
View from the Cloud
Editor: George Pallis • gpallis@cs.ucy.ac.cy

2 	 Published by the IEEE Computer Society	 1089-7801/15/$31.00 © 2015 IEEE� IEEE INTERNET COMPUTING

Enabling Interoperable
Cloud Application
Management through an
Open Source Ecosystem
Nicholas Loulloudes, Chrystalla Sofokleous, Demetris Trihinas,
Marios D. Dikaiakos, and George Pallis • University of Cyprus

Cloud computing enables on-demand provisioning of computing resources to

IT solutions following a utility-based approach. In traditional public utilities,

technology and standardization developments enable customers to seamlessly

migrate across utility providers without being required to make changes to

their home appliances. However, this is not the case with cloud computing,

the so-called “fifth utility.” Currently, cloud computing customers do not have

at their disposal user-friendly tools and mechanisms that can preserve applica-

tion deployments across different resource providers. Here, the authors pres-

ent current efforts to develop an open source Cloud Application Management

Framework (CAMF) based on the Eclipse Rich Client Platform. This framework

facilitates cloud application lifecycle management in a vendor-neutral way.

V endor neutrality (interoperability) has been
identified as one of the main challenges in
the cloud application management land-

scape,1 with application developers looking for
cloud application management frameworks that
provide user-transparent mechanisms to handle
application deployments across different provid-
ers with minimum effort.

While the five design phases of cloud applica-
tion development2 — namely functional decom-
position, workload consideration, data storage,
component refinement, as well as elasticity and
resilience support — provide best practices for
architecting scalable and interoperable cloud-
based solutions, current management tools don’t
facilitate similar practices when it comes to the
application management lifecycle.

Consider the case of an IT expert who fol-
lows these design phases to develop a three-tier
media streaming service (a Web server, application

server, and high-availability data store). Develop-
ment begins by implementing a desirable feature
set using an integrated development environment
(IDE) of preference. By considering performance
versus cost projections — given advertised resource
specifications and pricing schemes — the IT expert
registers with one of many available Infrastruc-
ture as a Service (IaaS) offerings and initiates an
application-specific contextualization workflow to
establish a solid runtime environment. The baseline
of such workflows is the initial capacity provision-
ing of virtual resources available (machine images,
flavor, network interfaces, persistent storage, and
so on) so as to best accommodate the requirements
of each component comprising the application.
Subsequent processes include, but are not limited
to, security policy enforcement, virtual resource
instantiation, and the transfer of related artifacts
(such as Java archives [JAR], Web archives [WAR],
scripts, and libraries) from the local machine to

Enabling Interoperable Cloud Application Management through anOpen Source Ecosystem

May/June 2015� 3

remote running instances, and con-
figuration and launching of the Web
application itself.

Although the aforementioned pro-
cedure is somewhat trivial, it entails
significant effort on behalf of the IT
expert, as it usually involves working
across heterogeneous software (IDE,
Web, shell) and operating system (Win-
dows, Linux, and Mac) environments.
Things become even more complex
in the case of multiple and some-
times repetitive deployments, usually
undertaken to achieve a more coher-
ent and functional decomposition or
to implement specific workload design
imperatives,2 for instance, when the
application logic has been distributed
among resources for improved scal-
ability or when various functional
components and their respective
parameters must be refined for better
workload handling. Inevitably, these
actions call for a large portion of the
deployment workflow to be repeated.
Complexity increases even further in
situations where key lifecycle opera-
tions necessitate the use of vendor-
specific mechanisms. For example, the
definition of metrics at various points
of the application-stack for purposes
of performance monitoring requires
familiarization with proprietary tools
and APIs. Furthermore, when appli-
cations offer elasticity and resilience
capabilities, developers should get well
acquainted with vendor-specific rules

and strategies that orchestrate scaling
actions. Despite the importance of such
governing policies towards efficient
workload balancing, they come with
the price of a steep learning curve.

