
Improving Rule-Based Elasticity Control by Adapting
the Sensitivity of the Auto-Scaling Decision Timeframe

Demetris Trihinas, Zacharias Georgiou, George Pallis, Marios D. Dikaiakos

Department of Computer Science,
University of Cyprus

{trihinas, zgeorg03, gpallis, mdd}@cs.ucy.ac.cy

Abstract. Cloud computing offers the opportunity to improve efficiency with
cloud providers offering consumers the ability to automatically scale their appli-
cations to meet exact demands. However, “auto-scaling” is usually provided to
consumers in the form of metric threshold rules which are not capable of deter-
mining whether a scaling alert is issued due to an actual change in the demand of
the application or due to short-lived bursts evident in monitoring data. The latter,
can lead to unjustified scaling actions and thus, significant costs. In this paper, we
introduce AdaFrame, a novel library which supports the decision-making of rule-
based elasticity controllers to timely detect actual runtime changes in the mon-
itorable load of cloud services. Results on real-life testbeds deployed on AWS,
show that AdaFrame is able to correctly identify scaling actions and in contrast
to the AWS auto-scaler, is able to lower detection delay by at least 63%.

1 Introduction

Cloud computing is dominating the interests of multiple business domains revolution-
izing the IT industry to the point where any person, with even basic technical skills, can
access via the internet, vast and scalable computing resources by shifting IT spending to
a pay-as-you-use model [1]. For small businesses and startups, this well-established ar-
gument is sound. Cloud computing eliminates capital expense of buying hardware and
diminishes costs for configuring and running on-site computing infrastructures of any
size [2]. Nevertheless, driving cloud adoption is elasticity, that is the ability of cloud
services to acquire and release dedicated resources to meet current demand [3].

Albeit, while elasticity is one of cloud computing most-hyped features, the reality
does not necessarily measure up to cloud providers’ promises. For instance, applica-
tion traffic from sudden user demand can explode rapidly, and the need for immediate
scalability to address demands comes with many impediments. Cloud providers, such
as AWS, offer “auto-scaling” by automatically provisioning VMs when certain user-
defined metric thresholds are violated. Metric thresholds are usually reactive and rule-
based in the IF-THEN-ACTION format (e.g., IF cpuUsage > 75% THEN addVM) [4].
However, auto-scaling is challenging, especially when determining whether a scaling
alert is issued due to actual change in the demand of an application, or due to sudden
and short-lived (e.g., few seconds) spikes on highly sensitive monitoring data (e.g., cpu
usage). The latter may resort to “ping-pong” effects where resources are provisioned
and de-provisioned rapidly, but most importantly are billed although real demand does

not exist [5]. Thus, rapid scaling could, in fact, end up being detrimental resulting in
unwanted charges. On the other hand, delaying to determine an actual change in the
application monitorable load by extending the ruling to include a time window that the
scaling alert must persist (e.g., AWS default timeframe is 5min), inhibits the possibil-
ity of a severe performance penalty affecting the overall application quality-of-service.
In contrast to rule-based auto-scaling, a number of interesting and more advanced ap-
proaches have been proposed to offer better elasticity control based on machine learning
and control theory [6] [7] [8] [9]. However, cloud providers, for the time being, refrain
from embracing such approaches as they suffer from practical limitations that derive
from the complexity of the algorithmic process in a fully automated environment or the
assumption that users have a priori knowledge of optimal parameter configuration.

In this paper, we introduce AdaFrame, a library for cloud provider rule-based and
reactive auto-scalers to improve elasticity control, by supporting the decision-making
process to timely detect actual runtime changes in the statistical properties of the mon-
itorable load of cloud services. To achieve this, our library employs an online, low-cost
and probabilistic algorithmic process based on runtime change detection which allows
for elasticity controllers to reduce the possibility of falling victims to ping-pong effects
without the need to resort to large decision timeframes which inquire significant perfor-
mance penalties to cloud applications and their owners. In our evaluation with two real-
world testbeds deployed on AWS, we show that AdaFrame is able to correctly notify
of when scaling actions should be executed, and in comparison to AWS auto-scaling,
AdaFrame is able to lower detection delay by at least 63%.

