adjusting the sampling rate and the filter
range based on the confidence of the algorithmic model to
correctly estimate what will happen next in the data stream.
Specific consideration is taken to fine-tune the model at
runtime by extending our model that was limited to adaptive
parameter weighting [12]. To this end, we introduce trend
detection so that our algorithms immediately identify abrupt
transient changes in the data evolution and overcome time
lagging effects in the estimation process. Most importantly,
AdaM runs on the source device without the need of any
additional coordination from central management endpoints
or excessive profiling to determine framework parameters.

A thorough evaluation and comparison to other IoT adap-
tive techniques is conducted with real-world data from cloud
and internet security services, wearables and intelligent trans-
portation services. To the best of our knowledge, this is the
first study extending the evaluation to include a performance
and energy consumption comparison. Results, show that
AdaM reduces data volume by 74%, energy consumption by
at least 71%, while maintaining accuracy above 89%. Also, we
show that cloud services consuming IoT data can benefit, in
terms of lower monitoring costs and achieve greater scalability
when devices use AdaM in their software core.

The rest of this article is organised as follows: Section 2
presents the related work. Section 3 the problem statement.
Section 4 introduces our framework. Section 5 presents a
thorough evaluation, while Section 6 concludes this article.

2 Related Work
Edge-mining is a term coined to reflect data processing on
devices scattered across the logic extremes of a network.
Adjusting the monitoring intensity and amount of data trans-
mitted by an IoT device, is a form of edge-mining [3]. To date,
a number of cloud monitoring tools claim to be suitable for
IoT devices as they run on limited resources [13] [14]. These
tools assume metric collection is somewhat trivial with server
monitoring (e.g., CPU, memory) merely the task of parsing
OS files (e.g., /proc/* for Linux). However, this assumption
is far from true when the monitoring task must collect ex-
ternal stimulus and perform costly analysis, as in the case
of heartbeat monitoring. Thus, tools without self-adaptive

1. http://linc.ucy.ac.cy/AdaM/

Raspberry Pi 2 Model B Power
Idle state 420mA (2.1W)
Max CPU load 800-1100mA (4W)
Max CPU load + disk I/O 900-1200mA (4.5W)
Max CPU load + disk I/O + met-
ric dissemination over the network

1250-1400mA (6.25W)

TABLE 1: IoT Device (Raspberry Pi) Power Consumption

capabilities to reduce energy consumption and network traffic
are unsuitable for IoT. Although hardware-specific techniques
have been developed in the past [15], trends show IoT is
moving towards software-defined realms to quickly provision,
manage and monitor IoT services with adaptivity envisioned
as a manageable asset for monitored services [6]. In what fol-
lows, are a number of software-defined techniques for adaptive
sampling and filtering.

2.1 Adaptive Sampling
Rastogi et al. [16] propose a Discrete Fourier Transformation
(DFT) for differential privacy which perturbs coefficients of a
timeseries, reconstructing afterwards a k-approximate version
of the original signal from the inverse DFT. However, while at
the receiver-side there appears to be adaptivity in the data
stream, due to discarding coefficients, in reality all values
are still collected. Chowdhury et al. [17] introduce a frame-
work adjusting the monitoring intensity if the current metric
evolution violates certain user-defined policies. Andreolini et
al. [18] introduce a similar approach, with the difference that
the current stream variability is used as a more suitable
mechanism to discriminate stable from variable monitoring
states. On the other hand, Meng et al. [7] propose a violation-
likelihood detection approach for cloud networks based on the
probability of misdetecting a violation between two consec-
utive datapoints. Thus, the sampling rate is increased when
metric values approach a user-defined threshold; otherwise,
the sampling period is restored to a fixed rate. Nonetheless,
for the aforementioned techniques to be applicable a number
of parameters and policies must be pre-defined by the user
and cannot change at runtime, thus assuming the data stream
value distribution will always remain relevant.

Fan et al. [19] introduce FAST, an adaptive framework for
differential privacy which computes an estimate of the sam-
pling rate based on the adjustment given by a PID controller
fed by the current estimation error, the time intervals between
previously collected metric values and a given inaccuracy
budget. FAST’s adaptive sampling is aggressive producing
large sampling periods as the purpose of its development
is applying costly user-differential privacy on each interval.
Thus, it uses a Kalman filter to generate estimates for non-
sampled intervals to optimize accuracy under the differential
privacy constraint. However, as the Kalman filter is used to
filter signal noise, this approach does not always work well
for abrupt transient signals where large portions of the signal
are lost due to smoothing. In addition, even for slightly less
volatile signals extensive profiling of its parameters is still
required to increase accuracy. In contrast, Gaura et al. [3]
propose L-SIP, an adaptive algorithm specifically tailored for
IoT devices. L-SIP encodes the state of an IoT device as a
point in time with attributes the metric value and its rate of
change. This is performed by using an exponential weighted
moving average (EWMA), with the sampling rate increasing
if the difference between the observed and estimated value are
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Notation Description
si(t, v) The ith sample of a sequence comprising a metric

stream with a timestamp ti and value vi
M = {si}ni=0 A metric stream of a monitoring source comprised

of collected samples with i = 0, 1, ..., n and n→∞
Ti Periodicity to collect si such that Ti = ti − ti−1 and

Ti ⊆ Z+ restricted to Ti ∈ [Tmin, Tmax]
Ri Filter range to decide if si, assuming a window W =

[vi−1 −Ri, vi−1 +Ri], should be filtered (vi ∈W )
err Difference between metric stream M and recon-

structed stream M ′ via an adaptive technique for a
range of sample values e.g. err =

∑
|vi − v′i|, i ≥ 0

ρ(M) Function containing information to characterise
evolution of metric stream M (e.g. moving average)

q(M) Function characterising variability of metric stream
M (e.g. the coefficient of variation)

γ Max acceptable imprecision for reconstructed met-
ric stream via an adaptive technique (γ ∈ [0, 1])

TABLE 2: Table of Notations
larger than a user-defined estimation error. L-SIP is an in-
teresting lightweight algorithm suitable for adaptive sampling
on IoT devices, but it is slow to react to highly transient and
abrupt fluctuations in the evolution of the monitoring data.
2.2 Adaptive Filtering
In [20] we introduce a monitoring tool that autonomously
adjusts the metric filter range depending on the percentage
of values previously filtered. Du et al. [21] show that network
traffic is further reduced if monitoring tools apply filtering
by sending only the median from a window of collected data,
when the current datapoint has not changed more than a pre-
defined threshold. Although interesting, both assume that no
distribution shifts will occur in the data evolution at runtime.