All in all, application deployment
and management in IaaS Clouds can
be a complex venture, typically rely-
ing on vendor-specific, proprietary
software. Existing IaaS tools (see the
related sidebar) don’t treat interop-
erability as a first-class citizen and
have yet to provide the right mech-
anisms for describing what must be
conserved across deployments in
different environments. Hence, the
migration of applications to the cloud
or even in-between existing IaaS pro-
viders requires substantial (re)con-
textualization effort and time, often
leading to vendor lock-in. In the
quest of seeking the infrastructure-
deployment profile that best suits
their requirements, users will benefit
from application management tools
that incorporate the “describe once,
deploy anywhere” paradigm, thus
enabling them to overcome vendor
lock-in and test-drive their applica-
tions on different IaaS providers.

Enter the Cloud Application
Management Framework
The Cloud Application Management
Framework (CAMF; www.eclipse.org/
camf) is a newly established open
source technology project under

the Eclipse Foundation. Originating
from research activities within the
European Union Seventh Framework
Programme (EU FP7)-funded project
“CELAR,”3 it aims to provide exten-
sible graphical tools over the Eclipse
Rich Client Platform (RCP) that facili-
tate lifecycle management operations
for Cloud applications, in a vendor-
neutral manner. To this end, CAMF
focuses on three core operations:

1.	Application description — interop-
erable representations of cloud
applications’ structure (blueprints)
with high-level depiction of ser-
vice components, management
operations, and interrelationships.

2.	Application deployment — prepa-
ration and submission of descrip-
tions to any cloud infrastructure of
preference, while enabling seam-
less and repeatable contextualiza-
tion workflows.

3.	Application monitoring — real-
time data from the underlying
platform and the application itself,
for fine-grained operational and
performance monitoring.

The Eclipse platform provides a
strong foundation for CAMF primarily
because it retains a dominant position
in the worldwide IDE market (http://
goo.gl/mOG2u3). Its OSGi plug-in-
based software architecture enables
tight integration of language-specific

Cloud Application Management Frameworks

Here are examples of current cloud application manage-
ment frameworks.

AWS CloudFormation (http://amzn.to/1t5rPbU): This
enables provisioning of Amazon Elastic Compute Cloud
(EC2) deployments by writing JSON template files. Leverag-
ing on Amazon’s Auto Scaling service allows the specification
of policies for autoscaling the number of EC2 instances in a
deployment.

Oracle’s Virtual Assembly Builder (OVAB; http://goo.gl/
Eetq0V): A GUI-based tool that simplifies the provisioning of
multi-tier applications by capturing individual components into
self-contained VM appliances. OVAB can instantiate appliances

only on Oracle’s Exalogic Elastic Cloud and supports horizontal
resource scaling.

vCloud Application Director (http://goo.gl/j7LyU7): A solution
offered through a Web interface for simplifying the process of
designing, customizing, and deploying applications on VMware-
compliant and EC2 infrastructures only.

ServiceMesh’s Agility Platform (www.servicemesh.com):
Enterprise-grade solution that facilitates the automatic deploy-
ment of applications on many cloud vendors, and the dynamic
lifecycle management through autoscaling rules. It’s a feature-
rich solution, however, with closed-source connectors to the
supported IaaS, and it’s subscription based.

View from the Cloud

4	 www.computer.org/internet/� IEEE INTERNET COMPUTING

IDEs with a plethora of supporting
suits providing code testing, analysis
and profiling, code management, and
so on. Through CAMF, an IT expert
can empower her day-to-day develop-
ment processes with cloud application
management operations. Eclipse will
not only function as a Web develop-
ment environment, but also facilitate
the preparation, migration, and moni-
toring of her applications to the cloud.
Furthermore, build-in collaboration
support can assist when participating
in large development teams wherein
group members can effortlessly share
application descriptions, deployment
information, artifacts, or even com-
plete cloud projects with just a few
clicks. Notably, all these activities can
take place within a unified and intui-
tive graphical workspace.

