

Tracker: A Universal Location Management System for Mobile Agents*

George Samaras, Constantinos Spyrou, Evaggelia Pitoura+, Marios Dikaiakos

Department of Computer Science, University of Cyprus
CY-1678 Nicosia, Cyprus, <cssamara@cs.ucy.ac.cy>

+ Department of Computer Science, University of Ioannina

GR 45110, Ioannina, Greece, <pitoura@cs.uoi.gr>

ABSTRACT
This paper presents TRAcKER,*a distributed “location
management” middleware which has the ability to
manage the location of mobile agents that travel
independently the Internet in search of useful
information. A major goal for this middleware is to be
flexible and effective, to respond to the demands posed
by the environment it aims to assist: an environment
that deals with users that are accessing the Internet via
static or mobile units of limited resources (e.g.,
palmtops, handheld devices, WAP-phones) and utilizing
mobile agents that are moving “autonomously” and
asynchronously around the Internet with small, medium
and in many cases high moving frequency. The
mechanism we propose is modular, simple, of low
overhead and able to serve all the Java based mobile
agent platforms. In addition, is quite generic able to
dynamically incorporate various location mechanisms.

1. INTRODUCTION
Mobile agents provide many benefits [5,6,24] for the
development of new generation Internet systems, such
as great capabilities for distributed Internet system
programming (otherwise networking programming), in
which there is the need for different kinds of integrated
information, for example, telemedicine [20], monitoring
and notification and encapsulating artificial intelligence
techniques, security and robustness [7,10,17,21]. Also
the mobile agents paradigm assures satisfactory
performance for distributed access to Internet databases,
for distributed retrieving and filtering of information,
and for minimizing network workload
[7,8,10,12,13,17,21,22]. Finally, mobile agents are a
software technology that has been proved very effective
in supporting the asynchronous execution of user’s
requests, weak connectivity and disconnected
operations, the dynamic adaptation to the various
connection modalities regarding user connectivity, etc.
[7,10,11,13]. Today the technology of mobile agents
can resolve many problems that arise in the context of
mobile devices and wireless connectivity, such as
limited resources, small computational power,
communication interference and the high cost of the
wireless connection to the fixed network [9,24]. For
example, the agents during their journey can collect
useful information from different nodes of the network
while transferring at the same time the workload to
these nodes, which usually have large computational

* This work has been partially funded by Cyprus
Research Promotion Foundation.

power. In this way they significantly relief and aid the
user which might be using a device with small
computational power and limited resources.

The ability to locate mobile agents as they roam
autonomously on Internet is crucial for the wider
adoption of mobile-agent technologies in a variety of
applications [14,15]. Of particular importance is the
capability of interrogating a roaming agent to retrieve
information of interest, in an almost real-time frame.
Nevertheless, most existing Java-based mobile agent
platforms (i.e., Aglets [2], Concordia [3], Grasshopper
[4] and Voyager [1]) currently do not provide a
comprehensive, efficient or effective location
management system. The support of these platforms for
mobile-agent location ranges from limited to non-
existent.

In this paper we present TRAcKER, a distributed
“location and tracking management” middleware, which
has the ability to manage the current location of mobile
agents traveling on Internet. The TRAcKER mechanism
is flexible, effective, and meets the requirements that
arise in the context of Wide-area networks hosting large
numbers of autonomous mobile agents roaming with
various frequencies to support the access of users
connected through static and mobile devices, possibly
with limited resources (e.g., palmtops, handheld
devices, WAP-phones). The TRAcKER middleware is a
modular, simple, low-overhead system that can be
easily integrated with all Java-based mobile agent
platforms. Furthermore, it is designed so as to
accommodate different agent-location algorithms and
different topologies with minimal cost. In this paper we
present an implementation and evaluation of the
TRAcKER system, where the mobile-agent location
services were established upon two location-
management algorithms used for GSM systems [14].
Our experiments show that the specific hierarchical
schemes suggested in the wireless telephony, and
implemented by these two location algorithms, are
inefficient and ineffective.

The remaining of this paper is organized as follows:
Section 2 presents the location problems encounter
when mobile agents roam the Internet. Section 3
presents a study of the most popular mobile agents
platforms giving special emphasis on the way these
systems provide agent location management support. In
Section 4, we describe related work in mobile telephony
and link it to mobility of agents on Internet.Section 5
presents the TRAcKER location management
mechanism, its design and its features. Section 6
describes how the system TRAcKER can serve any

AgletProxy originalproxy =
getAgletContext().createAglet(getCodeBase(),
ClassName,args);

URL destination= new
URL("atp://cs126.cs.ucy.ac.cy:434");
AgletProxy originalNewproxy =
originalproxy.dispatch(destination);
Case 1 – Calling the Agent through the “original”
proxy
Message msg=new Message("test");
originalNewproxy.sendAsyncMessage(msg);
Case 2 – Calling the Agent through the “copy”
proxy
AgletID ID = originalproxy.getAgletID();
AgletProxy
copyproxy=getAgletContext().getAgletProxy(destinati
on,ID);
Message msg=new Message("test");
copyproxy.sendAsyncMessage(msg);

Java-based mobile agent or moving object platform. In
Section 7 experimental results demonstrating the
TRAcKER system as well as related insights are
presented. We conclude in Section 8.