The rest of this paper is structured as follows: Section 2 elaborates the motivation.
Section 3 introduces our library and the algorithmic process of the approach. Section 4
presents a comprehensive evaluation in real-life settings, while Section 5 presents the
related work. Finally, Section 6 conclude this paper.

2 Motivation

Fostered by autonomic computing concepts, “auto-scaling” is now a fundamental pro-
cess for market leading cloud service providers. This is commonly implemented as a
decision-making problem, where resource allocation for an application consists of pe-
riodically monitoring the application load, the current allocated resources (e.g., number
of VMs) and based on some scaling policy, decide to (de-)allocate resources in order
to maintain the performance as close as possible to a target performance. Rule-based
scaling policies are very popular among cloud providers and their consumers as the
simplicity and intuitive nature of these policies make them very appealing.

These scaling policies are expressed with IF <Expr> THEN <Action> rules.
In particular, consumers are usually not restricted to the number of rules they can
define, while each rule is comprised of an expression (<Expr>) and scaling action
(<Action>). The expression defines the target metric of interest and the relation which
will trigger the scaling policy. Triggering the scaling policy will satisfy the desired ac-
tion which is pre-selected by the consumer from a finite set of permitted scaling actions
supported by the cloud provider. For example, let us consider a web service processing
requests for local business outlets in the location defined as a parameter in the served
request. In this scenario the load is compute-bound and we assume that two scaling

policies are defined. The first policy, if triggered, will add a new virtual instance to the
deployed cluster when the average cluster CPU utilization surpasses 80%, while the
second policy, will remove a virtual instance if CPU utilization drops below 20%.

RULE$1 := IF AVG(cpuUsage(clusterID)) > 80% THEN addVM
RULE$2 := IF AVG(cpuUsage(clusterID)) < 20% THEN removeVM

While the simplicity is highly evident from the above example (although selecting
appropriate thresholds is a profiling challenge of its own [6]) this approach ignores the
volatility of monitoring data. To be precise, monitoring data can be bursty introducing
sudden and short-lived spikes which may cause control oscillations. A control oscilla-
tion, often dubbed as a “ping-pong” effect, is defined as the phenomenon where an un-
expected and short-lived burst in the monitoring data (even a single datapoint) triggers
a scaling action which will be subsequently annulled when the system stabilizes [10].
As an illustrating example, let us consider the aforementioned web service with its CPU
usage depicted in Figure 1. From this, we observe that a sudden burst from a background
cleanup process immediately triggers RULE$1, thus a VM is added, and after the VM is
provisioned and fully integrated to the deployment, the CPU utilization, quickly, drops
to the point where RULE$2 is triggered, returning the application deployment to the
previous state. Hence, a single spike in the monitoring data causes a series of elastic
control actions, accounting for direct and indirect costs, as users are charged for these
unjustified actions and the provisioned resources (e.g., for AWS a VM booted even for
1s is charged for whole hour), and the application may suffer performance-wise if data
movement and coordination is required while in a transitioning state.

To compensate with control oscillations, cloud providers (e.g., AWS), extend the
rule-based decision model to include a time window, denoted as a decision timeframe,
where the scaling policy expression (<Expr>) must evaluate to true and persist for
the length of the timeframe. In particular, AWS, provides its consumers with the option
to set a decision timeframe, with the default option being 5min, while other options are
also available [11]. The assumption here is that if a threshold violation persists in time,
as depicted in Figure 2, then a scaling action is justified and the larger the decision time-
frame, the smaller the possibility of introducing a ping-pong effect. Obviously, absolute
guarantees can never be given unless auto-scaling is disabled. However, the downside
with introducing a large decision timeframe, even the default AWS option of 5min, is
that a significant performance penalty may occur while waiting for a scaling action to
be triggered. Therefore, a new challenge rises: How can a rule-based elasticity con-
troller scale an application deployment without resorting to large decision timeframes
in order to avoid ping-pong effects due to sudden bursts in monitoring data?