Portability Qualities
To hide any inherent complexity and
support cloud portability for any of
the three management operations,
CAMF relies on abstract models for
interacting with cloud resources, as
well as various open source specifica-
tions and toolkits.

IaaS Cloud Abstractions
Building on top of facilities pro-
vided by the Apache jclouds toolkit
(http://jclouds.apache.org), the cloud
resource model lays the groundwork
towards portability by establishing a
common way of interfacing with dif-
ferent cloud vendors. In particular,
it defines a common set of abstrac-
tions for virtualized resources (server
images, network, security, monitor
probes, and elasticity policies and
actions) and artifacts (executables,
libraries, and configurations) that are
key to any application deployment,
irrespective of the underlying cloud
environment. In addition, it defines
a common set of actions on these
abstractions (authentication, resource
listing, monitor metric listing, con-
figuration, and deployment) that are
necessary to complete a management

operation. This layer of abstraction
is responsible for providing basic
interfaces and classes that may be
extended by IaaS-specific connec-
tors, enabling CAMF to potentially
satisfy application transition in any
cloud vendor. Currently, two exem-
plary connector implementations
are available, one for AWS EC2 and
one for OpenStack-compliant cloud
infrastructures, with plans to support
many other IaaS.

Interoperable Application
Descriptions
CAMF adopts the Organization for the
Advancement of Structured Informa-
tion Standards (OASIS) Topology and
Orchestration Specification for Cloud
Applications (TOSCA)4 specification
for blueprinting and packaging cloud
applications in a standardized man-
ner. TOSCA provides a vendor-neutral
language for describing the topology
of cloud applications, along with
their management operations. TOSCA
adopts a graph-based topology rep-
resentation, which includes hardware
(virtual) and software components
involved and their interrelationships.
Components implemented by means
of nodes signify executing entities
in a deployment with semantics such
as requirements against the hosting
environment, capabilities, and poli-
cies that govern execution aspects
like resource security or elasticity.
In the context of the media service
scenario, a developer can choose to
represent the application server com-
ponent with an application node that
requires from its hosting environment
a virtual Ubuntu Linux image with 2
CPUs and 4 Gbytes of RAM, including
an installation of the latest Apache
Tomcat server. The application server
node also requires the presence of a
data store connection and is capable
of scaling to a number of instances
according to monitored performance
metrics such as average CPU load
and number of incoming network
connections.

Automatic and Streamlined
Application Configuration
TOSCA provides the necessary gram-
mar to describe management aspects
of an application by means of life-
cycle operations or by more complex
management plans. For each node, we
explicitly can define its lifecycle oper-
ations (for example, deploy, configure,
or start an instance of the correspond-
ing node type). Currently, CAMF
supports lifecycle operations and par-
ticularly node configuration through
native shell scripts. In the near future,
we’ll incorporate new tools in the
framework that allow developers to
import third party, or compile their
own, open source Chef cookbooks that
automate and streamline application
configuration processes.

Vendor-Neutral
Elasticity Specification
Granted that resource autoscaling is
widely regarded as one of the key
ingredients of future Web applica-
tions, CAMF supports the Simple-
Yet-Beautiful Language (SYBL),5 an
open source, directive-based, elastic-
ity requirements specification. SYBL
enables developers to define fine-
grained scaling policies and corre-
sponding enforcement actions, by
leveraging monitoring metrics placed
at different levels of the applica-
tion stack. Metrics can be obtained
either from native IaaS monitoring
systems or from custom metric col-
lectors (probes) provided by the user
during deployment. SYBL elasticity
policies are mapped to TOSCA node
policies and provide two variances:
Constrains and Strategies. The former
express the constraints of an applica-
tion related to cost, performance, and
other quality metrics, and allows the
underlying infrastructure to decide
the appropriate scaling actions to be
taken, if such intelligence is available.
The latter variance lets developers
take full control of elasticity manage-
ment by specifying explicit scaling
actions.

