
Demo: The RAINBOW Analytics Stack for the Fog
Continuum

Moysis Symeonides∗, Demetris Trihinas†, Joanna Georgiou∗, Michalis Kasioulis∗, George Pallis∗,
Marios D. Dikaiakos∗, Theodoros Toliopoulos‡, Anna-Valentini Michailidou‡, Anastasios Gounaris‡

∗ Department of Computer Science
University of Cyprus

Email: {msymeo03, jgeorg02, mkasio01,
gpallis, mdd}@cs.ucy.ac.cy

† Department of Computer Science
University of Nicosia

Email: trihinas.d@unic.ac.cy

‡ Department of Informatics
Aristotle University of Thessaloniki

Email: {tatoliop, annavalen,
gounaria}@csd.auth.gr

I. INTRODUCTION

With the proliferation of raw Internet of Things (IoTs) data,
Fog Computing is emerging as a computing paradigm for
delay-sensitive streaming analytics with operators deploying
big data distributed engines on Fog resources [1]. Neverthe-
less, the current (Cloud-based) distributed analytics solutions
are unaware of the unique characteristics of Fog realms. For
instance, task placement algorithms consider homogeneous
underlying resources without considering the Fog nodes’ het-
erogeneity and the non-uniform network connections, resulting
in sub-optimal processing performance. Moreover, data quality
can play an important role, where corrupted data, and network
uncertainty may lead to less useful results. In turn, energy
consumption can critically impact the overall cost and live-
ness of the underlying processing infrastructure. Specifically,
scheduling tasks on nodes with energy-hungry profiles or
battery-powered devices may temporarily be beneficial for the
performance, but it may increase the overall cost, or/and the
battery-powered devices may not be available when needed.
A Fog-enabled analytics stack must allow users to optimize
Fog-specific indicators or trade-offs among them. For instance,
users may sacrifice a portion of the execution performance
to minimize energy consumption or vice versa. Except for
the performance issues raised by Fog, the state-of-the-art
distributed processing engines offer only low-level procedural
programming interfaces with operators facing a steep learning
curve to master them. So, query abstractions are crucial for
minimizing the deployment time, errors, and debugging.

Towards that, we introduce the RAINBOW Analytics
Stack, which offers a holistic approach for real-time data man-
agement and processing for Fog realms. Moreover, it provides
a distributed solution encapsulating pluggable task schedulers
that optimize user-defined trade-offs among performance in-
dicators, like energy consumption, processing latency, data
quality, etc. Finally, the RAINBOW declarative query model
enables users to express streaming analytic insights, leaving
the RAINBOW stack to compile, optimize, and execute them.
Table I shows a comparison between features of RAINBOW
Analytics Stack and other state-of-the-art streaming platforms.

II. THE RAINBOW ANALYTICS STACK

A. Assumptions & Preconditions
The RAINBOW Analytics Stack assumptions and opera-

tional preconditions are as follows:
Control Plane: The RAINBOW Analytic Stack utilizes a
controller-worker architectural paradigm, in which the con-
troller (or Control Plane) represents a single point of commu-
nication between users and distributed storage and processing.
Control Plane is responsible for service discovery, health
checking, task placement, and execution coordination. Due to
the critical and resource demanding nature of these procedures,
the Control Plane has to be deployed on a host node with
increased processing capabilities, e.g., a cloud server or a
commodity physical server.
Fog Nodes: represent the workers of the stack. The only
precondition is that every processing node should be capable of
hosting linux-based operating system. We should note that we
deployed the RAINBOW stack on light-weight ARM-based
nodes like raspberries v4 with no performance issues.
IoT Sensors: are either connected on Fog nodes or can be
requested from them (e.g., via APIs). RAINBOW Monitoring
Agents (Sec.II-B) capture data from IoT sensors, along with
utilization metrics from the Fog Node and the running con-
tainarized services. For this demo, we enrich the monitoring
agents to reproduce IoT data streams from datasets files.
Networking: All nodes of the infrastructure need to be inter-
connected. For that reason, we consider that a mesh network
exists in which all nodes can communicate to each other.
Stack Deployment & Configurations: We minimize the
user’s installation efforts and improve the system’s interop-
erability by containerizing all of our services. So another
precondition for both controller and Fog nodes is to have
installed the Docker runtime environment. Moreover, we pro-
vide docker-compose YAML files for all services that users
can execute them without any update. Our services are open-
sourced, utilize open-source libraries, and their configurations
are described via YAML files or as environmental parameters.
More details about the installation and configuration of the
project can be found in its documentation site1.
1 http://bit.ly/3sXTXjU