3 The AdaFrame Library

To address the aforementioned challenge, we have designed and developed the AdaFrame
library. AdaFrame supports the decision-making process of rule-based elasticity con-
trollers so as to timely detect, and notify the elasticity controller, of actual runtime
changes in the statistical properties of monitoring data originating from elastic cloud
services. To achieve this, the AdaFrame library employs an online, low-cost and proba-

Fig. 1: Ping-Pong Effect on Monitored CPU Utilization of a Web Service

Fig. 2: Auto-Scaling Decision Timeframe to Reduce Control Oscillations

bilistic algorithmic process based on change detection which allows for elasticity con-
trollers to reduce the possibility of falling victims to ping-pong effects without the need
to resort to large decision timeframes which inquire significant performance penalties
to cloud applications and their owners. Figure 3 depicts the AdaFrame library incorpo-
rated in an auto-scaling control loop, resembling AWS, where one can observe that it
does not alter the decision-making process, or the control loop in general, as AdaFrame
simply acts as a support proxy notifying the Scaling Policy Evaluation of the elastic-
ity controller when a scaling action should be triggered (workload behavior changes)
and when not (workload spikes). This completely removes the need of a fixed decision
timeframe. In turn, offline profiling to detect a (near-) optimal decision timeframe is not
needed, as fixed “optimal” values are only relevant if the properties of the metric stream
hold for the entire lifespan of the application which is an assumption far from reality for
today’s complex cloud applications. In the following, we provide a detail description
of the two basic components comprising AdaFrame: the Adaptive Monitoring
Estimation Model and Runtime Change Detection.

3.1 Adaptive Monitoring Estimation Model

At first, let us define a monitoring stream M = {di}ni=0 published by a monitoring
source on a cloud application to an auto-scaling entity, as a large sequence of data-
points di, where i = 0, 1, ..., n and n → ∞. Each datapoint di is a tuple (sid, ti, vi)
described, at the minimum, by a source identifier sid, a timestamp ti and a value vi. We
base our approach such that the estimation model is maintained in constant time and
space O(1), a requirement for rule-based elasticity control. While AdaFrame supports

Fig. 3: AdaFrame Incorporated in Auto-Scaling Process

model parameterization, as input it only requires from the user to provide his/her con-
fidence guarantees δ ∈ [0, 1], denoting the probability with which estimated datapoints
are approximated from sensed datapoints. Now, when a datapoint is made available to
the auto-scaling by the monitoring tool, it is passed through AdaFrame API to the
Adaptive Monitoring Estimation Model so as to update the current mon-
itoring stream evolution by using a moving average, denoted as µi. This will give an
initial estimation for the next datapoint value, denoted as v̂i+1. Moving averages pro-
vide smoothing and one-step ahead estimations for single dimensional timeseries such
as the target metric referenced in the <Expr> of a rule-based scaling policy. They
are easy to compute, though many types exist, and can be calculated on the fly with
only previous value knowledge. A cumulative moving average for streaming data is the
Exponential Weighted Moving Average (EWMA), µi = αµi−1 + (1 − α)vi, where
a weighting parameter α, is introduced to decrease exponentially the effect of older
values. However, the EWMA features a significant drawback; it is volatile to abrupt
transient changes [12]. Thus, we propose adopting a Probabilistic EWMA (PEWMA),
which dynamically adjusts the weighting based on the probability density of the given
observation. The PEWMA acknowledges sufficiently abrupt transient changes (bursti-
ness), adjusting quickly to long-term shifts in the monitoring stream evolution and
when incorporated in our algorithmic estimation process, it requires no parameteriza-
tion, scaling to numerous datapoints.