Deligiannakis et al. [22] suggest a traffic reduction strategy
for sensing networks. Their strategy suggests buffering large
amounts of metric values at each node, and rather than send-
ing the total of the buffer contents, it transmits a base signal
of fewer values (wavelet) which is then used to reconstruct the
original signal. However, a large portion of the signal must be
made available and stored on the device to provide an estima-
tion. On the other hand, Silberstein et al. [23] propose an mon-
itoring tool for sensor networks, where metric dissemination is
suppressed if neighbouring sensors present similar values. The
proposed mechanism reduces energy consumption inferred by
constant metric transmission but with the caveat that sensors
must have knowledge of the entire network topology. Finally,
Olston et al. [24] propose a server-side approach for filtering
continuous data streams. This approach involves specifying
a precision requirement with data sources sending updates
to a central server when new values differ significantly from
the previously reported values. If this precision requirement
cannot be met, the central server will adjust the filter range at
each data source. However, filter adjustment is only feasible
if data generated at different sources follow a certain similar
pattern on all nodes.

In summary, all presented solutions limit their scope to
either adaptive sampling or filtering. No solution is capable of
estimating and adapting the monitoring intensity of an IoT
device to follow the actual data evolution in time, especially,
when highly abrupt metric fluctuations are observed.

3 Problem Statement
Before introducing the AdaM framework, it is important
to understand the background for each challenge and their

respective problem definition. To ease readability, Table 2
presents the notation used throughout the article.

3.1 Preliminaries

We define a metric stream M={si}ni=0 published by a monitor-
ing source (e.g., IoT device) to a receiving entity (e.g., cloud
service), as a large stochastic sequence of independent and
identically distributed (i.i.d) samples si, where i = 0, 1, ..., n
and n → ∞. Each sample si is a tuple (ti, vi) described,
at the minimum, by a timestamp ti and a univariate metric
value vi. A sample may include a set of other attributes (e.g.,
location), although for brevity, when describing a sample we
omit these attributes without loss of generality. In turn, no
assumptions are made for the number of generated samples
which depend solely on the task assigned to the monitoring
source. Therefore, receiving entities have no control on the
input rate, with dissemination scheduled by the monitoring
source based on a push-based metric delivery protocol [20].

3.2 Adaptive Sampling Problem Definition

For a metric stream M , periodic sampling is the process of
triggering the collection mechanisms of a monitoring source
every T time units. Thus, for a metric stream indexed by
I ⊆ Z+, with T denoting a fixed interval (e.g., 1s, 10s,
1min), the ith sample (i ∈ I) is collected at time ti = i · T .
This process is widely adopted by monitoring tools due to
its simplicity [14] [25]. In this work, we argue that using a
fixed T on battery-powered devices features a number of con-
straints. Specifically, it is both resource and energy consuming
to collect periodically samples, especially when consecutive
metric values (e.g. vi, vi−1, vi−2, ...) do not vary. For example,
consider the metric stream introduced in Figure 1. If a small
T is utilized (e.g. T=1s), a high volume of data is generated
and must be distributed through the network to be processed
or stored for further use. If, instead, a large period is used
(e.g. T=10s), then sudden events or significant insights may
remain undetected. In general, because sampling depends on
the data and its evolution in time, we argue that a fixed
sampling period is not effective, as metrics and insights are
only useful if collected in meaningful time intervals.

To accommodate the above challenges, adaptive sampling
is used. Adaptive sampling is the process of dynamically
adjusting the sampling period Ti, based on some estimation
model, denoted as ρ(M), capturing runtime information of the
metric stream evolution. Assume si to be the latest sample
of M , and that Ti accepts discrete integer values in the range
[Tmin, Tmax] ⊆ Z+ without loss of generality. Now, supposeM
is periodically sampled every Tmin time units, opposed to M ′
which is a reconstructed version of the original metric stream
via adaptive sampling (Figure 1). Let err denote the difference
of M ′ from M based on some evaluation metric which will be
used to evaluate the accuracy of the estimation process. When
the metric stream values are relatively stable, the sampling
period should be increased and when the values fluctuate, it
should be decreased or restored to a minimum value. Hence,
the goal of adaptive sampling is to provide a sampling function
f(·), capable of finding the maximum T ∈ [Tmin, Tmax] to
collect si+1, based on an estimation of the metric stream
evolution ρ(M), such that the difference between M ′ and
M is upper-bounded by the user-defined maximum tolerable
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Fig. 1: Periodic and Adaptive Sampling

imprecision γ, for the range t ∈ [ti, ti + T ]. Thus, the problem
is summarized with the following equation:

T ∗ = arg max
T

{f(s, T, ρ(M), err(M,M ′)) | err < γ,

T ∈ [Tmin, Tmax]}
(1)

Intuitively, as γ → 0 the metric stream M ′ → M . How-
ever, the sampling period T → Tmin, defeating the purpose
of adaptive sampling. To reduce data volume and preserve
energy, an adaptive technique is likely to select, at any given
time, a sampling period where T > Tmin, which is only
applicable if a degree of imprecision is tolerable.

3.3 Adaptive Filtering Problem Definition
For a metric stream M , filtering is the process of suppressing
metric value dissemination when consecutive values differ less
than a range of values. Hence, energy required by the IoT
device to transmit metrics over the network, as well as, the
velocity at which data arrive to IoT services, are reduced while
adhering to certain user-defined accuracy guarantees. Thus, a
monitoring source with filtering capabilities does not transmit
the latest collected sample if its value has not “changed” since
last reported. How much “change” is required, depends on the
type of filter applied, while metric receivers assume the values
of any unreported metrics remain unchanged.

Depending on the type of filter, the number of samples
filtered may vary. For example, suppose a fixed filter range
approach is followed. The sample si with value vi is filtered, if
vi ∈ [vi−1−R, vi−1 +R], where R ⊆ R+ is a fixed filter range.
Although this approach is simple and followed by monitoring
tools, it features a number of disadvantages. Specifically,
using a fixed filter range, assumes that the user has previous
knowledge of the data evolution and that it will not change in
the future. Otherwise, there is no guarantee that any values
will be filtered at all. For instance, let us consider the metric
stream M , presented in Figure 2, where the filter range R
is enabled once and set to a fixed value. From Figure 2, we
observe that a phase of high variability is both preceeded and
followed by a phase of low variability, where metric values
vi oscillate between [vi−1 − R − ε, vi−1 + R + ε] with ε → 0.
With a fixed filter, no samples are filtered. That is because the
filter cannot adapt to the current data variability, extending
its range to encapsulate near-by values, thus satisfying the
reduction guarantees and, at the same time, adhering to the
accuracy requirements set by the user.