2. MOBILE AGENT LOCATION MANAGEMENT
PROBLEM
To fulfill their assigned tasks, mobile agents move from
one node to another [5, 6, 24]. Often, mobility is ad-hoc;
that is, the mobile agents move autonomously and
asynchronously, without following a predefined route.
Thus, even the creator of an agent, needs to keep track
of the agent’s current location, in order to contact the
agent and get access to its data and resources.
Furthermore, other agents, called client agents, may
need to contact the agent. In this case information
retrieval is almost impossible, even if the agent follows
the predefined route. The location problem becomes
even more difficult when agents need to locate and
cooperate with agents in other execution environments.
Thus there is a need for a service with the ability to
locate any type of mobile agent at any time from
anywhere. Such a mechanism (i.e., TRAcKER) must be
generic, flexible, independent of the agent platform and
able to dynamically accommodate location algorithms
to support various moving and invocation patterns. The
following scenario demonstrates these issues (Figure 1):

Figure 1: A Specific Scenario of the Problem of

Locating Mobile Agents

1. The creator submits agent A to perform some task.
2. The agent moves to different machines and

environments.
3. Client C needs to communicate with the agent. The

client is unaware of the agent’s location therefore it
contacts TRAcKER.

4. TRAcKER knows the agent’s location and
communicates with it in order to inform the client.

5. The client communicates with the agent.

Without TRAcKER, the client would not know the
agent’s location, so contacting it would be impossible,
unless the agent returned back to the client or the
creator. The TRAcKER must be able to assist the
communication between the client and the moving agent
even if the agent has moved in between the client’s
request and the TRAcKER’s response and
independently of the speed of the movement. We focus

on the performance of the mechanisms in correlation
with the moving behavior of agents in the Internet. Our
goal is to develop a location architecture that would be
adaptable and accommodate a variety of location
algorithms and thus able to operate on both low and
high mobility, without consequences on its operation
and performance.

Two things are mainly needed to effectively attack
such a problem:(a) to study and evaluate the current
location technology supported by the exiting mobile
agent platforms, and (b) to understand the specific
requirements and peculiarities in having mobile agents
or moving objects roam around the internet.

3. CURRENT STATE OF THE ART: LOCATION
MANAGEMENT BY JAVA-BASED MOBILE
AGENT PLATFORMS
In our work, we examine the most popular mobile
agents platforms (i.e., Aglets [2], Concordia [3],
Grasshopper [4] and Voyager [1]) giving special
emphasis on the way these systems provide agent
location management support. The advantages and
disadvantages of the current methodologies are
identified and studied. The positive features are
effectively adopted while the negative ones are in some
sense eliminated. Great attention is given to the
performance behavior of the mechanism in correlation
with the moving frequencies of mobile objects expected
on Internet.

IBM’s Aglets. In the Aglets platform [2], for a
client system to communicate with an agent, it needs to
know the exact location (IP address) currently hosting
the agent, along with the agent’s identity:
Communication between two aglets is conducted via the
proxy abstraction. The creator of an agent maintains in
its possession an original proxy of that agent. Any
request addressing that agent and made through its
original proxy can be answered normally only if the
agent resides locally (Figure 2).

Figure 2: Creator’s communication pseudo code
example (Aglets).

DB

Data

Data

Useful Data

Agent A

TRAcKER

1

2

4
5

DB

DB
Client C

Creator

3

If the agent is dispatched explicitly by the client system
to a particular location (Figure 3), the dispatcher client
can store an original proxy for the new location
(originalNewproxy in Figure 3), and through this it can
still send requests to the agent at its remote location.
Similarly, a client that knows the agent’s name and new
location, can request a remote proxy for that agent
(copyproxy in Case 2 of Figure 3) and use it to
communicate with the remotely located agent.

Mitsubishi’s Concordia. Inter-agent
communication in Concordia [3] is implemented via
events. For an agent to be able to raise and listen to
events, it has to register with an Event Manager.
Subsequently, the sender agent connects with the event
manager and posts an event with its request. As soon as
the event manager and receives a particular event, it
notifies all agents, which have registered an interest on
that specific event (see Figure 3). Event if an agent has
moved, it will still be able to receive requests from the
event manager. An agent can register with many event
managers. However, in order for one agent to reach
another agent, it has to connect with an event manager –
in which the recipient agent has been registered to, i.e.,
it has to know the event manager location.

Figure 3: Creator’s communication pseudo code
example (Concordia).

Therefore, for a client system to communicate with a
roaming Concordia agent, it has to know the exact
location of an event manager with which the roaming
agent is registered, and the types of events the agent is
listening for.

Figure 4: Creator’s communication pseudo code

example (Grasshopper).

Figure 5: Client’s communication pseudo code example

(Grasshopper).

IKV++’s Grasshopper. Grasshopper [4] supports
communication with agents in exactly the same manner
as Aglets technology (Figures 4 and 5). Therefore,
under Grasshopper we still need to know the exact
location and the identity of a roaming agent, in order to
communicate with it.

ObjectSpace’s Voyager. In Voyager [1], there is
also the notion of a proxy. Only the creator of the agent
owns the original proxy. Any request to the agent, if
made through the original proxy, will reach the agent
regardless of the agent’s location (Figure 6). The
difference with Aglets lies in the way the proxy operates
in Voyager.

Figure 6: Creator’s communication pseudo code
example (Voyager).