µi =

{
vi, i = 1

α(1− βPi)µi−1 + (1− α(1− βPi))vi, i > 1
(1)

Equation 1 presents the PEWMA where instead of a fixed weighting factor, we intro-
duce a probabilistically adaptable weighting factor ãi = α(1 − βPi). In this equation,
the p-value, is the probability of the current vi to follow the modeled distribution of the
metric stream evolution. In turn, β is a weight placed on Pi and as β → 0 the PEWMA
converges to a common EWMA1. The logic behind probabilistic reasoning is that the
current value vi depending on it’s p-value will contribute respectively to the estimation
process. In turn, if a datapoint falls inside the prediction intervals determined from the
given confidence, it is labeled as “expected” or “unexpected” otherwise. Therefore, we

1 For simplicity in our model we will consider β = 1

update the weighting by 1− βPi so that sudden ”unexpected” spikes are accounted for
in the estimation process, however, offer little influence to subsequent estimations, thus
restraining the model from overestimating subsequent vi’s. In turn, if an “unexpected”
value turns out to be a shift in the monitoring stream evolution, as the probability ker-
nel shifts, subsequent “unexpected” values are awarded with greater p-values, allowing
them to contribute more to the estimation process. Assuming, a stochastic and i.i.d dis-
tribution as the bare minimum for a monitoring stream, we can adopt a Gaussian kernel
N(µ, σ2), which satisfies the aforementioned requirements. Thus, Pi is the probabil-
ity of vi evaluated under a Gaussian distribution, which is computed by Equation 2.
Nonetheless, we note that while a Gaussian distribution is assumed, if prior knowledge
of the distribution is available and given by the user then only the computation of Pi

must change in the estimation process.

Pi =
1√
2π

exp(−Z
2
i

2
)

Zi =
vi − v̂i
σi

(2)

Moreover, in [12] we show how to compute the running variance for the PEWMA,
and that the α parameter can take a wide range of values if a small imprecision can be
tolerated as most of the error is absorbed by the probabilistic weighting. Thus, with the
proposed model we can both estimate the monitoring stream evolution and detect and
label bursts in the monitoring stream. However, as mentioned, much of this burstiness is
irrelevant for diagnosis of elastic scaling. Nonetheless, significant bursts and long-term
trends are useful features for cloud providers and consumers, especially for capacity
planning, anomaly detection and quality control.

3.2 Runtime Change Detection

The most prominent functionality of AdaFrame is to detect changes, at runtime, in the
statistical properties of the evolution of a monitoring stream, in order to reduce the need
of a fixed decision timeframe to avoid ping-pong effects. To achieve this, AdaFrame
incorporates change detection based on a variation of the lightweight Cumulative Sum
test (CUSUM). The CUSUM, denoted as Ci, is a hypothesis test for detecting shifts in
i.i.d timeseries [13]. In particular, there are two hypothesis θ′ and θ′′ with probabilities
P (M, θ′) and P (M, θ′′), where the first corresponds to the statistical distribution of the
monitoring stream prior to a shift (i < ts) and the second to the distribution after a
shift (i > ts) with ts denoting the time interval the shift/change occurs. The CUSUM is
computed online via sequential probability testing on the instantaneous log-likelihood
ratio given for a monitoring stream at the i-th time interval, as follows:

ci = ln
P (Mi, θ

′′)

P (Mi, θ′)

Ci,{low, high} = Ci−1,{low, high} + ci

(3)

where low and high denote the separation of the CUSUM to identify both positive and
negative shifts respectively. The typical behavior of the log-likelihood ratio includes

a negative drift before a shift and a positive drift after the shift. Thus, the relevant
information for detecting a shift in the evolution of a monitoring stream lays in the
difference between the value of the log-likelihood ratio and the current minimum value.
A decision function Gi, is used to determine a shift in the monitoring stream when
its outcome surpasses a threshold h, measured in standard deviation units. The time
interval at which a shift actually occurs, is computed from the CUSUM as follows:

Gi,,{low, high} = {Gi−1,{low, high} + ci}+

ts = argmin
j≤s≤i

(Cs−1)
(4)