Fig. 2: Fixed Range R = 1 and Adaptive Filtering R ∈ [0, 3]

To overcome the above issues, an adaptive filter technique
is used. Adaptive filtering is the process of dynamically ad-
justing the filter range R based on the current variability of
the metric stream, denoted as q(M). Adaptive filtering must
target filtering values without requiring for users to “guess”
what filter range should be used, as depicted in Figure 2. Thus,
suppose M ′ is a reconstructed version of M with an adaptive
filter range R ∈ [0, Rmax]. Let err denote the difference of M ′
from M based on some error evaluation metric. After collect-
ing si, the goal of adaptive filtering is to provide a filtering
function f(·) capable of finding the maximum R to apply on
si+1, based on the variability of the metric stream q(M), such
that the difference between M ′ and M is upper-bounded by
the user-defined maximum tolerable imprecision γ. Hence, the
problem is summarized with the following equation:

R∗ = arg max
R

{f(s,R, q(M), err(M ′,M)) | err < γ,

R ∈ (0, Rmax]}
(2)

Similar to adaptive sampling, as γ → 0 the metric stream
M ′ → M . However, the filter R → 0 which defeats even the
purpose of filtering with a fixed range R. Therefore, to reduce
network traffic an adaptive filtering technique, at any given
time, is likely to select a filter range where R > 0, which is
only applicable if a degree of imprecision is tolerable.

4 The AdaM Framework
The AdaM Framework provides model-based adaptive mon-
itoring, by dynamically adjusting the monitoring intensity
and the volume of data disseminated to cloud services, based
on extracted runtime knowledge capturing the metric stream
evolution and variability. To achieve this, AdaM incorporates
low-cost adaptive and probabilistic learning algorithms for
adaptive sampling and filtering. AdaM is developed in java
as a lightweight framework embeddable in the software core
of IoT devices (e.g., raspberry Pi, android devices). It can also
be ported to other popular programming frameworks (e.g.,
python, R) as it has no external source code dependencies.

Figure 3 depicts a high-level overview of AdaM embedded
in the software core of an IoT device, where it coordinates
metric sensing and dissemination by interacting, as a proxy,
between the Sensing and Network Unit. When the Sensing
Unit collects a new metric sample (si), it is passed through the
API to the Low-Cost Approximate Stream Estimation module.
This module updates a local reference estimation model cap-
turing the metric stream evolution and variability, while also
maintaining in the Model Base online statistics (e.g., mean,
standard deviation) used by AdaM modules and may also
be of interest to users and metric stream receiving entities.
In turn, to assist the estimation process to better follow the
current monitoring stream evolution, trend detection is also
used to reduce any time lagging effects in the estimation
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Fig. 3: AdaM Framework embedded in IoT Device
process, as IoT data such as human body indicators and
environmental data, present such behavior [5].

After updating the estimation model, the Adaptive Sam-
pling module will use the current updated metric stream evo-
lution and trend to return a new estimation of the sampling
period (Ti+1) and a confidence interval for the current estima-
tion. The Sensing Unit may then use Ti+1 to collect the next
sample (si+1) and return to an idle state. If adaptive filtering
is enabled, the current sample is forwarded to Adaptive Filter-
ing to decide if the sample should be discarded or not. In turn,
the filter range (Ri+1) is adjusted based on the monitoring
stream variability and an indicator of the current variability
is made available to users via the AdaM API. If the sample
is not filtered, it is stored in the metric buffer until metric
dissemination is triggered by the Network Unit of the IoT
device. Also, along with the current measurement and AdaM’s
estimations, a set of statistics describing the current state
of the metric stream are disseminated to receiving entities,
including the current mean, variance, and the confidence and
prediction error of AdaM’s estimations.
4.1 Low-Cost Approximate Stream Estimation
The following considerations were taken into account while
developing the estimation process. First, the estimation pro-
cess must be lightweight. Applying an adaptive algorithm is
only meaningful if the process is done inexpensively, meaning
the cost of applying an adaptive technique is much less than
actually collecting samples and later discarding them. In turn,
the process must be performed, in place, on the monitoring
source itself. This eliminates the need to distribute values over
the network to management endpoints for it to be applicable.
Moreover, it must react to highly abrupt fluctuations in the
metric stream while the estimation process must ensure the
given accuracy guarantees are obeyed so users are timely noti-
fied of abnormalities and sudden events. In addition, extensive
profiling to identify optimal parameter configuration must
not be required. Hence, we base our approach such that the
estimation model is maintained in constant O(1) time and
space, thus satisfying the above requirements, which require
a low-cost estimation model able to run on IoT devices with
limited processing capabilities. In turn, adjustments are made
only when the estimation process is able to capture the metric
evolution within the given accuracy guarantees. Algorithm 1
presents our adaptive estimation model. At first, we compute
the distance δi between the current two consecutive values:

δi = |vi − vi−1| (3)

The distance δi is used to update the local reference
runtime evolution of the metric stream ρ(M). We compute the

Algorithm 1 Adaptive Estimation Model
Input: current sample si with timestamp ti and value vi
Output: updated estimation model
1: if ti > 0 then

compute current distance
2: δi ← |vi− vi−1| (eq. 3)

compute estimation error, and p- and z- value
3: εi ← δi − δ̂i
4: Pi, Zi ← probDistro(εi, σ̂i) (eq. 7)

update estimation model for next time interval
5: µi ← updPEWMAwithTrend(Pi, δi, xi) (eq. 9)
6: xi ← updHoltTrend(µi) (eq. 8)

update estimated and observed moving variance
7: σi, σ̂i+1 ← updSD(µi, xi,δi, εi) (eq. 10)

compute current estimation confidence
8: ci ← calcConfidence(σi, σ̂i) (eq. 11)
9: else

10: δ̂i+1 = µi ← v0, σ̂i+1 ← 0 //init values
11: end if
12: return estModel(δ̂i+1, σ̂i+1, ci, σerr)

current metric evolution by using a moving average, denoted
as µi (steps 2-7). This provides an estimation of the metric
stream evolution and is used to estimate the distance of the
next two consecutive values, denoted as δ̂i+1. Intuitively, a
large distance between the two consecutive values denotes
a shift in the metric evolution. Hence, if a large distance is
not expected a decrease in the sampling period should be
considered, whereas if the distance is small, an increase in the
sampling period can be considered. Moving averages provide
one-step ahead predictions, are easy to compute and can be
calculated with previous value knowledge. Equation 4 presents
an example of a cumulative Simple Moving Average (SMA)
where values of a sliding window are aggregated evenly:

µi = δi + (i− 1)µi−1

i
, i ≥ 1 (4)

While a SMA can be used, it weighs all values the same.
This is not desired as recent disrupts in the metric evolu-
tion should be highly valued in a dynamic metric stream.
To address this, an Exponential Weighted Moving Average
(EWMA) can be used, where a weighting factor (α ∈ [0, 1])
is introduced to decrease exponentially the effect of older
values, as presented in Equation 5. While the EWMA is
a better suit for our needs it still features one significant
drawback; it is volatile to abrupt transient changes. Therefore,
any assumption made that the EWMA only changes gradually
with respect to the parameterization (exponential weighting),
is not always the case [26]. Specifically, the EWMA is slow to
acknowledge sudden spikes after large stable phases, and, if
stable phases follow sudden bursts, spike effects are preserved
in the estimation. This results in overestimating subsequent
δi’s which affect the accuracy of an adaptive technique.