Any client that wants to send a request to the agent must
look up the agent in the name service of the node in
which the agent has been registered to (Figure 7) and
which he must “somehow” know of [27]. An agent can
register to many name services during its trip. The name
service gives back to the client the copy proxy through
which the client can send its request. The request will
reach the agent no matter of its location. The use of a
name service creates a centralized location management
mechanism. According to this mechanism, all the agents
are registered to a specific name service, which they
inform about their movements. This way a client can
communicate with an agent by knowing this central
node.

Figure 7: Client’s communication pseudo code example

(Voyager).

The problem with Voyager is that the client must know
the exact centralized location to which the agent has
been registered and its name. Furthermore, being
centralized, it is quite inappropriate for distributed
systems, not only for reliability reasons but also in terms
of performance. Chart 1 shows the degradation on
performance when multiple users perform intensive
querying.

Chart 1: Performance Degradation of Voyager’s

Location Management Mechanism

TestAgent originalproxy = new TestAgent(arguments);
Itinerary itinerary = new Itinerary();
itinerary.addDestination(new
Destination("rmi://agentDestination/ AgentReceiver",
"method"));
originalproxy.launch();
EventManagerConnection eventMC = new
EventManagerConnection();
eventMC.makeConnection(“agentDestination”,false);
EventPost eventQueue = (EventPost) new
EventQueueImpl(this);
eventMC.registerAll(eventQueue);
eventMC.postEvent(new EventRequest(arguments));

ServiceInfo info = this.createService(classname,
codebase, place, arguments);
TestAgentP originalproxy=new
TestAgentP(info.getIdentifier(). toString());
originalproxy.move(destination);
TestAgentP copyproxy = new TestAgentP
(info.getIdentifier(). toString(), destination);
copyproxy.callMethod(arguments);

TestAgentP copyproxy=new
TestAgentP(info.getIdentifier().toString(), destination);
copyproxy.callMethod(arguments);

0,071

0,137

0,235

0

0,05

0,1

0,15

0,2

0,25

Se
co

nd
s

Voyager Location Approach

1 User
4 Users
8 Users

ItestAgent originalproxy = (ITestAgent)
Factory.create(classname,new Object[]{});
originalproxy.callAgent();

ITestAgent copyproxy =
(ITestAgent)Namespace.lookup("//cs163:8000
/Agent");
copyproxy.callAgent();

3.1 Comparisons and Discussion
 Table 1 presents an overview of the four agent
platforms regarding agent location management.

MA Platform Communication with an
Agent

Aglets [2] Agent’s Location and Identity

Concordia [3]

Event Manager’s Location and
event’s name in which the agent
is registered, or central Event
Manager’s Location and event’s
name

Grasshopper [4] Agent’s Location and Identity

Voyager [1]

Agent’s Location and Name, or
Central node location (or a
specific name service) and
agent’s name.

Table 1: Technologies comparison for communication
with an agent.

From this table it is apparent that to communicate with a
roaming agent we need to know its location, or the
location of a centralized (or the specific) manager (e.g.,
name service) with which the agent registers its
position. Our goal is to relieve the user from the need to
know the location of an agent. Therefore our goal is to
provide an effective mechanism capable of managing
and supplying the location of agents at any time based
solely on their unique id.

4. RELATED WORK: GSM MOBILE PHONE
USERS VS MOBILE AGENTS
Mobility of entities exists in other environments, such
as in wireless telephony where mobile users move from
one cell to another, while maintaining connectivity [14].
Mobile-phone mobility is supported by a distributed
architecture deployed to locate mobile phones. As we
will see, these mechanisms are inadequate for mobile
agents because:
1. Mobile-phone users move relatively slowly. The

need to update location information arises only
during hand-offs. This occurs only when a user
crosses from one cell to another. The size of a cell
is usually quite large. The diameter ranges from
100’s meters to a few kilometers. In contrast, a
mobile agent changes locations very fast often
remaining at a site for a few milliseconds only.

2. The wireless telephony infrastructure is quite
structured when compared to Internet. A telephone
number can uniquely identify the home location of
a mobile phone. The mobile agent id or IP address
cannot provide the same information.

3. The size of the wireless infrastructure, measured in
terms of cell-numbers,is minimal if compared to the
enormous size of Internet , measured in terms of
Internet hosts.

These three parameters define the type of the
mechanisms/algorithm that can be used in each one of
these environments. Obviously what is effective and
efficient for GSM phone users is not for the mobile
agents environment. For example, the GSM HLR-VLR
[14] mechanism cannot be used as is by mobile agents

because of the second point mentioned above, while the
hierarchical approaches [14] proved to be very
ineffective and inefficient for mobile agents1.
Preliminary experimental results2 show miss hit up to
16% and very low performance for medium to high
moving frequencies, see Charts 2 and 3 (in the charts
moving frequency is express in sleep time). Similarly,
while a predefined hierarchical location management
structure is adequate in the GSM (for example)
environment it might not be appropriate for the Internet.
In effect, a distributed but more flexible and dynamic
infrastructure and more efficient location algorithms
might be more appropriate for the mobile agents
environment.

Chart 2: Access Time for randomly locating an Agent.

Chart 3: Miss Hits Ratio.

5 THE TRACKERS DISTRIBUTED
ARCHITECTURE
We consider mobile agents that roam around the
Internet being hosted by various agent execution
environments. This implies the need for a distributed
mechanism (see Figure 8) that is simple, flexible,
scalable, light, dynamically configured and agent-
platform independent.