978-1-6654-9792-3/22/$31.00 ©2022 IEEE

Name URL Pluggable
Schedulers

Declarative
Queries

IoT Mon-
itoring

Fog-oriented
Optimizations

Performance
Metrics Trade-offs

Apache Kafka Streams kafka.apache.org ✓
Apache Storm/Flink/Spark {storm,flink,spark}.apache.org ✓(Storm)

NebulaStream [1] nebula.stream ✓ ✓
StreamSight [2] bit.ly/3lWFpwR ✓ ✓

RAINBOW Analytics Stack bit.ly/3sXTXjU ✓ ✓ ✓ ✓ ✓

TABLE I: Comparison among Streaming Analytics Engines

Coordination Layer

Analytics Enabler

Parser Optimizer

API

Execution
Plan

(DAG)

Abstract
Syntax Trees

Optimized ASTs

Compiler

Analytics Executor

RAINBOW Schedulers Repository

Analytics SchedulerAnalytics SchedulerAnalytics Scheduler

 Execution Layer

 Fog Node Fog Node Fog Node

Monitoring Agent

Analytics Worker

Storage Fabric

Analytics
Tasks

Sensors & Measurements

Storage Agent

Nodes Metadata

Energy Profile

Processing Capabilities

Network Connectivity

Analytics
Results

 COMPUTE
 AVG(energy_consumption, 10 MINUTES)
 EVERY 5 SECONDS

Fig. 1: RAINBOW Analytics Stack Overview

B. System Overview
Figure 1 depicts a high-level overview of the RAINBOW

Analytics Stack. Starting from the Fog Nodes, the Monitoring
Agents retrieve the monitoring data, including performance
utilization metrics and IoT measurements, and disseminate
them to the co-located Storage Agents, and, consequently, to
the RAINBOW Storage Fabric. Specifically, Storage Fabric
represents a logical component that abstracts and unifies the
inter-connected Storage Agents by providing a decentralized
API for access to monitoring data. To realize it, we utilize
Apache Ignite2, which is an open-source in-memory database.
We created a lightweight wrapper on top of it and materialize
state-of-the-art data sharing and replication algorithms [3]. It
is important to mention that in a real deployment, each Stor-
age Agent is capable of providing data locality information.
Hence, monitoring data are immediately available without data
needing to be moved to a central location. The last RAINBOW
service that exists on a Fog Node is the Analytic Worker.

Furthermore, Analytic Executor creates and orchestrates a
distributed processing layer that is composed by the Analytics
Workers. When an artifact of streaming queries reaches the
Analytic Executor, it coordinates the job deployment and
facilitates the provisioning of the execution environment on the
Analytic Workers. Since the Analytics Workers co-exist with
Storage Agents, they are able to retrieve metrics directly from
2 http://ignite.apache.org

the local Storage Agent. RAINBOW’s distributed processing
module is built upon the Apache Storm3, aiming not to
implement yet another distributed data processing engine but
rather to design and deploy novel scheduling algorithms that
are decoupled from the underlying engine and acknowledge
the unique settings found in the majority of Fog environ-
ments. With a provisioned execution environment in hand, the
Analytic Executor invokes the respective Analytic Scheduler
from the RAINBOW Schedulers Repository, which will provide
near-to-optimal efficiency for analytic queries based on the
user-desired optimization polices [4]. Currently, RAINBOW
provides (i) a baseline scheduler that utilizes a round-robin
task placement algorithm; (ii) a scheduler that takes into
account the energy consumption of the underlying nodes and
the processing performance; and (iii) a data quality-aware
scheduler, which provides increased processing performance
by sacrificing a portion of data quality [4].