In the above, G+ = sup(G, 0) and ti is the time AdaFrame detects the shift. Now,
let us consider the particular case of a monitoring stream representing the target metric
of a rule-based scaling policy with the monitoring stream supposed to undergo possi-
ble shifts in its evolution. Hence, in our case, tj is considered the time the monitoring
stream current value base violates the scaling policy. In turn, we consider the evolution
of the monitoring stream in its mean, modelled as the PEWMA moving average previ-
ously introduced. Thus, θ′ and θ′′ can be rewritten as µ′ and µ′′ respectively, with µ′

representing the current evolution, while µ′′ the output of the estimation model with
µ′′ = µ′ + ε, and ε denoting the estimated magnitude of change of the monitoring
stream evolution. As the monitoring stream evolution is used to provide an estimation
for v̂i, the magnitude of change is actually equal to ε = v̂i−vi. In turn, let P (M,µ′) and
P (M,µ′′) be computed from Equation 2. With some calculations, ci (eq. 4) is rewritten,
as follows, to perform the decision-making with only previous value knowledge:

ci,{low, high} = ±
|ε|
σ2
i

(vi − µ′ ∓
|ε|
2
) (5)

Nonetheless, the CUSUM test features two drawbacks. First, determining the actual
ts requires linear time. However, exact knowledge of ts is not required for signalling a
scaling action, as ts is only computed after the shift is detected, with AdaFrame provid-
ing an approximate answer (ti) which is the time it detects the change in the monitoring
stream. Second, when the monitoring stream is relatively stable, and thus the stream
variance is low (σi → 0), the CUSUM is prone to falsely signalling changes [14].
Hence, we follow an adaptive approach where h is updated after a scaling action, based
on the number of standard deviations respecting the given user-defined confidence (δ)
and an optional positive value (hmin) is used to restrict the sensitivity of the CUSUM so
as to not oscillate between low values when the monitoring stream is relatively stable.

hi = max{hmin, h(δ)} (6)

4 Evaluation

In this section, we evaluate the accuracy our approach via two real-world testbeds de-
ployed on AWS, the most popular cloud provider. We compare AdaFrame ability to
detect changes in the workload and signal the auto-scaling service that a scaling ac-
tion should be triggered, to (i) using AWS auto-scaling without a decision timeframe,

Algorithm 1 AdaFrame Algorithm

Input: User-provided confidence δi at initialization. For every update, datapoint d(ti, vi)
Output: Label datapoint di as “expected”, “unexpected” or “changepoint”
Ensure: Monitoring stream M is attached and moving average µ is initialized

compute p– and z–value and then update estimation model
1: Pi, Zi ← probDistro(vi, v̂i, σi) (eq. 2)
2: µi, σi ← updPEWMA(Pi, vi) (eq. 1)

label datapoint as “expected” or “unexpected” based on prediction intervals
3: if isDatapointExpected(δ, Pi, Zi) then
4: label← ‘expected’
5: else
6: label← ‘unexpected’
7: end if
8: if scaling alert triggered at ti−1 then
9: hi ← updShiftThres(δ, σi) (eq. 6)

10: end if
11: ci ← updLikelihood(vi, v̂i, µi, σi) (eq. 5)
12: Ci,low, Ci,high ← updCusum(ci) (eq. 3)
13: Gi,low, Gi,high ← updDecision(ci) (eq. 4)
14: if Gi,{low, high} > hi then
15: label← ‘changepoint’
16: end if
17: return label

and, thus, any scaling policy violation will trigger a scaling action; and (ii) the AWS
auto-scaling service with the default decision timeframe of 5min.

To integrate AdaFrame to the AWS control loop, we enabled manual auto-scaling
through the AWS API. This provides us with API access to the auto-scaling service so
as to immediately trigger the pre-selected scaling action once a changepoint is detected
after the initial scaling policy violation occurs. We note that when running AdaFrame
with “manual” scaling, auto-scaling, with 5min decision timeframe, is also enabled to
see if any scaling action would be detected earlier by AWS. Also, both experiments
are conducted with a tight confidence parameter of δ = 0.95 and hmin = 1. In turn,
as AWS monitoring metric collection limits the minimum periodicity to 60s, for the
sake of a thorough evaluation we opted to integrate with AWS, JCatascopia monitoring
probes [10] in order to collect data every 5s.