Enabling Interoperable Cloud Application Management through anOpen Source Ecosystem

May/June 2015� 5

Unified and Intuitive
Graphical Environment
CAMF conforms to the Eclipse user
interface and workspace guidelines.
Thus, it organizes all files related to
a cloud application in a structured
hierarchy that leverages the plat-
form-independent Eclipse file system
(see Figure 1, left). The cloud project
concept implements this hierarchy
and acts as a placeholder for a par-
ticular application and its dependen-
cies. Each project has shared access to
user-added IaaS profiles that contain
important information (communica-
tion endpoints, credentials, and per-
missions) for interfacing, querying,
and utilizing any offered resources.
Cloud projects provide containers for
the following.

•	 Application descriptions: these
hold topology blueprints defined

using TOSCA. Each blueprint can
be unique by specifying a differ-
ent structure and management
operations for the application at
hand. However, at the same time,
each blueprint is generic in that it
doesn’t contain any IaaS-specific
information. In this basic form,
application descriptions are por-
table templates, which upon IaaS
selection can be enriched with
particular metadata that materi-
alize a component or operation(s)
for the target IaaS.

•	 Application deployments: these
hold IaaS-flavored blueprints
along with important operational
records (past and current) regard-
ing different deployments. Among
other things, these can include date/
time, the target deployment IaaS,
version of the application descrip-
tion, operational costs, and so on.

•	 Artifacts: these hold concrete soft-
ware implementations required for
the successful deployment and
correct operation of the applica-
tion. Local artifacts include but
aren’t limited to: executables and/
or third party libraries, custom vir-
tual machine images, Chef cook-
books, OS-specific configuration
scripts, and so on. The cloud proj-
ect structure allows for artifacts to
be referenced by multiple descrip-
tions, thus avoiding unwanted
duplication.

•	 Monitoring: this holds metric col-
lectors prepared by the devel-
oper. Currently, CAMF is fully
integrated with JCatascopia,6 an
automated, multilayer interoper-
able monitoring system for elas-
tic cloud environments. Besides
the standard probe suite avail-
able in JCatascopia, CAMF allows

Figure 1. The Cloud Application Management Framework’s (CAMF’s) graphical environment and a three-tier media
streaming service description in the center (a Web server, application server, and high-availability data store). On the left is
a structured hierarchy that leverages the platform-independent Eclipse file system. The resource view/palette on the right
acts as a front end to an internal information system (IS) and provides a visual representation of all remote resources.

View from the Cloud

6	 www.computer.org/internet/� IEEE INTERNET COMPUTING

application developers to define
and implement custom metric col-
lectors that adhere to JCatasco-
pia’s modular architecture. These
probes can be placed anywhere
on the application stack, rang-
ing from the virtualization layer
upwards to the application itself,
to obtain meaningful metrics that
report the runtime health and
application performance.

The resource view/palette (see Fig-
ure 1, right) acts as a front end to an
internal information system (IS) and
provides a visual representation of
all remote resources (virtual images,
networks, storage, key pairs, and so
on), available by one or more IaaS.
Similar to the cloud project concept,
the IS acts as temporary placeholder
for storing resource metadata or
application artifacts available on the
infrastructure side. To do so, the IS
relies on the IaaS-specific connectors

discussed earlier to fetch from
involved IaaS “marketplaces” those
metadata that are essential to appli-
cation deployment processes. The
IS indexes resource metadata such
as name, type, description, or rel-
evant tags published by the provid-
ers. Currently, metadata indices are
kept updated through periodic refresh
queries; however, we aim to introduce
intelligence mechanisms that regu-
late automatic updates in the near
future. Update frequency will depend
on a number of parameters, includ-
ing the metadata change rate on the
provider side, or which metadata the
user requests more often. The palette
structures information under distinct
categories and allows fast lookup
through standard searching and fil-
tering mechanisms of the metadata
indices.