5.1 The Middleware’s Architecture
In a nutshell, TRAcKER: (a) enhances mobile agents
with the ability to notify the system of their departure or
arrival (via a MASIF type of interface) and (b) provides
distributed components with the ability to manage and
keep track of agent locations. We call such agents and
component instances ZoneAgent and ZoneRegistry
class respectively.

Effectively, by extending the abstract class
ZoneAgent we create a TRAcKER enabled agent.
During creation this agent is registered to the

1 For the definition and implementation of the most
popular hierarchical location algorithms, i.e. “Pointers”
and “Exact Location” [14] see section 7
2 The testbed configuration is presented in Section 7

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

�
�
�
�
�
�
�

��
��
��
��
��
��
��

�
�
�
�
�
�
�

��
��
��
��
��
��
��

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������������

84%
87%

89%

94%

98%100%

75%

80%

85%

90%

95%

100%
H

its
 %

Pointers Algorithm

���� Sleep 100
Sleep 200
Sleep 500����
Sleep 1000����
Sleep 2000
Sleep 5000

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

�
�
�
�
�
�

��
��
��
��
��
��

�
�
�
�
�
�

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

��
��
��
��
��
��

�
�
�
�
�
�

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

������������
������������

�
�
��
��
�
�
�
�

��
��
�
�
��
��
�
�

��
��

��
��
�
�
��
��

��
��
��
��

��
��
�
�
��
��
�
�

��
��
�
�
�
�
��
��
�
�
�
�
�������������

��

0,913

0,681

0,444

0,171
0,043 0,016

0

0,2

0,4

0,6

0,8

1

Se
co

nd
s

Pointers Algorithm
���

Sleep 100
Sleep 200
Sleep 500���
Sleep 1000���
Sleep 2000
Sleep 5000

ZoneRegistry of the local node by using the appropriate
registration method (namely the
“registry.UpdateHierarchy(Agent’s Name, Agent’s
URL” see figure 10)”. Then the local ZoneRegistry
informs its parent about the presence of the new agent.
This is done in accordance with the current location
algorithm implemented in the TRAcKER system.

Figure 8: A Network forming a hierarchical TRAcKER-
enable Configuration.

During a move of a TRAcKER-enabled agent from one
node to another, the agent itself informs the destination-
node’s ZoneRegistry about the arrival. This is the
responsibility of the agent and the appropriate method is
part of the ZoneAgent’s definition (namely the method
postArrival(), see figure 10). In turn, the destination
node’s ZoneRegistry, informs its parent (root direction)
about the agent’s arrival in accordance with the current
location algorithm. As soon as this informing finishes
and again in accordance with the current algorithm all
the appropriate nodes are informed about the departure
of the agent in order to delete it. This is done, for
example, by using the ZoneAgent’s method
preDeparture(), see figure 10. Now from any node a
user can ask the local ZoneRegisrty for the location of
an agent by simply using the agent’s name.

All the ZoneRegistries are using the same Name
and port at all nodes that are part of the TRAcKER tree.
This makes it easy for a TRAcKER-enabled agent to
find and communicate (i.e., be registered or be de-
registered) with the ZoneRegistries. This info is passed
via an installation object.

System Components
TRAcKER consists of two agents, the ZoneRegistry
and the ZoneAgent. It also includes an installation
agent called the RegistryServer.

The RegistryServer agent is responsible for (a) the
activation of the agent execution environment if not
already activated. In our case the VoyagerServer since
Voyager is the implementation platform and (b) the
creation of the ZoneRegistry at the specific site. It also
supplies the ZoneRegistry with information about the
identity of its father and which port of the node the
Voyager Server will observe (i.e., watch for incoming
agents or calls). The initial distributed configuration of

the system can be decided by the user/administrator and
be expanded dynamically as new sites are added to it.

Figure 9: ZoneRegistry Abstract Class.

ZoneRegistry: The ZoneRegistry is responsible for the
location management of mobile agents residing locally
in the node or in one of its children-nodes. It is also
responsible to inform its ancestor (father) in the
hierarchy, about these elements (nodes) and of any
changes that happen to these elements that are caused
by the moves of the agents that reside locally or in any
of its descendant nodes. It is also responsible for serving
any request regarding an agent’s location. The
ZoneRegistry via the location mechanism implemented,
learns the location of a specific agent and informs the
user. The object oriented nature of this agent allows the
utilization of various location mechanism via
inheritance (see Figure 9 and section 7). By overriding,
for example, the “UpdateHierarchy” method, the
“RemoveAgent” method and the “LookUpAgent”
method we can create the various hierarchical location
management mechanisms. In our case study we first
implemented the “Pointers”-ZoneRegistry location
mechanism then via inheritance the other mechanisms
(see section 7).

