Minersoft: A Keyword-based Search Engine for Software
Resources in Large-scale Grid Infrastructures”

Marios D. Dikaiakos 1, Asterios Katsifodimos 2, George Pallis 3
Computer Science Department, University of Cyprus, Nicosia, C'Y 1678, Cyprus

1mdd@cs.ucy.ac .cy,

ABSTRACT

We investigate the problem of supporting keyword-based
searching for the discovery of software resources that are
installed on the nodes of large-scale, federated Grid com-
puting infrastructures. We address a number of challenges
that arise from the unstructured nature of software and the
unavailability of software-related metadata on Grid sites.
We present Minersoft, a Grid harvester that visits Grid
sites, crawls their file-systems, identifies and classifies soft-
ware resources, and discovers implicit associations between
them. The results of Minersoft harvesting are encoded in
a weighted, typed graph, named the Software Graph. A
number of IR algorithms are used to enrich this graph with
structural and content associations, to annotate software re-
sources with keywords, and build inverted indexes to sup-
port keyword-based searching for software. Using a real
testbed, we present an evaluation study of our approach,
using data extracted from a production-quality Grid infras-
tructure. Experimental results show that Minersoft is a pow-
erful tool achieving high search efficiency.

1. INTRODUCTION

A growing number of large-scale Grid and Cloud infrastruc-
tures are in operation around the world, providing production-
quality computing and storage services to many thousands
of users from a wide range of scientific and business fields.
One of the main goals of these large-scale distributed com-
puting environments is to make their software resources and
services easily accessible and attractive for end-users [7]. To
achieve this goal, it is important to establish advanced, user-
friendly tools for software search and discovery, in order to
help end-users locate application software suitable to their
needs and encourage software reuse [9, 25, 29].

Motivation. Adopting a keyword-based search paradigm
for locating software seems like an obvious choice, given that

*This work is an extended version of the paper that has been
presented to IEEE/ACM WI 2009 Conference.

2 .
asteriosk@cs.ucy.ac.cy,

3gpallis@cs.ucy.ac.cy

keyword search is currently the dominant paradigm for in-
formation discovery [20]. To motivate the importance of
such a tool, let us consider a researcher who is searching
for graph mining software deployed on a Grid infrastruc-
ture. Unfortunately, the manual discovery of such software
is a daunting, nearly impossible task: taking the case of
EGEE [2], one of the largest production Grids currently in
operation, the researcher would have to search among 300
sites with several sites hosting well over 1 million software-
related files. The situation is not better in emerging Cloud
infrastructures: a user of the Amazon Elastic Cloud service
can choose among 1,700 Amazon Machine Images (AMIs),
with each AMI hosting at least 90,000 files, including in-
stalled software. Envisioning the existence of a software
search engine, the researcher would submit a query to the
search engine using some keywords (e.g. “graph tool,” or
“communities discovery”). In response to this query, the en-
gine would return a list of software matching the query’s
keywords, along with computing sites where this software is
located. Thus, the researcher would be able to identify the
sites hosting an application suitable to her needs, and would
accordingly prepare and submit jobs to these sites.

However, software usually resides in file systems, together
with numerous other files of different kinds. Traditional file
systems do not maintain metadata representing file seman-
tics and distinguishing between different file types. Further-
more, the registries of distributed computing infrastructures
rarely publish little, if any information about installed soft-
ware [13]. Finally, software files usually come with few or
no free-text descriptors. Consequently, the software-search
problem cannot be addressed by traditional IR approaches.
Instead, we need new techniques that will: i) discover au-
tomatically software-related resources installed in file sys-
tems that host a great number of files and a large variety of
file types; ii) extract structure and meaning from those re-
sources, capturing their context, and iii) discover implicit re-
lationships among them. Also, we need to develop methods
for effective querying and for deriving insight from query re-
sults. The provision of full-text search over large, distributed
collections of unstructured data has been identified among
the main open research challenges in data management that
are expected to bring a high impact in the future [3]. Search-
ing for software falls under this general problem since file-
systems treat software resources as unstructured data and
maintain very little if any metadata about installed software.

Contributions. Following this motivation, we developed
the Minersoft software search engine. To the best of our
knowledge, Minersoft provides the first full-text search fa-
cility for locating software resources installed in large-scale
Grid infrastructures. Furthermore, Minersoft can be eas-
ily extended to support search on Cloud infrastructures like
Amazon’s EC. Minersoft visits a Grid site, crawls its file-
system, identifies software resources of interest (binaries, li-
braries, documentations etc), assigns type information to
these resources, and discovers implicit associations between
them. Also, Minersoft extracts a number of terms by ex-
ploiting the path within file-system and the filename of soft-
ware resources.