µi =

{
δi, i = 1
αµi−1 + (1− α)δi, i > 1

(5)

Therefore, we adopt a Probabilistic EWMA to dynami-
cally adjust the weighting based on the probability density of
the given observation. The PEWMA sufficiently acknowledges
abrupt transient changes, adjusting quickly to long-term shifts
in the metric evolution and when incorporated in the estima-
tion process (steps 2-7), it requires no parameterization, scal-
ing to numerous samples. Equation 6 presents the PEWMA
where instead of fixed weighting, we introduce a probabilistic
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and adaptive weighting factor, denoted as ãi = α(1 − βPi).
In this equation, the p-value, is the probability of the current
δi to follow the modeled distribution of the metric stream
evolution. In turn, β is a weight placed on Pi and as β → 0
the PEWMA converges to a common EWMA2.

µi =

{
δi, i = 1
α(1− βPi)µi−1 + (1− α(1− βPi))δi, i > 1

(6)

The logic behind probabilistic reasoning is that the current
δi depending on its p-value will contribute respectively to the
estimation process. Therefore, we update the weighting by
1 − βPi so that sudden ”unexpected” spikes are accounted
for in the estimation process, however, offer little influence
to subsequent estimations, thus restraining the model from
overestimating subsequent δi’s. In turn, if an “unexpected”
value turns out to be a shift in the data evolution, as the
probability kernel shifts, subsequent “unexpected” values are
awarded with greater p-values, allowing them to contribute
more to the estimation process. To satisfy these requirements
we adopt a gaussian kernel N(µ, σ2) and compare to a normal
distribution to obtain the probability estimate (eq. 7) with
δi − δ̂i denoting the estimation error εi. The observation is
normalized to a zero-mean and unit standard deviation (Zi) to
account for metrics with large data scales. While a Gaussian
kernel is assumed, if prior knowledge of the distribution is
available then only step 4 in Algorithm 1 must be updated.
In line with this, Pi is initialized to 1, as Zi is undefined for
σ̂i = 0, which results in µ1 = δ1 irrespective of the considered
probability kernel (eq. 6). Nonetheless, in any other time
interval where σ̂i = 0 (extreme case), the p-value depends on
the kernel definition with Pi = 1/

√
2π for a gaussian kernel.

Pi = 1√
2π

exp(−Z
2
i

2 )

Zi = δi − δ̂i
σ̂i

(7)

While probabilistic weighting refrains the model from
overestimation at bursty time intervals, it does not account
for monotonic phases of upward and downward trends which
often introduce time lagging effects in the estimation. To
fine-tune the estimation by capturing possible trends, we
use Holt’s Trend Method to estimate the current monotonic
growth/decay in the metric stream evolution [27]. Equation 8
depicts how the trend, denoted as xi, is updated at each time
interval, where ξ is a smoothing weight in the range [0, 1] with
values near 1 denoting a preference to favor recent trends.

xi =

{
δi − δi−1, i = 2
ξ (µi − µi−1) + (1− ξ) xi−1, i > 2

(8)

Therefore, any lagging effects in the estimation process are
reduced by boosting the moving average to the appropriate
value base with an additive trend component as follows:

µi = ãi(µi−1 + xi−1) + (1− ãi)δi (9)

At this point, the metric stream evolution ρ(M), encapsu-
lated by δ̂i+1 and σ̂i+1, is updated with only previous value
knowledge and without repeatedly scanning the entire stream,
as depicted in Equation 10. We note that θi is merely a local

2. For simplicity in our model evaluation we will consider β = 1

Algorithm 2 Adaptive Sampling
Input: imprecision γ ∈ [0, 1] given by user and confidence ci
Output: Ti+1
Ensure: {Ti+1 | Ti+1 ∈ Z+ and Ti+1 ∈ [Tmin, Tmax]}

if Ti+1 can be adjusted (either up or down) based on the
determined confidence ci, and user-defined imprecision γ,
then do so, else rollback to default Tmin

1: if ti > 0 then
2: if (ci ≥ 1− γ) then
3: Ti+1 ← Ti + λ · (1 + ci−γ

ci
) (eq. 13)

4: if (Ti+1 > Tmax) then
5: Ti+1 ← Tmax
6: end if
7: else
8: Ti+1 ← Tmin
9: end if

10: else
11: Ti+1 ← Tmin //init values
12: end if
13: return Ti+1

variable storing a temporal reference value in the sequence of
calculations to compute online the current variance.

ãi ← α(1− βPi)
µi ← ãi · (µi−1 + xi−1) + (1− ãi) · δi

θi ← ãi · θi−1 + (1− ãi) · δ2
i

δ̂i+1 ← µi

σ̂i+1 ←
√
θi − µ2

i

(10)

Figure 4 depicts a comparison between AdaM and an
estimation model limited to an EWMA. We observe that
AdaM is quick to adjust to shifts in the metric evolution, and
in contrast to the EWMA, after spikes it does not overestimate
subsequent values. Having estimated the standard deviation,
when the next sample is collected, the algorithm will update
the observed standard deviation σi for δi and σerr for εi
(step 7). We note that, σerr is not used in adaptive sampling
but in adaptive filtering. Also, σerr is a useful statistic since
with σerr, the current estimation δi and a multiplier K; high
and low estimation control boundaries can be computed to
perform outlier and change detection [11] as follows:

Bhighi , Blowi ← δi ±K · σerr (11)

On the other hand, σi is used to compute the estimation
process current “confidence”, denoted as ci (step 8). The
confidence (ci ≤ 1) is a ratio computed from the difference
between the estimated and observed standard deviation (eq.
12) used as our error evaluation metric denoting the ability of
the algorithmic process to (correctly) estimate what will hap-
pen next in the metric stream. This supports our framework
to “reward” larger property adjustments when estimations
satisfy the accuracy guarantees given by the user or rollback
to a fixed approach when satisfactory estimations cannot be
made. Therefore, as σ̂i → σi the confidence ci → 1.

ci = 1− |σ̂i − σi|
σi

(12)

4.2 Adaptive Sampling
After updating the estimation model, Algorithm 2 is used
to perform adaptive sampling. In particular, the estimated
sampling period Ti+1, is dependent to the current sampling
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Fig. 4: A Comparison of AdaM Estimation Model to an Exponential Weighted Moving Average
Algorithm 3 Adaptive Filtering
Input: µi, σi and σerr from estimation model
Output: Ri+1
Ensure: {Ri+1 | Ri+1 ∈ [Rmin, Rmax], 0 ≤ Rmin ≤ Rmax}

if data stream not dispersed and inaccuracy budget permits
it then Ri+1 can be widen, else it is shortened

1: if ti > 0 then
2: Fi ← calcFanoFactor(σi, µi) (eq. 14)
3: if Fi < 1 then
4: if σerr < γ then
5: Ri+1 ← Ri + λ · (γ−σerr

γ ) (eq. 15)
6: if (Ri+1 > Rmax) then
7: Ri+1 ← Rmax
8: end if
9: else

10: Ri+1 ← Ri
11: end if
12: else
13: Ri+1 ← Rmin
14: end if
15: end if
16: return Ri+1

period Ti, increasing if variability of the load decreases, and,
in turn, decreasing if variability increases. How large of an
adjustment is required, is dependent on the confidence ci,
denoting the ability of the algorithm process to follow the met-
ric stream evolution. Therefore, when the estimation model
is “confident”, the adaptive sampling algorithm will award
larger sampling periods. Hence, in contrast to threshold-based
techniques which adjust the sampling rate solely based on the
sample value vi, our approach considers the metric stream
evolution, as well as, the confidence of the estimation. The
reason for this lays in the failure of threshold-based techniques
to detect variances in the metric stream when values are far
from the threshold (e.g. vi << τ , where τ a user-defined
threshold). Hence, events remain undetected such as in the
case of low rate DDoS attacks. Similarly, stable phases with
high values will fail to receive a sampling period decrement as
well, as a violation is still probable.