ZoneAgent: The ZoneAgent is an abstract class (Figure
10), i.e., it cannot exist by itself as an object. It has to be
extended and adjusted to the user demands by using
object oriented programming. This agent provides the
operations related to location management. In particular,
it implements the registering and deregistering methods
from a node(/ZoneRegistry) to another due to
movement. These operations are enabled via the
“postArrival” and “preDeparture” methods. It is
important to mention that this task was previously the
responsibility of the user. Extending this agent and
overriding the methods “postArrival” and
“preDeparture” can materialize the various location
mechanisms. Any user agent that needs location
management must extend this abstract class.

public class ZoneRegistry
//(if needed extends the system class)
{
 //Father
 ZoneRegistry father
 //Information about agents
 Data
 //Constructor
 public ZoneRegistry(father URL)
 { FindFather(father URL) }
 public void FindFather(father URL)
 {father=findFather(father URL) }
 public void UpdateHierarchy
 (agent Name, location)
 { //Update my data }
 public void RemoveAgent(agent Name)
 { //Remove the agent from my data }
 public agent URL LookUpAgent(agent Name)
 { //Check my data and return agent’s URL}
 }

Zone Registry Zone Registry

Zone Registry Zone Registry Zone Registry

Keeps track of the local
mobile agents and other
agents according to the
location management
algorithm implemented. Zone Registry

Figure 10: ZoneAgent’s Abstract Definition.

5.2 Additional Features and Issues

Figure 11: TRAcKER’s Structure at Participating
Nodes.

5.2.1 Simple
It consists of only three java objects that are also mobile
agents. The objects have simple structure that can be
easily extended. In fact the only thing needed for an
application is instead of extending the system agent
(i.e., the abstract class provide by the agent platform) to
just extend the ZoneAgent provided by the TRAcKER
system. As long as the visiting site is TRACKER-
enabled then the agent can be found and interrogated at
any time and from anywhere and by anyone.

Making a node TRAcKER-enabled is quite simple
as well, see section 5.2.2 below. Figure 11 shows the
role of each object in a TRAcKER enabled node.

5.2.2 Scalable
In order for a node to participate in a location aware
configuration and benefit from its location management
the following steps are needed: (a) install the agent
execution environment (in our case is the Voyager
platform/server) and (b) install the ZoneRegistry. All
the ZoneRegistry needs, in order to be activated and to
be added to the Configuration/Hierarchy, is the location
of a node, which already participates in the Hierarchy -
so the ZoneRegistry can be its child, and the port of the
node, which to observe. The user on the other hand in
order to create an agent for a particular task – who’s

location will be managed by TRAcKER–he only has to
extend the ZoneAgent abstract class.

On the other hand, the effectiveness of the
TRacKER once a number of nodes are added mainly
depends on the specific location mechanism utilized by
the system.

5.2.3 Dynamic
The components of the TRAcKER system are not just
java objects but mobile agents as well. Assuming that
the agent execution environment is already installed at
the nodes of interest we just need to send the mobile
agent ZoneRegistry to these sites. In that manner, the
needed infrastructure is configured automatically.

5.2.4 Low Overhead
TRAcKER is quite light-weight. We evaluate whether
the overhead of TRAcKER degrades the capacity of the
system significantly. We measure the overhead as the
difference in the number of mobile agents a particular
configuration can host with and without the TRAcKER
system. Our experiments indicated that this overhead is
small. In particular, utilizing as the location mechanism
the “hierarchical exact location” algorithm, which is one
of the heaviest ones in terms of message exchange [23],
and having the agents move continuously and very often
(i.e., sleep time at a node 100 ms) the above overhead
measures to only 39 agents (358 agents with TRAcKER
vs. 397 without TRAcKER). While these results are
very encouraging more rigorous evaluation involving
different configurations, location algorithms and metrics
is required for tangible results.

5.2.5 Flexibility
Flexibility here is defined in terms of how easily
TRAcKER can be utilized with different location
mechanisms. The modular and object oriented nature of
the agents of the systems allows great degree of such
flexibility. In fact, to utilize a particular location
mechanism, we just need to extent the agents
ZonerRegistry and ZoneAgent appropriatelly. By
extending the ZoneAgent and overriding the methods
postArrival and preDeparture and by extending the
ZoneRegistry and overriding the “UpdateHierarchy”
method, the “RemoveAgent” method and the
“LookUpAgent” method we can materialize the various
hierarchical location management mechanisms. In [23]
we have used this system to materialized most
hierarchical location mechanisms very effectively. In
fact certain mechanisms due to their similarities where
extended from others already created. In [23] we used
this system to materialized most hierarchical location
mechanisms very effectively. In fact certain
mechanisms due to their similarities where extended
from others already created

A higher degree of flexibility can be achieved via
the notion of TaskHandlers [18,19] to replace the
current location mechanism with another on-line. Of
course this requires for the TRAcKER system to be
inactive for the update period. This will also make it
easier for us to have different location algorithms active
at the same time. Of course this requires the hosts to be
divided into regions, each with a tree-like organization

public abstract class ZoneAgent
{ //Agent’s name
 Name
 //Local ZoneRegistry
 ZoneRegistry registry
 //Local URL
 my URL

 public ZoneAgent(name)
 { Name = name
 //Register to the local ZoneRegistry
 registry.UpdateHierarchy(Name, my URL)
 }
 //After the arrival to the new Zone
 public void postArrival()
 { registry.UpdateHierarchy(Name, my URL) }
 //Before the Departure of the old Zone
 public void preDeparture()
 { registry.RemoveAgent(Name) }
}

ZoneRegistry

Location of Zone
Registries
belonging to
Sub-Tree (first
level)

Pool with Zone
Agents

Agent

effectively creating a “forest” of TRAcKER hierarchies.
Preliminary research has shown this to be quite feasible

6. THE GENERIC NATURE OF THE
MECHANISM
We have implemented and tested the TRAcKER system
over the Voyager platform (i.e., the various classes are
implemented as Voyager mobile agents). Irrespective to
that, its implementation is generic and able to support
all the java-based mobile agent platforms.