Through the RAINBOW Dashboard, users are able to re-
trieve raw metrics from Storage Fabric or submit a set of IoT
streaming declarative queries. For the latter, we utilize and
extend the query language of the StreamSight Framework [2],
which provides high-level declarative abstractions. The query
model eases the definition of streaming analytic queries, whilst
automatically minimizing the re-computations of the analytic
tasks and unnecessary data transfer. Specifically, once a query
is given by the user to the RAINBOW Analytics Enabler, the
Parser will parse the query and translate it into an Abstract
Syntax Tree (AST) representation. An AST expresses the lan-
guage’s grammar rules, and the final level of the tree contains
the tokens and symbols of the query model. Through the
validation of the ASTs, the Parser guarantees the correctness
of the submitted queries. Then, the Optimizer will attempt to
optimize the AST so a “better” logical execution plan can be
derived. “Better” means that the query is optimized for Fog
environments by extracting correlations among queries of the
same job, pruning unnecessary computations and minimizing
data shuffling to reduce communication latency. In turn, AST
can be annotated with different scheduling policies. Then, the
Compiler takes as input the optimized plans and generates
the final executable artifact by recursively traversing them and
“translating” each operator to the underlying engine code.

Then, the executable artifact is shipped to the Analytic
Executor. With information about resource availability and
storage metadata, and the RAINBOW-enabled Analytic Sched-
uler, the Analytic Executor executes the job at runtime, updates
the job scheduling by following the invoked scheduler, and
stores the results back to Storage Fabric. Finally, the dashboard
retrieves the results from Storage Fabric and displays them.
3 http://storm.apache.org

COMPUTE composite_expression

EVERY time_interval

WHEN filter_expression

WITH optimizations

insight_name =

[
[
[

]
]

]

Fig. 2: RAINBOW Query Modeling

C. Query Modeling

RAINBOW query model allows users to create insights,
denoted as high-level queries composed from raw monitoring
metric streams. In a nutshell, an insight is a new data stream
that results from one (or more) processed stream(s). Query
model operators introduce aggregations, compositions, and
transformations on top of multiple metric streams. Figure 2
depicts the basic structure of an insight. The simplest insight
may include only the insight name followed by a COMPUTE
statement. The COMPUTE statement requires a composite
expression (e.g., an aggregation function on a stream). Further-
more, the model provides three optional primitives, namely,
(i) WHEN primitive, that filters a stream by applying specific
offers; (ii) EVERY primitive, that alternates a purely streaming
execution to a (micro-)batch query evaluation; and (iii) WITH
statement, in which users define optimizations provided by the
RAINBOW stack, like sampling, prioritizing of the results, etc.

COMPUTE
AVG(vehicle_delay,10 MINUTES) BY city_segment

EVERY 5 SECONDS
WITH SCHEDULER=<scheduler_name>

Insight 1: Representative RAINBOW Query
For instance, Insight 1 illustrates a representative example

of a query, which computes the average vehicle delay per city
segment for a 10-minute sliding window with new datapoints
considered every 5 seconds, whilst being optimized by a
specific scheduler. The selection of tailored optimization based
on the scenario could be extremely beneficial for the user in
Fog Computing analytics. Specifically, one may need different
optimization strategies even between queries that are submitted
together. As we described earlier, the RAINBOW processing
layer offers various scheduling algorithms. To this end, for
the selected algorithm definition, RAINBOW’s query model
offers the SCHEDULER primitive. The SCHEDULER could be
selected deliberately for every insight to dictate at low-level
the operator’s placement on Fog nodes.