Thus, having computed the current confidence (eq. 12), we
then compare it to the acceptable user-defined imprecision,
denoted as γ from the problem definition. The imprecision
parameter (γ ∈ [0, 1]) is used to set the sensitivity while
computing a new sampling period Ti+1 (eq. 13). Intuitively,
if γ → 0 then our algorithm converges to a periodic sampling

approach (unless an “exact” estimation is made). In turn, if
γ → 1 an adjustment will take place on each interval even if a
confident estimation cannot be made. Hence, if the algorithm
cannot provide an estimation within a certain confidence, then
our adaptive sampling algorithm will rollback to the default
sampling period Tmin for the next sample si+1. Moreover, in
contrast to stepwise techniques [3] [20] which adjust the sam-
pling rate solely on a step function (e.g., Ti+1 ← Ti ± Tstep),
our approach is quick to react to highly volatile metric streams
adapting the sampling rate based on its confidence to the
appropriate period in the range [Tmin, Tmax].

Ti+1 =

{
Ti + λ · (1 + ci−γ

ci
), ci ≥ 1− γ

Tmin, else
(13)

The complexity of our approach is O(1) constant time, since
all calculations are based on previous collected values and do
not require the entire metric stream to be available. More-
over, the imprecision γ, is the only parameter which is user-
defined in the estimation process. Nonetheless, users are free
to change: (i) λ which is an optional multiplicity factor (e.g.
default λ = 1) to be used if a more aggressive approach should
be followed; and (ii) the weights α and ξ, although as shown in
the evaluation, α and ξ may take a wide range of values due to
the probabilistic weighting process and can be left to default
values for a small imprecision penalty.

4.3 Adaptive Filtering

As with sampling, adaptive filtering must be lightweight and
capable of running on the monitoring source. We base our
approach such that the filter range R is dependent to the
metric stream variability. The reason for this lays in the failure
of stepwise techniques, which adjust R incrementally based
on the number of samples previously filtered, in cases such
as biosignal monitoring where precision is required in a small
range of values [24]. For example, consider glucose monitoring
where ignoring metric stream variability, even for a small 1%
stepwise adjustment to a filter (Ri ← Ri−1± 0.01 ·Ri−1), will
result in filtering out critical values.

Hence, AdaM’s adaptive filtering algorithm (Algorithm 3)
utilizes the Fano factor, denoted as Fi, and σerr, to follow
the current variability q(M) of the metric stream M . In
particular, the Fano factor (Fi ≥ 0) is a normalized measure
of the dispersion of a probability distribution, which is used to
quantify whether a stream of samples are currently clustered
(Fi < 1) or dispersed compared to a statistical model. The
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Fano factor is calculated as the ratio of the variance σ2 to the
mean µ, as presented in Equation 14:

Fi = σ2
i

µi
(14)

To provide both the variances σ2, σerr and the mean µ of
the latest samples of a metric stream, no additional compu-
tations are required, as both µi and σi are the exponentially
weighted output of the PEWMA estimation provided by the
adaptive estimation model. Intuitively, when σi decreases, the
Fano factor Fi follows, indicating a decrease in the variability
of the metric stream. Having computed Fi, we then compare
σerr to the user-provided maximum tolerable imprecision,
denoted as γ. If Fi indicates the metric stream is not dispersed
and σerr is less than γ, then the filter range is widen, in an
attempt, to filter near-by values while still remaining in the
accuracy guarantees defined by the user (eq. 15). Otherwise,
if Fi indicates the metric stream is currently over-dispersed,
the filter range is shortened or restored to a default value in
order to report abnormalities in the data.

As with adaptive sampling, the adaptive filtering algo-
rithm has a O(1) constant time and space complexity, as Ri+1
is computed from its previous value, while µi, σi and σerr are
the output of the runtime estimation model described in the
previous section. Additional parameter configurable by users,
is λ, a multiplier used as an aggressiveness indicator.

Ri+1 =


Ri + λ · (γ−Fi

γ ), Fi < 1 and σerr < γ

Ri, Fi < 1 and σerr > γ

Rmin, else

(15)

5 Evaluation
We will compare AdaM’s efficiency and accuracy to other
adaptive techniques based on public data from cloud and
internet security services, wearables and intelligent trans-
portation systems. Next, a scalability evaluation is conducted
based on two streaming services which benefit by using AdaM
to lower data volume and velocity while preserving accuracy.

5.1 On Device Accuracy & Efficiency Evaluation
We will evaluate AdaM in comparison to three state-of-the-art
adaptive techniques suitable for IoT devices:
• L-SIP [3], a linear framework for adaptive sampling which

uses a double exponential moving average to produce
estimates of the current data distribution based on the
rate sample values change in time;

• i-EWMA [17], a technique encompassing a moving aver-
age which increases the sampling period incrementally by
one time unit (Ti+1 ← Ti + Tunit), when the estimated
error ε is under a user-defined imprecision value γ, and
decreases it (Ti+1 ← Ti − Tunit), when ε > γ;

• FAST [19], a framework for differential privacy using a
PID controller to determine the periodicity accompanied
by a Kalman filter to predict values at non sampled
points. To configure the Kalman filter R parameter a
training phase of 10 intervals was introduced. As differ-
ential privacy is not under-evaluation, it is not enabled.

Unless otherwise stated, the user-defined imprecision is set to
γ = 0.1, the aggressiveness to λ = 1 and the moving average
and trend weights to α = 0.45 and ξ = 0.7.