Indeed the TRAcKER mechanism is implemented
using the JAVA programming language and is thus
portable. The mechanism consists of two classes, the
ZoneRegistry and the ZoneAgent. These classes have
been deliberately implemented by using pure JAVA and
without any relation or dependency to the specifics of
any known Mobile Agents Platform, such as Aglets,
Concordia, Grasshopper or Voyager etc.

Figure 12: The TRAcKER System as a Middleware

Running on Top of JVM.

The only thing needed is for the platform to include a
local version of the ZoneAgent class and for any agent
that needs location management to be an extension of
this class/agent. However, there is a problem with the
dynamic installation of the ZoneRegistry. The problem
exists because we need this object/agent to run outside
of any agent execution environment (see Figure 12).
This can be solved as follows. The TRAcKERRegistry
can be encapsulated in a configuration agent (e.g., the
RegistryServer Agent) of the current platform and be
installed by the agent once the agent is delivered to the
targeted site. Note that the encapsulating agent could be
of any platform.

As a result the TRAcKER mechanism has the
ability to manage the location of any mobile agent
independent of its platform as long as these agents are
extensions of the local version of the ZoneAgent. As an
added feature of this approach is that the TRAcKER
mechanism runs using an individual JAVA thread, not
depending on the local mobile agent platform server(s),
therefore the various activities that are used for location
management, do not effect the platform’s operation.

It is worth noting, however, that while this
middleware allows the location of an agent even by an
agent of a different platform it does not offer agent-to-
agent communication.

6.1 MASIF Compliance
The TRAcKER system is almost (!) compliant with the
Mobile Agent System Interoperability Facility (MASIF,
also called MAF an acronym of the original proposal
Mobile Agent Facility) specification [26,28]. The
system currently follows a MAFFinder-like Interface,
however we expect its newer version to be fully MASIF
compliant.

The MAFFinder interface provides methods for
maintaining a dynamic name and location database of
agents, places and agent systems. The TRAcKER
system has been created for Mobile Agent Location
Management; as a result it provides these methods only
for agents. Contrary to MAFFinder, TRAcKER
provides not only the local interface but also flexible
protocols governing the cooperation among the various
ZoneRegistries (MAFFinders). In addition, TRAcKER
solves one other limitation of MASIF; via the notion of
ZoneAgent allows greater flexibility in implementing
location mechanisms especially those that required the
active involvement of the moving agents (e.g.,
mechanisms based on forwarding pointers [14, 15]).

7. IMPLEMENTATION AND PERFORMANCE
RESULTS
We have implemented various location mechanisms
[14] within TRAcKER. In this section, we describe the
experimental platform and present results for two of
these mechanisms, two hierarchical ones.
We present experimental results for these mechanisms
and make an analysis to demonstrate:
• The applicability and flexibility of the TRAcKER

middleware. For example, in this case study, we
first created and implemented one of the two
hierarchical mechanisms and then via inheritance
the other one. In fact, the ZoneAgent for both
hierarchical mechanisms is the same; only the
ZoneRegistry needs to be specialized

• Initial results on the performance of location
mechanisms for mobile agent architectures.

• That the GSM approaches are not appropriate for
the mobile agents environment.

The Location Mechanisms. In all mechanisms, each
node (that is, the ZoneRegistry at the node) maintains
information about the agents it currently hosts.
Depending on the location mechanism, this information
is maintained in additional nodes (ZoneRegistries).

We consider two hierarchical architectures: the
exact-location and the pointers mechanisms [14]. In
both of them, each internal (i.e., non-leaf) node N
contains information for the agents hosted at all nodes
in the subtree rooted at node N. In the exact-location
mechanism, each internal node maintains the exact
location of these agents, whereas in the pointers
mechanism, it maintains a pointer to its descendant node
(child) that has information about the location of the
agent.

7.1 Experimental Results
The testbed configuration consists of 10 Pentium III
866MHz workstations with 128 MB RAM running MS
Windows 2000. The hierarchy (which was created

VS=VOYAGER SERVER AS=AGLET SERVER
CS=CONCORDIA GS=GRASSHOPPER

Java Virtual Machine (JVM)

VS TRAcKER -
ZoneRegistry

Operating System

AS CS GS

 Agents

dynamically) is the same for all tests (like the tree in
Figure 8). For each test, we create 100 mobile agents on
various tree nodes (machines) that continuously move
from one node to another. Each agent remains on each
node for a predefined time interval called sleep time.
We varied this interval among the values 100, 200, 500,
1000 and 5000 milliseconds. We perform 100 search
(location look-up) requests for randomly selected agents
on randomly selected nodes. These search requests are
made one at a time, that is we make a search request,
receive an answer, verify the answer by communicating
with the agent and then continue with the next search
request.

For each of the location mechanisms we perform
two types of tests.

First Performance Test
Each time we take the “by first time successful search
time average” and the “agents finding success
percentage”

Chart 4: Response Time (First Test).

For the two mechanisms we have two figures. Chart

4 shows the average time of a successful search request
for a randomly selected agent. Chart 5 shows the
percentage of each run where the agent is located
successfully via the first search. That is, we call a miss
hit if the first attempt by TRAcKER to locate the agent
fails. Note that the system will always return an answer,
this answer is consider correct if the agent is indeed at
the returned location.