III. DEMONSTRATION

We will demonstrate the usability of RAINBOW Analytics
Stack by showing insights from a real-world IoT application.
Application: Let us suppose that a public transportation
operator develops an IoT application that analyzes on-time
streaming data from its fleet. Towards that, the operator would
like to deploy diverse queries, evaluate the generated results,
and configure the system’s performance. Vehicles continuously
report their locations and other attributes (i.e., environment
conditions) to perform location-based or overall summarized
analytic tasks (i.e., vehicle delay reporting).
Deployment & Results: We will use workload generators
to reproduce the dataset and we will submit a set of repre-
sentative and interesting queries. During the demonstration,

Scheduler Optimization Policy

Po
w

er
 C

on
su

m
pt

io
n

D
ev

ia
tio

n
(%

)

La
te

nc
y

D
ev

ia
tio

n
(m

s)

Baseline Baseline

Fig. 3: Energy and Latency of two RAINBOW Schedulers in
Comparison to the Baseline Apache Storm Scheduler
the audience will have the opportunity to be familiarized
with the RAINBOW configurations and query language, in-
vestigate the query editor and system’s dashboard, and see
the performance and energy consumption differences among
RAINBOW’s placement strategies. For instance, Figure 3
illustrates the performance and energy consumption difference
of the RAINBOW Analytics Stack deployment on a hetero-
geneous micro cluster (four RPi v4 with 4cores@1.4Ghz/4Gb
and a commodity service with 12cores@2.4Ghz/12Gb). The
baseline is the default round-robin scheduling approach of
Apache Storm engine, while the resource and energy strategies
introduce the resource-aware and energy-aware RAINBOW
schedulers, respectively. Briefly, we can identify that with
resource-aware scheduler we achieved 24ms reduction during
the execution but with 12% more energy consumption, while
the energy-aware scheduler had 18% less energy consumption
by sacrificing about 20ms of latency.
Testbed & Reproducibility: To create our testbed, we utilize
a fog computing emulator [5]. It gives us the ability to rapidly
deploy our stack on a laptop or on a cloud cluster, capture
metrics, and apply energy consumption models. For the sake
of the presentation, we will execute the emulation on a laptop
to avoid the need of extra hardware. Nonetheless, attendees
are encouraged to try the demo offline on both emulated and
real devices (i.e., Raspberry Pi’s). All configurations from both
emulator and system will be publicly available1.
Acknowledgement. This work is partially supported by the EU Commission
through RAINBOW 871403 (ICT-15-2019-2020) project, and from RAIS
(Real-time analytics for the Internet of Sports), Marie Skłodowska-Curie ITN,
under grant agreement No 813162.

REFERENCES

[1] S. Zeuch, E. T. Zacharatou, S. Zhang, X. Chatziliadis, A. Chaudhary,
B. Del Monte, D. Giouroukis, P. M. Grulich, A. Ziehn, and V. Mark,
“Nebulastream: Complex analytics beyond the cloud,” VLIoT, 2020.

[2] Z. Georgiou, M. Symeonides, D. Trihinas, G. Pallis, and M. Dikaiakos,
“StreamSight: A Query-Driven Framework for Streaming Analytics in
Edge Computing,” in Proceedings of the 11th IEEE/ACM UCC, 2018.

[3] T. Toliopoulos, A.-V. Michailidou, and A. Gounaris, “Data placement in
dynamic fog ecosystems,” in 38th IEEE ICDE Workshops, 2022.

[4] A.-V. Michailidou, A. Gounaris, M. Symeonides, and D. Trihinas, “Equal-
ity: Quality-aware intensive analytics on the edge,” Inf. Syst., 2022.

[5] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D. Dika-
iakos, “Fogify: A fog computing emulation framework,” in IEEE/ACM
SEC2020, 2020.