5.1.1 Traces, Testbeds and Evaluation Metrics
Table 3 depicts the datasets used for the evaluation. Instead
of simple trivial traces (e.g., linear, sinusoidal loads), we have
selected seven publicly available real-world complex
traces to truly reveal the strengths and disadvantages of
each algorithm. Figures [8a-8f] depict these traces. The ex-
periments for the first four traces were run on a Raspberry
Pi (model B) with 512MB of RAM and an ARM processor
(single-core, 700MHz) while emulating the data load of each
trace. The Raspberry Pi was selected as a suitable testbed,
as it features similar limited processing capabilities of other
“smart” devices. The Fitbit Step and Heart readings were
fed, via SensorSimulator, to the Android Wear emulator
hosting an app computing steps and heartrate measurements.
The processing capabilities of the emulator are set to the
specifications of a Fitbit Charge (single-core ARM 32MHz
processor, 128MB Memory). We note that the Fitbit calorie
trace was not fed to the emulator, as explained shortly, calo-
ries are computed via human body indicators and heartrate
measurements. Hence, this trace is used as ground truth to
evaluate the techniques under comparison. We evaluate each
technique towards their estimation accuracy and ability to
efficiently use IoT device resources.
Accuracy: We evaluate an adaptive technique estimation
accuracy by measuring the mean absolute percentage error
(MAPE) from the original timeseries ground truth for each
trace. Equation 16 depicts how the MAPE is calculated, where
Ai is the actual value for the ith sample andEi is the estimated
value. For each adaptive technique, when a sample is not
collected, Ei is considered the last reported value.

MAPEn = 1
n

n∑
i=1

|Ai − Ei
Ai

| · 100% (16)

Efficiency: We evaluate efficiency by measuring the process-
ing, network and energy overhead imposed to the device by
each technique. In particular, we measure: (i) CPU cycles
consumed to process the load imposed by each trace; (ii)
network overhead, where we assume no aggregation technique
is available and thus, a sample, if not filtered, is disseminated
to the receiver-end; and (iii) energy consumption, based on the
model adopted from [8] and presented in Equation 17. Power
measurements were acquired with powertop and wattch [31].
In this model, Pidle denotes power in idle state; Pcpu processor
power (including L1 cache and memory); τcpu the CPU time;
Pi/o power for I/O; τwait the I/O time; while Pnet power
consumed for disseminating samples over the network.

E = Pidle · τidle + Pcpu · τcpu + Pio · τwait + Pnet · τnet (17)

5.1.2 Experiments
At first, we compare AdaM sampling (λ=1, λ=2) to i-EWMA
and L-SIP based on the MAPE evaluation metric. These three
algorithms use moving averages in their estimation process.
Therefore, MAPE is evaluated under different settings for the
moving average parameter (α) to find the best configuration.
We set the minimum sampling period to 1 time interval, equal
to the sampling period used to collect the trace ground truth,
and set the maximum sampling period to 10 intervals. We note
that FAST is not presented in this test, as it does not use a
moving average. Also, FAST sampling is aggressive producing
only a few sampling points and without applying a Kalman
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Trace Name Origin Description

Memory Trace Cloud Server A memory trace of 105 samples originating from a physical server running the Java MicroBenchmark Kit.
CPU Trace Cloud Server A CPU trace from a physical server of 800 samples from the Carnegie Mellon RainMon project [28].
Disk IO Trace Cloud Server A Disk I/O trace from a physical server of 415 samples from the Carnegie Mellon RainMon project [28].
TCP Trace Internet Secu-

rity Service
An incoming TCP network traffic trace from an internet security service of 500 samples from the port
activity monitor of the Cyber Defense SANS Technology Institute [29].

Step Trace Wearable A fitness step trace of 287 samples from a Fitbit Charge device [30].
Heart Trace Wearable A fitness heartrate trace of 287 samples from a Fitbit Charge device [30].
Calorie Trace Wearable A fitness calorie trace of 287 samples from a Fitbit Charge device [30].

TABLE 3: Datasets Used for Adaptive Techniques Performance and Accuracy Evaluation

(a) Memory Trace (b) CPU Trace (c) Disk I/O Trace

(d) TCP Trace (e) Step Trace (f) Heart Trace

Fig. 5: Mean Absolute Percentage Error (MAPE) Comparison of Techniques Using a Moving Average Estimator

Fig. 6: Difference in MAPE when using Trend in Estimation

Fig. 7: Influence of Max Tolerable Imprecision to Estimation
filter for smoothing, its MAPE is very high. Therefore, a
test without the filter enabled, is meaningless. To be fair, we
present its MAPE in subsequent comparisons while enabling
filtering (see Fig. 9d). Figures [5a-5f] depict the MAPE metric
of each trace for the under comparison techniques.

First, we observe that AdaM (λ=1) for all traces features
the lowest error. In its best setting, AdaM’s MAPE is always
under 10% except for the Disk trace, where it is slightly above
(11%). Even, in a more aggressive setting (λ=2) AdaM still
achieves a low error percentage and is comparable to L-SIP.
AdaM sampling achieves a low MAPE due to the the adaptive
weighting process which provides the estimation model with
the ability to immediately detect abrupt transient changes
in each trace. Moreover, due to the adaptive weighting, we
observe that AdaM can take a wide range of values for the α
parameter ([0.3−0.6]) with a deviation always under 3% from
the best configuration. In turn, with the introduction of the
trend component to the estimation model, AdaM accuracy is
improved by shedding 2-5% of the error. This is depicted in
Figure 6, where for a wide range of settings for the ξ parameter
the error is reduced compared to not considering trends at all
(Fig. 6 depicts only the three most challenging traces due to
limited space). Thus, the analysis conducted shows that for
AdaM, profiling to find the optimal parameter settings is not
always required if slight imprecision is acceptable.

Next, we evaluate the influence of the maximum tolerable
impression (γ), the only parameter that must be set by
the user, to the overall estimation error (MAPE). Figure 7
depicts the evaluation conducted, where in all imprecision
configurations, and for all traces, AdaM’s MAPE is well
below the acceptable imprecision threshold (MAPE < γ),
thus highlighting the importance of the confidence metric,
even for γ-values which indicate a high imprecision tolerance.
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(a) Memory Trace (b) CPU Trace (c) Disk I/O Trace

(d) TCP Trace (e) Step Trace (f) Heart Trace

Fig. 8: A Comparison of Traces Generated via AdaM Towards the Original Traces

Furthermore, Figure 8 depicts AdaM compared to the original
traces, where we observe that AdaM always follows the data
evolution even in highly abrupt and fluctuating phases.

At this point, we compare all algorithms efficiency based
on the overhead imposed to the monitoring source. We note
that for all subsequent experimentations AdaM incorporates
trend detection in its estimation process with ξ left to the
default setting. In this test we include FAST, as well as, AdaM
with filtering (R ∈ [0, 2]). At first, we observe (Fig. 9a) that
filtering does not impose additional overhead to AdaM as the
overhead in all cases is well under 1%, while the gains from
reduced network traffic (Fig. 9c) are significant as an average
reduction of 74% is achieved. Nonetheless, with adaptive fil-
tering, AdaM yields a slightly increased error when compared
to only enabling adaptive sampling (Fig. 9d). However, as the
user-defined inaccuracy budget (γ) permits further approxi-
mation, accuracy is slightly sacrificed. This improves device
efficiency by significantly reducing the network overhead, and
consequently energy consumption (Fig. 9b), with a slightly
increased MAPE which is never increased more than 3% (disk
trace). It should also be mentioned that the selected filtering
range (R ∈ [0, 2]) is not the optimal setting (R∗ ∈ [0, 1.2])
for the testbed inaccuracy budget (γ=0.1). In general, when
comparing to periodic sampling, AdaM succeeds in reducing
data volume by 74%, energy consumption by at least 71%, while
accuracy is, in all cases, greater than 92% and with filtering,
greater than 89%. Most importantly, in the case of biosignal
monitoring where costly signal analysis is performed energy
consumption is reduced by more than 86% (Fig. 9b).