Chart 5: Hit Ratio (successful searches) (First Test).

As we can see from Chart 4, the exact location
mechanism is faster than the pointer location
mechanism, because less nodes are contacted to locate
an agent. For smaller “sleep times” (100, 200 and 500
milliseconds) the agents move more frequently, thus the
mechanisms consume more time in updating the
TRAcKER tree.

As we can see from Chart 5, the exact mechanism has
more hits than the pointer mechanism. For smaller
“sleep times” (100, 200 and 500 milliseconds) the
agents move more frequently, therefore it is obvious

that the mechanisms face greater risk in giving wrong
information regarding the agent’s location. The two-tier
with proxy has better hit ratios because it takes
advantages of the Voyager platform.

Second Performance Test
The difference of this performance measurement test
with the previous one is the following: instead of taking
the “by first time successful search time average”, we
make as many searches as needed to find the agent or
make at most10 unsuccessful searches (which ever
comes first). The same node makes the 10 (possibly)
unsuccessful searches. We take the average time for
these measurements. Chart 6 presents the average time.

Chart 6: Response Time (second test).

The difference from the first type of test (i.e., comparing
Charts 4 and 6) is that in Chart 6 we observe larger time
difference between the two hierarchical mechanisms.
This is due to the fact that the exact mechanism has
better hit ratio (e.g., for sleep time 100, the hit ration is
92% - see Chart 5) which means that it will make more
than one effort to find the agent, only for the 8% of the
measurements. The pointer mechanism has worse hit
ratio (e.g. for sleep time 100, the hit ration is 84% - see
Chart 5) which means that it will make more than one
effort to find the agent, for the 16% of the
measurements.

Discussion
From the experiments, we notice that for high sleep
times, namely 5 seconds and above most mechanisms
achieve 100% hit ratio. Obviously for environments
such as mobile telephony (e.g. GSM wireless networks),
where movement is infrequent due to the size of the
wireless cell [14] these location algorithms are quite
sufficient. However, for Internet-based environments
where very often applications require a large number of
relocations with sleeping times ranging from low to
high to very high (e.g., 200 milliseconds) hierarchical
algorithms are inadequate. New types of non-centralized
location algorithms are needed for this environment.

8. CONCLUSIONS
In this paper we have evaluated the most popular mobile
agents platforms (i.e., Aglets [2], Concordia [3],
Grasshopper [4] and Voyager [1]) giving special
emphasis on the way these systems provide agent
location management support. To remedy the identified
weaknesses we designed and implemented TRAcKER,
a distributed location management middleware for
mobile agents. The main characteristics of the
TRAcKER system are (a) simple; it consist of three java

0

0,2
0,4
0,6
0,8

1

Se
co

nd
s

Sleep
100

Sleep
200

Sleep
500

Sleep
1000

Sleep
2000

Sleep
5000

Pointers - Exact Algorithms
Pointers
Exact 0

0,2
0,4
0,6
0,8

1
1,2
1,4

Se
co

nd
s

Sleep
100

Sleep
200

Sleep
500

Sleep
1000

Sleep
2000

Sleep
5000

Pointers - Exact

Pointers
Exact

75%
80%
85%
90%
95%

100%

H
its

 %

Sleep
100

Sleep
200

Sleep
500

Sleep
1000

Sleep
2000

Sleep
5000

Pointers - Exact
Pointers
Exact

objects, (b) flexible; any hierarchical or chain location
mechanism can be easily created, and this was
demonstrated by the materialization of two hierarchical
location management algorithms (c) scalable; any node
can participate in the system by just incorporating just
one of these objects, which could be send to it
dynamically and in real time, (d) light: the overhead,
measure in the number of active agents, of utilizing the
architecture versus the opposite is insignificant, and (e)
dynamically configured in that the system can be
dynamically configures and set up by just sending these
objects which are mobile agents at the various sites. In
fact our experimental test bed we set up in that manner.

In addition, in demonstrating the various features of
the system we also showed the limitations of certain
GSM type of location schemes. In fact, the hierarchical
schemes used in the wireless telephony, and
implemented in our experiments, proved quite
inefficient and ineffective.

REFERENCES
[1] ObjectSpace Voyager [tm] Technical Overview. Web Site

<http://www.objectspace.com/voyager/
whitepapers/VoyagerTechOview.pdf>

 [2] Aglets Workbench, by IBM Japan Research Group. Web
site: <http:/aglets.trl.ibm.co.jp>

[3] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young and
B. Peet. Concordia: An Infrastructure for Collaborating
Mobile Agents. Lecture Notes in Computer Science, 1219,
1997. <http:// www.meitca.com/HSL/Projects/
Concordia/>.

[4] M. Breugst, I. Busse, S. Covaci and T. Magedanz.
Grasshopper A Mobile Agent Platform for IN Based
Service Environments. IEEE IN Workshop, Bordeaux,
France, May 10-13, 1998.

[5] J. E. White, Mobile Agents, General Magic White Paper,
www.genmagic.com/agents ,1996.

[6] Colin G. Harrison, David M. Chessm, Aaron
Kershenbaum. Mobile Agents: are they a good idea?
Research Report, IBM Research Division

[7] D.B. Lange, M. Oshima, Programming and Deploying
Java Mobile Agents with Aglets, Addison-Wesley, 1998.