To achieve these tasks, Minersoft invokes file-system util-
ities and object-code analyzers, implements heuristics for
file-type identification and filename normalization, and per-
forms document analysis algorithms on software documen-
tation files and source-code comments. The results of Min-
ersoft harvesting are encoded in the Software Graph, which
is used to represent the context of discovered software re-
sources. We process the Software Graph to annotate soft-
ware resources with metadata and keywords, and use these
to build an inverted index of software. Indexes from different
Grid sites are retrieved and merged into a central inverted
index, which is used to support full-text searching for soft-
ware installed on the nodes of a Grid infrastructure. The
implementation and the performance evaluation of the Min-
ersoft crawler are presented in [17]. In this paper, we intro-
duce the core information retrieval component of Minersoft
- the Software Graph, and its related algorithms. The main
contributions of this work can be summarized as follows:

e We introduce the Software Graph, a typed, weighted
graph that captures the types and properties of soft-
ware resources found in a file system, along with struc-
tural and content associations between them (e.g. di-
rectory containment, library dependencies, documen-
tation of software).

e We present the Software Graph construction algorithm.
This algorithm comprises techniques for discovering
structural and content associations between software
resources that are installed on the file systems of large-
scale distributed computing environments.

e We present the design, the architecture, and imple-
mentation of the Minersoft harvester.

e We demonstrate the effectiveness of the Software Graph
as a structure for annotating software resources with
descriptive keywords, and for supporting full-text search
for software. To this end, we use Minersoft to harvest
sites of the EGEE Grid. Results show that Minersoft
achieves high search efficiency.

Roadmap. Section 2 presents an overview of related work.
In Section 3, we introduce the concepts of software resources,
software package and Software Graph. Section 4 describes
the proposed algorithm to create a Software Graph anno-
tated with keyword-based metadata. Section 5 describes
the architecture of Minersoft. In Section 6 we present an
experimental assessment of our work. We conclude in Sec-
tion 7.

2. RELATED WORK

A number of research efforts have investigated the problem
of software-component retrieval in the context of language-
specific software repositories and CASE tools (a survey of
recent work can be found in [21]).

In [22], Maarek et. al. presented GURU, possibly the first
effort to establish a keyword-based paradigm for the retrieval
of source code residing in software repositories. Similar ap-
proaches have been proposed also in [6, 23]. All these works
exploit source-code comments and documentation files, rep-
resenting them as term-vectors and using similarity met-
rics from Information Retrieval (IR) to identify the associa-
tions between software resources. Results showed that such
schemes work well in practice and are able to discover links
between documentation files and source codes. The use of
folksonomy concepts has been investigated in the context
of the Maracatu system [28]. Folksonomy is a cooperative
classification scheme where the users assign keywords (called
tags) to software resources. A drawback of this approach is
that it requires user intervention to manually tag software
resources. Finally, the use of ontologies is proposed in [18];
however, this work provides little evidence on the applica-
bility and effectiveness of its solution.

The search for software can also benefit from extended file
systems that capture file-related metadata and/or seman-
tics, such as the Semantic File System [14], the Linking
File System (LiFS) [5], or from file systems that provide
extensions to support search through facets [19], contextu-
alization [26], desktop search (e.g., Confluence [15], Wum-
pus [30]), etc. Although Minersoft could easily take advan-
tage of file systems offering this kind of support, in our cur-
rent design we assume that the file system provides the meta-
data found in traditional Unix and Linux systems, which are
common in most Grid and Cloud infrastructures.

In the Grid context, a recent work has proposed a soft-
ware search service, called GRIDLE [25]; this scheme allows
users to specify a high-level workflow plan including the re-
quirements of each software file. Then, GRIDLE presents
a ranked list of files that match partially or totally user re-
quirements. However, GRIDLE cannot be used as a keyword-
based paradigm for locating software resources in the Grid
since neither crawls the Grid sites, nor searches installed
software files.

Although we are not aware of any work that proposes a
keyword-based paradigm for locating software resources on
large-scale Grid infrastructures, our work overlaps with prior
work on software resources retrieval [6, 22, 23, 28]. These
works mostly focus on developing schemes that facilitate the
retrieval of software source files using the keyword-based
paradigm.