Moreover, as with initial MAPE comparison, AdaM out-
performs i-EWMA and L-SIP. AdaM is able to achieve this
due to its low complexity and the introduction of the confi-
dence metric which supports the estimation process to select
the appropriate T . Nonetheless, its overhead is slightly larger
in some traces (e.g., cpu trace) than the FAST algorithm.
FAST’s aggressiveness, which computes larger sampling peri-
ods, results to slightly lower energy consumption and network
traffic. However, this does not come for free. In Figure 9d,
we observe that for FAST to achieve this, significant accuracy

is sacrificed, especially for traces featuring limited linearity
(e.g., CPU, disk trace) in contrast to AdaM which features a
low-cost approximate and adaptive estimation model capable of
achieving a balance between efficiency and accuracy.

To illustrate the importance of maintaining accuracy, es-
pecially in the case of wearable devices, we compute calorie
consumption where no further external stimulus is required.
Energy expenditure (calories/min) is an algorithmic process
based on human body indicators (age, weight, height) and
heartrate monitoring [32]. Figure 10 depicts the initial calorie
trace provided by a Fitbit Charge device and the traces com-
puted by AdaM and FAST. We observe that AdaM provides a
better estimation than FAST with AdaM’s error growing from
6.42% in heartrate monitoring to 9.07% in calorie counting,
while FAST’s error increases from 13.61% to 21.83%. To
grasp on the gains of sacrificing 9% accuracy when embedding
AdaM to a wearable, we perform a battery life expediency
test. Specifically, we first calculate the average hourly device
consumption in milliamps (mA), denoted as IDC , from the
temporal energy consumption (Ei) and the voltage driving the
device (eq. 18). Battery life, denoted as BL, is then computed
from battery capacity (BC), and device consumption (IDC).
Battery capacity is set to the capacity of a Fitbit Charge
(35mAh) and the multiplicity factor β is set to 0.7 which
is industry standard practice to account for external factors
affecting battery runtime (e.g., temperature).

IDC = 1
n
·
n∑
i

Ei · τi
Vi

(18)

BL = β · BC
IDC

(19)

From our estimations, a wearable device without AdaM has a
device consumption of 0.239mA and battery life expediency,
on average, of 4.26 days (between 3-5 days, as claimed by the
wearable designers). However, a device with AdaM embedded
in its software core is able to reduce consumption by 0.094mA
and increase battery life from 4 days to an additional 2.94
days thus expanding battery life from 3-5 days to 6-7 days on a
wearable device offering step, calorie and heartrate monitoring.
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(a) CPU Cycles (b) Energy Consumption

(c) Outgoing Network Traffic (d) Mean Absolute Percentage Error (MAPE)

Fig. 9: Overhead Comparison of the Techniques Under Evaluation

Fig. 10: Wearable Device Calories Comparison

5.2 Streaming Services Scalability Evaluation
In the next set of experiments, we show the benefits of inte-
grating AdaM with two different streaming services in regards
to reducing data velocity and increasing service scalability.

5.2.1 VM Cluster Monitoring in a Private Cloud
In this case, we study how a monitoring service used to
monitor a cluster of VMs deployed over an Openstack private
cloud can benefit by embedding AdaM in the monitored VMs
to reduce both the volume and velocity of the monitoring data
and ease processing on the monitoring service. To show this
we take advantage of the open-source JCatascopia monitoring
framework [25] which offers integration endpoints for adaptive
algorithms and is capable of running on linux-based VMs, IoT
devices and gateways. We embed AdaM in the source code
of JCatascopia-Agents (metric collectors), such that they are

capable of adapting the sampling rate and the metric filter
range. Particularly, JCatascopia-Agents upon initialization,
randomly select 1 of the 4 server traces (Memory, CPU, Disk
I/O and Network) introduced earlier to emulate the behavior
of an IoT cloud gateway. For each trace we set the minimum
sampling period to 0.5s, in order to generate a high volume of
data. We use these traces, and not random collected data,
as we have confirmed from our evaluation that AdaM can
reconstruct each of the available traces with high accuracy.

Figure 11 depicts the topology of our testbed. Initially
the testbed is comprised of 1 JCatascopia-Agent and every 5
minutes a new agent is instantiated and added to the deploy-
ment until we reach a capacity of 80. Collected metrics are
disseminated from Agents to a JCatascopia-Server (4VCPU,
4GB RAM) residing in the same tenant network, where they
are processed and stored to the monitoring database. We eval-
uate data velocity by measuring archiving time, which is the
average time required by the JCatascopia-Server to process
and store a received metric. We use this topology to compare
AdaM (γ = 0.1, T ∈ [1, 10], R ∈ [0, 2]) against (i) using
periodic sampling (T = 500ms) for metric collection; and (ii)
using periodic sampling (T = 500ms) along with filtering on
the JCatascopia-Server (we show results for R = 1% which
was the best filtering configuration).

Figure 12 depicts the results of our comparison, where we
observe that without any adaptive techniques data velocity
follows an exponential growth. In turn, when filtering is added
to the JCatascopia-Server, thus on the server side, archiving
time is comparable to AdaM but only up to 30-35 VMs.
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Fig. 11: Cloud Monitoring Topology

Fig. 12: Cloud Monitoring Scalability Evaluation
After that, archiving time increases exponentially as the per-
message dissemination and storage overhead is the actual
bottleneck for cloud monitoring services. However, if data
sources utilize AdaM’s adaptive capabilities on the edge, data
velocity is reduced and a more linear growth is achieved.