Local and remote information
culminate in the application modeling
tool (see Figure 1, center), which facil-

itates the compilation of large and
complex TOSCA-based application
descriptions simply by following
through a user’s graphical input. This
GUI-based, drag-and-drop tool elimi-
nates the cumbersome and error-prone
task of compiling large TOSCA docu-
ments manually. It generates diagrams
by associating all TOSCA elements with
pictorial objects (available through the
palette) that are consequently used to
model an application schematically. All
graphical interactions with available
pictorial objects (add, move, connect,
rename, delete, and so on) are trans-
lated on the fly into the TOSCA XML
form by considering the semantics of
each underlying utilized element.

Apart from the default seman-
tics that each palette element has,
a properties view can provide addi-
tional information. Here users can
specify image flavors, the minimum/
maximum number of instances and
elasticity policies for each compo-
nent separately through a collection
of dropdown and tabular input fields.
Importantly, the GUI hides compila-
tion complexities from the user and
minimizes possible errors that can
be introduced via non-valid graphi-
cal actions using various visual cues
and textual warnings. Also, continu-
ous checks performed on the gener-
ated TOSCA XML document assure
conformance with the specification.

Easy Application
Deployment and Monitoring
When it comes to deploying the
application on a cloud provider, the
TOSCA specification dictates that
application descriptions, along with
any artifacts realizing the manage-
ment operations, should be packaged
into a single self-contained archive,
called Cloud Service Archive (CSAR).
In case of a TOSCA-compliant pro-
vider, CAMF enables the submission
of CSARs to a dedicated endpoint so
as to be processed and interpreted
accordingly by a TOSCA runtime
environment, such as OpenTOSCA.7

Figure 2. CAMF’s extensible architecture. CSAR = Cloud Service Archive,
IaaS = Infrastructure as a Service, SYBL = Simple-Yet-Beautiful Language,
and UI = user interface.

Eclipse platform

Cloud resource abstraction model

Application modeler
Resource

view

In
fo

rm
at

io
n

sy
st

em

Cloud
project

CSAR

CAMF

TOSCA runtime

IaaS orchestrator

CSAR
processor

Model
interpreter

Amazon Web
Services (AWS)

OpenStack

Application deploy manager

Connector pool

Docker AWS OpenStack IaaS X

UI

TOSCA SYBL

Enabling Interoperable Cloud Application Management through anOpen Source Ecosystem

May/June 2015� 7

According to TOSCA, cloud providers
who wish to become TOSCA-compli-
ant host a runtime entity as part of
their cloud architecture (see Figure 2).
This entity is responsible for com-
municating with the respective IaaS
provisioning service for completing
the necessary provider-specific oper-
ations, which will satisfy the respec-
tive TOSCA description. Nevertheless,
given that not many IaaS providers
are currently TOSCA-compliant, their
respective connectors are used to
parse the generated CSAR and make
IaaS-specific API calls to satisfy any
application deployment. In terms of
elasticity, again, it’s the responsibility
of each IaaS connector to map SYBL
policies to the IaaS-specific direc-
tives. The cloud abstraction layer
ensures that the aforementioned pro-
cesses are transparent to the end user
and only the deployment result is of
essence.

After deployment, the application
developer can interact with the deploy-
ment view (see Figure 1, bottom) to
instantly retrieve the applications’
operational status without leav-
ing CAMF’s workspace. The deploy-
ment view provides a snapshot of
all application deployments grouped
per target IaaS. Each deployment is
accompanied with provider-specific
properties such as IP addresses of each
component, instance IDs, uptime, and
cost information, if available. A back-
ground polling mechanism refreshes
the view and aims to always provide
the latest information from each IaaS.
Moreover, the CAMF’s abstraction
layer provides interfaces that enable
integration with different monitoring
systems, enabling its users to collect
performance metrics regarding any
deployed application without being
required to deal with external soft-
ware environments.