4.1 Testbed 1: Scaling a NoSQL Document Store

The first testbed of our evaluation is a NoSQL document store implemented by a Couch-
base DB cluster. In particular, couchbase is used for the database backend of the web
service described in Section 2, and thus, processes map/reduce-like data requests for lo-
cal business outlets in the location defined as a parameter in the served request. Initially,
we manually provision the cluster to host three database instances which is considered,
for Couchbase, as the minimum number of instances for smooth operation. Each in-
stance, and future provisioned instances, are Amazon ubuntu 16.04 LTS medium fla-
vored AMIs (2 VCPU, 4GB Memory, 120GB disk). For this testbed, and with Couch-
base cpu-bound, we select the average cpu usage as the target metric. We stress the
testbed by generating a stable load of 80 req/s and increase the request rate by 30 req/s

Fig. 4: Couchbase CPU Usage and Scaling Action Detection Delay
every 10 minutes in order for the testbed to scale but not be overwhelmed while the
size of the testbed is small. To cope with the workload, the AWS auto-scaling service
must provision a new VM, in the first case, if the CPU usage is over 75% and, in the
second case, if the same scaling policy is violated but for a timespan of 5 minutes. In the
case of embracing AdaFrame, a new instance is only provisioned when a changepoint
is detected after the scaling policy is violated.

Figure 4 depicts the testbed CPU usage, the testbed size, the time intervals at which
the scaling policy is violated for the first time and the time intervals AWS (with decision
timeframe) and AdaFrame trigger each scaling action. From this, we immediately ob-
serve that AdaFrame features the ability to correctly identifying all scaling actions, even
for a monitoring stream featuring significant burstiness over the threshold, and does not
trigger any false scaling action which could lead to a ping-pong effect. Also, scaling
action detection is performed by AdaFrame in a timely manner (Figure 8). Specifically,
in three out of four of the scaling actions, the detection time is significantly less that half
(63% less) of the AWS decision timeframe (112s±16s) as AdaFrame quickly identifies
a change in the statistical properties of the monitoring stream. Nonetheless, for the third
action, due to the high volatility of the monitoring stream, AdaFrame requires more than
half of the decision timeframe (196s), but still significantly outperforms AWS (36%
less). In turn, the highlighted period of time in Figure 4 is an example where even if
a smaller, but still fixed, decision timeframe (e.g., 2min) is opted for AWS to compete
with AdaFrame, then a ping-pong effect will be triggered as oscillations near the thresh-
old are evident, which justifies why ignoring the statistical properties of the monitoring
stream to detect actual changes will lead to unexpected and unwanted effects.

Next, to illustrate the importance of timely detecting when to trigger a scaling ac-
tion, we depict in Figure 5, the performance of the testbed in terms of throughput when a
decision timeframe is used. From this, we observe that once a scaling policy violation is
detected and for the span of the decision timeframe, throughput suffers and is not able to
follow the workload increment. Only after a VM is added and aftergoing a (short) rebal-
ancing phase is the testbed able to surpass the initial saturation. In contrast, AdaFrame

Fig. 5: Couchbase Cluster Throughput and Scaling Action Detection Delay

Fig. 6: Couchbase Cluster Throughput with AdaFrame vs 5min Decision Timeframe

is able to correctly and timely detect when a scaling action should be triggered (Fig-
ure 5), and we observe that throughput features a significantly larger slop and higher
values are achieved with the gains increasing as the workload increases (Figure 6). Fi-
nally, we note that for visualization clarity, we omitted depicting cpu usage, throughput
and time intervals at which AWS without a decision timeframe triggers a scaling action,
and state that in this case correctness suffers as 7 scaling actions were triggered instead
of 4 due to the high volatility of the monitoring stream near the threshold.