5.2.2 Intelligent Transportation Service (ITS)
Next, we present a thorough evaluation of an ITS with AdaM
embedded in the edge nodes of the overall system. The ITS
topology is depicted in Figure 13 and is a (simplified) replica
of the Dublin Smart City Bus Network comprised of:
• 1000 buses with GPS tracking devices sending periodic

updates to the ITS. Each update reports 16 metrics
including: location, bus id and area of coverage. Most
importantly, in each update is an estimate of the current
route delay (how many seconds off schedule is the bus);

• An Apache Kafka queueing service for bus updates to
be dequeued by the ITS processing engine. The Kafka
instance resides on a x-large VM (16VCPU, 16GB RAM).
The queueing service is also used by the ITS processing
engine to enqueue results for the dashboard;

• The distributed processing engine powered by Apache
Spark to process bus updates. The Apache Spark cluster
is comprised of 5 large worker nodes (8 VCPU, 8GB
RAM, 40GB Disk) with a batch window of 1 second;

• A dashboard used by ITS operators to view the results.
We have created a Bus Emulator3 to emulate the tracking

behavior of Dublin buses. Each bus instance initially receives
a busID and from there on, it emulates the behavior of the
specific bus by sending updates to the ITS based on real data
collected from 1000 Dublin buses for an entire month (Jan
2014). The ITS processing engine pulls data from the queue
service every time interval and processes bus updates. With
processing we denote the intensive task of checking per bus if
the current route delay is over one standard deviation from
its average delay in the current city block based on a weekly

3. https://github.com/dtrihinas/JobEmulator

Fig. 13: ITS Topology

Fig. 14: Apache Spark Streaming Total Delay

sliding window. If the delay is lower than this threshold, the
message is discarded. If not, the processing engine increases
an aggregator counting the number of buses with delays in
the area and signals a warning if more than 10 violations
are detected in a 5min sliding window. Hence, ITS operators
always receive timely warnings via the bus network to further
investigate and take action or not.

For our experiments, the topology is initially configured to
host 50 buses and every 10 minutes 50 more buses are added
to the network until we reach a topology with 1000 buses.
First, we set the sampling period of each bus to 1 time interval
which is the dataset ground truth. In the second and third test
the sampling period is set to 5 and 10 intervals respectively.
Afterwards, we embed AdaM to each bus emulator (γ = 0.15,
λ = 1, T ∈ [1, 10], R ∈ [0, 3]). We also evaluate the ITS service
with T=1 along with filtering made available on Apache Spark
(results shown for R = 1.8 which was the best configuration
after testing). We perform this test to show that even if
filtering is enabled at the cloud-side, the scheduling time in
distributed data engines is a cost that should not be ignored.
Thus, we monitor the total delay imposed to the Apache Spark
cluster, which includes both processing and scheduling time.
Processing time denotes the time required to parse a batch of
updates, while scheduling time denotes the time from which a
batch is dequeued up to the time it starts being processed. In
order for a Spark cluster to be considered as stable, the total
delay must be comparable to the batch window. Otherwise, if
the delay is continuously increasing, batches are queued and
not processed immediately as the system is unable to keep up.
Therefore, the system is characterized as unstable.

Figure 14 depicts the total delay metric as the number of
buses and message velocity increase. For T=1 (ground truth
periodicity) the ITS becomes unstable after 572 buses with the
total delay increasing exponentially and at maximum capacity
(1000 buses) requiring for 23.8GB of data to be processed per
Spark node. Similarly, for T=1 with filtering enabled and with
the sampling period set to T=5, the ITS becomes unstable
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Fig. 15: Percentage of Correctly Reported Warnings Per Area

Fig. 16: Percentage of Falsely Reported Warnings Per Area

again after 632 and 746 buses respectively. Remarkably, for
T=10, the maximum number of buses is reached with the
system slightly rising above the threshold at 971 buses. On
the other hand, with AdaM embedded in each bus emulator
we observe that at 817 buses the threshold is violated for the
first time without the system becoming unstable at maximum
capacity, while each Spark node only processes 8.7GB of data.
This results in a 64% reduction of the total volume of data
processed per node when monitoring sources embed AdaM in
their software core. At this point one may argue that a solution
to the high data influx is auto-scaling [25]. However, auto-
scaling is a “blessing” which should be used wisely. Scaling
large data-intensive infrastructures, other than monetizing
costs for resources, involves hidden costs such as the time
cost for data (re-)balancing, replication, and the additional
network overhead [33]. Hence, if auto-scaling can be avoided
or postponed for latter in favor of a smaller cluster achieving
the same throughput, then it should.

After evaluating the total delay, we proceed to an accuracy
evaluation by comparing the correct and false reported warn-
ings per Dublin area by each experiment run to the ground
truth. From Figures 14-16 we observe that although a T=10
sampling period features the lowest streaming delay, the per-
centage of correctly reported warnings merely spans from 0%
to 38%, while the false alarm percentage spans from 11% to
19%. For T=5, the percentage of correctly reported warnings
spans from 17% to 63%, while the false alarm percentage
spans from 7% to 17%. On the other hand, AdaM achieves
a percentage of correctly identified warnings of at least 87% in
all Dublin areas except for the CF city block where it correctly
detects 8 in a total of only 12 actual warnings. Remarkably,
AdaM, with a significantly lower streaming delay, is even
comparable to using T=1 with filtering enabled at the cloud-

Fig. 17: Sampling Periods Used by Buses in the Central
Dublin Area per Hour of the Day

side. In turn, AdaM’s percentage of falsely reported warnings
is significantly lower than utilizing a fixed periodicity as its
estimation mechanism is able to quickly detect and adapt the
periodicity to follow abrupt and transient fluctuations in a
bus monitoring stream. Hence, AdaM is able to adapt, at the
edge, the monitoring intensity while satisfying the accuracy
guarantees set upon initialization.

In turn, Figure 17 depicts the average occurrence of each
sampling period per hour of a weekday for buses servicing
the Central Dublin area (day buses operate between 6am-
11.59pm). We observe that for hours with high traffic such as
morning rush hours (e.g., 7-9am), lunch time (e.g., 12-13pm)
and afternoon rush hours (e.g., 17-19pm), high sampling rates
(T = 1-2s) are preferred, while the rest of the day low sampling
rates are preferred. However, one must note the variety of sam-
pling rates used throughout each hour of the day justifying the
need for adaptive monitoring. Hence, AdaM is able to adapt in
place and inexpensively the monitoring intensity, thus reducing
the volume and velocity of incoming data to distributed big data
streaming services while preserving accuracy.
6 Conclusions
In this paper we have presented AdaM, an open-source
adaptive monitoring framework for IoT devices. Our
main idea is to provide IoT devices with a framework
that inexpensively and in place dynamically adapts the
monitoring intensity and the amount of data disseminated
through the network based on a runtime estimation model
of the monitoring stream evolution and the variability.
To achieve this, AdaM incorporates two algorithms, one
for adaptive sampling and one for adaptive filtering. Both
algorithms provide estimations, adjusting the sampling
rate and the filter range based on the confidence of each
algorithm to correctly estimate what will happen next in
the monitoring stream. With real-world complex testbeds
from cloud services, internet security services, wearables and
intelligent transportation services, we show that in contrast
to other techniques, AdaM achieves a balance between
efficiency and accuracy. Specifically, AdaM reduces data
volume by at least 74%, energy consumption by at least 71%,
while preserving a greater than 89% accuracy. In turn, the
velocity at which data are received by streaming services is
significantly reduced, offering IoT services greater scalability
with less resources and significantly lower costs.
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