Minersoft is different from all the above works in a number
of key aspects:

e Minersoft supports searching not only for source codes
but also for executables and libraries stored in binary
format;

e Minersoft does not presume that file-systems main-
tain metadata (tags etc) to support software search;
instead, the Minersoft harvester generates such meta-
data automatically by invoking standard file-system
utilities and tools and by exploiting the hierarchical
organization of file-systems;

e Minersoft introduces the concept of the Software Graph,
a weighted, typed graph. The Software Graph is used
to represent software resources and associations under
a single data structure, amenable to further process-
ing.

e Minersoft addresses a number of additional implemen-
tation challenges that are specific to federated infras-
tructures: i) Software management is a decentralized
activity; different sites may follow different policies
about software installation, directory naming etc. Also,
software entities on a Grid site often come in a wide va-
riety of packaging configurations and formats. There-
fore, solutions that are language-specific or tailored to
some specific software-component architecture are not
applicable. ii) Harvesting the sites of a Grid infrastruc-
ture is a demanding task for computational, storage,
and communication resources. Also, most Grid sys-
tems do not support interactive computation. There-
fore, software harvesting needs to be performed in a
distributed, non-interactive manner. iii) The users of
a Grid infrastructure do not have direct access to local
Grid sites. Therefore, a harvester has to be either part
of middleware services (something that would require
the intervention to the middleware) or to be submitted
for execution as a normal job, through the middleware.
In the Minersoft architecture and implementation we
adopt the latter approach, which facilitates the deploy-
ment of the system on different Grid infrastructures.

3. BACKGROUND

In this section we provide some background and define soft-
ware resource, software package and Software Graph, which
are the main focus of this paper.

DEFINITION 1. Software Resource. A software resource
is a file that is installed on a machine and belongs to one of
the following categories: i) executables (binary or script),
it) software libraries, i) source codes written in some pro-
gramming language, iv) configuration files required for the
compilation and/or installation of code (e.g. makefiles),
v) unstructured or semi-structured software-description doc-
uments, which provide human-readable information about
the software, its installation, operation, and maintenance
(manuals, readme files, etc).

The identification of a software resource and its classification
into one of these categories can be done by human experts
(system administrators, software engineers, advanced users).

DEFINITION 2. Software Package. A software package
consists of one or more content or/and structurally associ-
ated software resources that function as a single entity to
accomplish a task, or group of related tasks.

Human experts can recognize the associations that establish
the grouping of software resources into a software package.
Normally, these associations are not represented through
some common, explicit metadata format maintained in the
file-system. Instead, they are expressed implicitly by loca-
tion and naming conventions or hidden inside configuration
files (e.g., makefiles, software libraries). Therefore, the au-
tomation of software-file classification and grouping is a non-
trivial task. To represent the software resources found in a
file-system and the associations between them we introduce
the concept of the Software Graph.

DEFINITION 3. Software Graph. Software Graph is a
weighted, metadata-rich, typed graph G(V, E). The vertez-
set V' of the graph comprises: i) vertices representing soft-
ware resources found on the file-system of a computing node
(file-vertices), and ii) vertices representing directories of the
file-system (directory-vertices). The edges E of the graph
represent structural and content associations between ver-
tices.

Structural associations correspond to relationships between
software resources and file-system directories. These rela-
tionships are derived from file-system structure according
to various conventions (e.g., about the location and nam-
ing of documentation files) or from configuration files that
describe the structuring of software packages (RPMs, tar
files, etc). Content associations correspond to relationships
between software resources derived by text similarity.

The Software Graph is “typed” because its vertices and edges
are assigned to different types (classes). Each vertex v of
the Software Graph G(V, E) is annotated with a number of
associated metadata attributes, describing its content and
context:

e name(v) is the normalized name’ of the software re-
source represented by v.

e type(v) denotes the type of v; a vertex can be classified
into one of a finite number of types (more details on
this are given in the following section).

e site(v) denotes the computing site where file v is lo-
cated.

e path(v) is a set of terms derived from the path-name
of software resource v in the file system of site(v).

e zoney(v),l =1,...,2, is a set of zones assigned to ver-
tex v. Each zone contains terms extracted from a soft-
ware resource that is associated to v and which con-
tains textual content. In particular, zone;(v) stores
the terms extracted from wv’s own contents, whereas
zonez(v),. .., zone., (v) store terms extracted from soft-
ware documentation files associated to v. The number
(zo — 1) of these files depends on the file-system orga-
nization of site(v) and on the algorithm that discovers
such associations (see subsequent section). Each term
of a zone is assigned an associated weight w;, 0 <

'Normalization techniques for filenames are presented
in [24].

w; < 1 equal to the term’s TF/IDF value in the cor-
pus. Furthermore, each zone;(v) is assigned a weight
g so that > /* g1 = 1. Zone weights are introduced
to support weighted zone scoring in the resolution of

end-user queries.