4.2 Testbed 2: Scaling the Business Logic of a Web Service

The second testbed of our evaluation is an Apache Tomcat cluster implementing the
business logic of the aforementioned web service. This cluster was initially provisioned
to host a single instance and each provisioned instance, is an Amazon ubuntu 16.04 LTS
small flavored AMI (1 VCPU, 2GB Memory). In this set of experiments, we configure
our workload generator to adapt the load step-size randomly in order to cause both scale

Fig. 7: Apache Tomcat Cluster Memory Utilization and Scaling Action Detection Delay

in and out actions. The number of scaling actions to perform was set to 10. Also, we
configure the workload generator, to exhibit at random, 10 periods of time with bursty
behavior over the defined thresholds by mixing with the workload gaussian noise to
emulate the spiky behavior of a (Tomcat) cleanup background process. For this testbed,
and with Apache Tomcat memory-bound, we select the average memory utilization as
the targeted metric. Similar to the first testbed, we set the high threshold at 75% and
add a scale-in policy to remove a VM if memory utilization drops below 25%.

Figure 7 depicts the Apache Tomcat memory utilization, the VM cluster size, the
time intervals at which the scaling policy is violated for the first time and the time inter-
vals AWS (with decision timeframe) and AdaFrame trigger each scaling action. We note
that for visualization clarity, the memory plot depicts only the first 4 scaling actions.
From this, we first observe that without a decision timeframe, AWS will trigger a scal-
ing action each time the monitoring stream surpasses the defined thresholds which also
includes all 10 artificially generated workload spikes. Next, we observe that by adding
the 5 minute decision timeframe, AWS auto-scaling is able to restrain from wrongfully
triggering a scaling action when burstiness is exhibited. However, AdaFrame is able
to achieve the same results but in contrast to using the fixed 5 minute decision time-
frame, detection time for triggering a scaling action is on average 102s ± 21s, which
is significantly lower and, at least, 66% less.

5 Related Work

A number of sophisticated techniques have been proposed for elastic scaling. Almeida
et al. [8] propose a branch and bound approach for optimally allocating resources to
multi-layer cloud applications during runtime, while Tolosana-Calasanz et al. [9] pro-
pose controlling reserved resources for data processing engines by following a shared
token bucket approach. A more intuitive approach is proposed by Dustdar et al. [3],
defining elasticity as a complex property, having as major dimensions resource, cost

Fig. 8: Scaling Action Decision Delay per Testbed

and quality elasticity. These dimensions reflect not only computing related aspects of
application operation, but also business aspects. In turn, Copil et al. [15] introduce
an elasticity specification language, denoted as SYBL, which allows the definition of
complex and multi-dimensional elasticity policies for rSYBL, an elasticity controller
capable of managing cloud elasticity based on SYBL directives. On the other hand,
Tsoumakos et al. [6] introduce an open-source elasticity control service, which models
the problem of elastic scaling NoSQL databases as a Markovian Decision Process and
utilize reinforcement learning to allow the system to adaptively decide the most ben-
eficial scaling action based on user policies and past observations. Naskos et.al. [16]
extend this model to resizing clusters of a single generic application hosted on virtual
machines. Many queuing theory based approaches have been proposed. For instance,
Urgaonkar et al. [17] models servers at each tier as a queue for representing arbitrary
arrival and service time distributions. Despite the novelty in all the above approaches,
cloud providers, for the time being, refrain from embracing such approaches, and prefer
the simplicity of rule-based scaling, as they suffer from practical limitations that derive
from the complexity of the algorithmic process in a fully automated environment or
the assumption that users have a priori knowledge of optimal parameter configuration.
Finally, and to the best of our knowledge, the most notable approach towards attacking
ping-pong effects, is ADVISE, a framework supporting and providing “advise” to elas-
ticity controllers to improve the decision-making process by evaluating the outcome of
elasticity control actions. However, this approach is an offline approach only labelling
past control actions as ping-pong effects.