C AMF is still in its early stages;
however, our efforts so far have

shown that interoperable application

management using the right compo-
nents available from the open source
ecosystem is indeed achievable. With
the adoption, support, and valu-
able feedback from the open source
community, CAMF can extend the
possibilities of migrating applica-
tions to the cloud or across different
environments.�

Acknowledgments
This work was partially funded by the European

Commission through the CELAR FP7 project

(contract number 317790). The authors would

like to acknowledge Athanasios Foudoulis and

Demetris Antoniades for their contributions to

CAMF, and all members of the CELAR consor-

tium for their helpful feedback on this work.

References
1.	 R.J. Colville et al., Cloud Management Plat-

form Vendor Landscape, Gartner, 2012;

www.gartner.com/doc/2147420/cloud-

management-platform-vendor-landscape.

2.	 C. Fehling, F. Leymann, and R. Retter,

“Your Coffee Shop Uses Cloud Computing,”

IEEE Internet Computing, vol. 18, no. 5,

2014, pp. 52–59.

3.	 C. Sofokleous et al., “c-Eclipse: An Open-

Source Management Framework for Cloud

Applications,” LNCS 8632, Proc. 20th Int’l

Conf. Parallel Processing, Spring, 2014,

pp. 38–49.

4.	 OASIS, OASIS: TOSCA Specification Version

1.0, 2013; www.oasisopen.org/committees/

tc_home.php?wg_abbrev=tosca.

5.	 G. Copil et al., “SYBL: An Extensible Lan-

guage for Controlling Elasticity in Cloud

Applications,” Proc. 13th IEEE/ACM Int’l

Symp. Cluster, Cloud, and Grid Computing,

2013, pp. 112–119.

6.	 D. Trihinas, G. Pallis, and M.D. Dikaiakos,

“JCatascopia: Monitoring Elastically Adap-

tive Applications in the Cloud,” Proc. 14th

IEEE/ACM Int’l Symp. Cluster, Cloud, and

Grid Computing, 2014, pp. 226–235.

7.	 T. Binz et al., “Open-TOSCA—A Runtime

for TOSCA-Based Cloud Applications,”

LNCS 8274, Springer, 2013, pp. 692–695.

Nicholas Loulloudes is a computer science doc-

toral candidate at the University of Cyprus,

Nicosia. His research interests include

elastic cloud computing, vehicular com-

puting and complex networks. Loulloudes

is an active member in the open source

Eclipse ecosystem and currently the project

lead of the Cloud Application Management

Framework (CAMF) project. Contact him at

loulloudes.n@cs.ucy.ac.cy.

Chrystalla Sofokleous works at the Univer-

sity of Cyprus, Nicosia, as a researcher in

the FP7 EU project CELAR. Her research

interests focus on the Web, cloud comput-

ing, and elastic resource provisioning. She

has an MSc in Web Technology from the

University of Southampton. Contact her at

stalosof@cs.ucy.ac.cy.

Demetris Trihinas is a computer science doc-

toral candidate and researcher at the Uni-

versity of Cyprus, Nicosia. He’s interested

in cloud computing, distributed systems

monitoring, and elasticity behavior analy-

sis. Contact him at trihinas@cs.ucy.ac.cy.

Marios D. Dikaiakos is a professor of com-

puter science at the University of Cyprus

and director of the University’s Centre for

Entrepreneurship. Dikaiakos has a PhD

in computer science from Princeton Uni-

versity. His research interests focus on

large-scale distributed computing systems.

Contact him at: mdd@cs.ucy.ac.cy.

George Pallis is an assistant professor of com-

puter science at the University of Cyprus,

Nicosia. His research interests include dis-

tributed systems, such as the Web, clouds,

and content distribution networks. Pallis

has a PhD in computer science from the

Artistotle University of Thessaloniki. Con-

tact him at gpallis@cs.ucy.ac.cy.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