[8] G. Samaras, M. Dikaiakos, C. Spyrou, A. Liberdos,
“Mobile Agent Platforms for Web-Databases: A
Qualitative and Quantitative Assessment”, The Joint
Symposium ASA/MA'99. First International Symposium
on Agent Systems and Applications (ASA'99). Third
International Symposium on Mobile Agents (MA'99), pp.
50-64, USA, 1999.

[9] George Samaras and Paraskevas Evripidou, Evangelia
Pitoura, “Mobile-Agents based Infrastructure for eWork
and eBussiness Applications”, The eBusiness and eWork
Conference, 2000, (to appear).

[10] E. Pitoura and G. Samaras, "Data Management for Mobile
Computing", Kluwer Academic Publishers, ISBN 0-7923-
8053-3, 1998.

[11] Constantinos Spyrou, George Samaras, Evangelia Pitoura,
Evripidou Paraskevas “Mobile Agents for Wireless
Computing: The Convergence of Wireless Computational
Models with Mobile-Agent Technologies”, Journal of
ACM/Baltzer Mobile Networking and Applications
(MONET), special issue on “Mobility in Databases &
Distributed Systems ", 2000. (to appear)

[12] Barron C. Housel, George Samaras, David B. Lindquist,
"WebExpress: A Client/Intercept Based System for
Optimizing Web Browsing in a Wireless Environment",
Journal of ACM/Baltzer Mobile Networking and

Applications (MONET), special issue on "Mobile
Networking on the Internet", 3(4): 419-431, December,
1998.

[13] Samaras, G., A. Pitsillides, "Client/Intercept: a
Computational Model for Wireless Environments", Proc.
4th International Conference on Telecommunications
(ICT'97), Melbourne, Australia, April 1997.

[14] E. Pitoura, and Samaras, G., “Locating Objects in Mobile
Computing”. IEEE Transactions on Knowledge and Data
Engineering Journal (TKDE) 2001.

[15] E. Pitoura and I. Fudos, “An Efficient Hierarchical Scheme
for Locating Highly Mobile Users”, in Proceedings of the
6th ACM International Conference on Information and
Knowledge Management, (CIKM98), November 1998. pp
218--225.

[16] Papastavrou S., G. Samaras, E. Pitoura, “Mobile Agents for
WWW Distributed Database Access”, IEEE Transactions
on Knowledge and Data Engineering (TKDE) 2000.

[17] Papastavrou S., G. Samaras, E. Pitoura, “Mobile Agents for
WWW Distributed Database Access”, Proc. 15th
International Data Engineering Conference, p228-237,
Sydney, Australia, March 1999.

[18] Evripidou P., Samaras G., Pitoura E., Christoforos P., “The
PacMan Metacomputer: Parallel Computing with Java
Mobile Agents”, Journal FGCS special issue on JAVA in
High Performance Computing, 2001. (to appear)

[19] Christoforos P., Samaras G., Pitoura E., Evripidou P.,
“Parallel Computing Using Java Mobile Agents”, 25th
Euromicro Conference, Workshop on Network Computing,
September 1999. Also technical report TR-99-7, University
of Cyprus, February 1999.

[20] Andreas Pitsillides, George Samaras, Marios Dikaiakos,
Eleni Christodoulou, “DITIS: Collaborative Virtual
Medical team for home healthcare of cancer patients”,
Conference on the Information Society and Telematics
Applications, Catania, Italy, 16-18 April 1999.

[21] M. Dikaiakos, D. Gunopoulos, “FIGI: The Architecture of
an Internet-based Financial Information Gathering
Infrastructure”. In Proceedings of the 1st International
Workshop on Advanced Issues of E-Commerce and Web-
based Information Systems. IEEE-Computer Society, pages
91-94, April 1999.

[22] Y. Villate, A. Illarramendi, and E. Pitoura, “Data Lockers:
Mobile-Agent Based Middleware for the Security and
Availability of Roaming Users Data”, In CoopIS Israel,
September 2000.

[23] Constantinos Spyrou. "Creation of a Mobile Agents
Location Management Mechanism", Master thesis
supervised by George Samaras, Computer Science
Department, University of Cyprus, June 2001.

[24] D. B. Lange and M. Oshima. “Seven Good Reasons for
Mobile Agents”. Communications of the ACM, 42(3):88-
91, March 199

[25] M. Dikaiakos, M. Kyriakou, G. Samaras, "Performance
Evaluation of Mobile-agent Middleware: A Hierarchical
Approach". In Proceedings of the 5th IEEE International
Conference on Mobile Agents, J.P. Picco (ed.), Lecture
Notes of Computer Science series, vol. 2240, pages 244-
259, Springer, Atlanta, USA, December 2001.

[26] Crystaliz, General Magic, GMD Fokus, and IBM.
“Mobile Agent System Interoperability Facility” (MASIF
– specification). Available through
ftp://ftp.omg.org/pub/docs/orbos/97-10-05.pdf,
November 1997.

[27] Object Space Inc, “VOYAGER ORB 3.2 Developer Guide”,
1997-1999.

[28] E. Di Pietro, A. La Corte, A. Puliafito, and O. Tomarchio.
“Extending the MASIF Location Service in the MAP Agent
System”. In IEEE Symposium on Computer
Communications (ISCC2000), Antibes (France), July 2000.