6 Conclusion

We propose a library, called AdaFrame, which supports the decision-making of rule-
based elasticity controllers to timely detect actual runtime changes in cloud services
based on an online, low-cost and probabilistic algorithmic process. Our objective is
to minimize the time for detecting changes in the targeted monitoring streams of user-
defined scaling policies originating from elastic cloud services. AdaFrame can be incor-
porated in the auto-scaling control loop towards maximizing the profit generated taking
into account the monetary cost of the resources as well as the revenue generated by
the workload. Results on two real-life testbeds deployed on AWS show that AdaFrame
outperforms the AWS auto-scaler and adapts quickly to workload changes.

Acknowledgements. This work is partially supported by the European Commission in
terms of Unicorn 731846 H2020 project (H2020-ICT-2016-1).

References

1. Loulloudes, N., Sofokleous, C., Trihinas, D., Dikaiakos, M.D., Pallis, G.: Enabling inter-
operable cloud application management through an open source ecosystem. IEEE Internet
Computing 19(3) (May 2015) 54–59

2. Willcocks, L., Venters, W., Whitley, E.A. In: Cloud in Context: Managing New Waves of
Power. Palgrave Macmillan UK, London (2014) 1–19

3. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes. IEEE Internet
Computing 15(5) (Sept 2011) 66–71

4. Trihinas, D., Sofokleous, C., Loulloudes, N., Foudoulis, A., Pallis, G., Dikaiakos, M.D.:
Managing and Monitoring Elastic Cloud Applications. In: 14th International Conference on
Web Engineering. ICWE 2014 (2014)

5. Copil, G., Trihinas, D., Truong, H., Moldovan, D., Pallis, G., Dustdar, S., Dikaiakos, M.D.:
Evaluating cloud service elasticity behavior. International Journal of Cooperative Informa-
tion Systems (2015)

6. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Automated, Elas-
tic Resource Provisioning for NoSQL Clusters Using TIRAMOLA. IEEE International Sym-
posium on Cluster Computing and the Grid (2013) 34–41

7. Lolos, K., Konstantinou, I., Kantere, V., Koziris, N.: Elastic resource management with adap-
tive state space partitioning of markov decision processes. CoRR abs/1702.02978 (2017)

8. Almeida, A., Dantas, F., Cavalcante, E., Batista, T.: A branch-and-bound algorithm for auto-
nomic adaptation of multi-cloud applications. In: 2014 14th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing. (May 2014) 315–323

9. Tolosana-Calasanz, R., ngel Baares, J., Pham, C., Rana, O.F.: Resource management for
bursty streams on multi-tenancy cloud environments. Future Generation Computer Systems
55 (2016) 444 – 459

10. D. Trihinas, G. Pallis and M. D. Dikaiakos: Monitoring Elastically Adaptive Multi-Cloud
Services. IEEE Transactions on Cloud Computing 4 (2016)

11. Amazon Auto-Scaling Policies. http://aws.amazon.com/ec2/
12. Trihinas, D., Pallis, G., Dikaiakos, M.D.: AdaM: an Adaptive Monitoring Framework for

Sampling and Filtering on IoT Devices. In: IEEE International Conference on Big Data.
(2015) 717–726

13. Luo, Y., Li, Z., Wang, Z.: Adaptive cusum control chart with variable sampling intervals.
Computational Statistics & Data Analysis 53(7) (2009) 2693 – 2701

14. Trihinas, D., Pallis, G., Dikaiakos, M.: ADMin: adaptive monitoring dissemination for the
internet of things. In: IEEE INFOCOM 2017 - IEEE Conference on Computer Communica-
tions (INFOCOM 2017), Atlanta, USA (May 2017)

15. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: An Extensible Language for
Controlling Elasticity in Cloud Applications. In: 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. (2013) 112–119

16. Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D., Konstantinou, I.,
Sioutas, S.: Dependable horizontal scaling based on probabilistic model checking. In: 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. (May
2015) 31–40

17. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic provisioning of
multi-tier internet applications. ACM Trans. Auton. Adapt. Syst. 3(1) (March 2008) 1:1–1:39