Each edge e of the graph has two attributes: e = (type,w),
where type denotes the association represented by e and w
is a real-valued weight (0 < w < 1) expressing the degree of
correlation between the edge’s vertices. The Software Pack-
ages are coherent clusters of “correlated” software resources
in Software Graph. Next, we focus on presenting how the
Software Graph can be constructed (section 4), the Miner-
soft architecture section 5) and we evaluate its contribution
(section 6).

4. SOFTWARE GRAPH CONSTRUCTION
AND INDEXING

A key responsibility of the Minersoft harvester is to con-
struct a Software Graph (SG) for each computing site, start-
ing from the contents of its file system. To this end, we pro-
pose an algorithm comprising a number of steps described
below :

FST construction: Initially, Minersoft scans the file sys-
tem of a site and creates a file-system tree (FST) data struc-
ture. The internal vertices of the tree correspond to direc-
tories of the file system; its leaves correspond to files. Edges
represent containment relationships between directories and
sub-directories or files. All FST edges are assigned a weight
equal to one. During the scan, Minersoft ignores a stop list
of files and directories that do not contain information of
interest to software search (e.g., /tmp, /proc).

Classification and pruning: Names and pathnames play
an important role in file classification and in the discov-
ery of associations between files. Accordingly, Minersoft
normalizes filenames and pathnames of FST vertices, by
identifying and removing suffixes and prefixes. The nor-
malized names are stored as metadata annotations in the
FST vertices. Subsequently, Minersoft applies a combina-
tion of system utilities and heuristics to classify each FST
file-vertex into one of the following categories: binary exe-
cutables, source code (e.g. Java, C++), libraries, software-
description documents and irrelevant files. Minersoft prunes
all FST leaves found to be irrelevant to software search,
dropping also all internal FST vertices that are left with
no descendants. This step results to a pruned version of the
FST that contains only software-related file-vertices and the
corresponding directory-vertices.

Structural dependency mining: Subsequently, Miner-
soft searches for “structural” relationships between software-
related files (leaves of the file-system tree). Discovered re-
lationships are inserted as edges that connect leaves of the
FST, transforming the tree into a graph. Structural relation-
ships can be identified by: i) Rules that represent expert
knowledge about file-system organization, such as naming
and location conventions. For instance, a set of rules link
files that contain man-pages to the corresponding executa-
bles. Readme and html files are linked to related software
files. ii) Dynamic dependencies that exist between libraries

and binary executables. Binary executables and libraries
usually depend on other libraries that need to be dynami-
cally linked during runtime. These dependencies are mined
from the headers of libraries and executables and the cor-
responding edges are inserted in the graph; each of these
edges is assigned a weight of one, as there exists a direct
association of files.

The structural dependency mining step produces the first
version of the SG, which captures software resources and
their structural relationships. Subsequently, Minersoft seeks
to enrich file-vertex annotation with additional metadata
and to add more edges into the SG, in order to better express
content associations between software resources.

Keyword scraping: In this step, Minersoft performs deep
content analysis for each file-vertex of the SG, in order to ex-
tract its descriptive keywords. This is a resource-demanding
computation that requires the transfer of all file contents
from disk to memory, to perform content parsing, stop-word
elimination, stemming and keyword extraction. Different
keyword-scraping techniques are used for different types of
files: for instance, in the case of source code, we extract
keywords only from the comments inside the source, since
the actual code lines would create unnecessary noise without
producing descriptive features.

Binary executable files and libraries contain strings that are
used for printing out messages to the users, debugging in-
formation, logging etc. All this information can be used in
order to get useful features from these resources. Minersoft
parses the binary files byte by byte and captures the print-
able character sequences that are at least four characters
long and are followed by an unprintable character. The ex-
tracted keywords are stemmed and saved in the zones of the
file-vertices of the SG.

Keyword flow: Software files (executables, libraries, source
code) usually contain little or no free-text descriptions. There-
fore, content analysis typically discovers very few keywords
inside such files. To enrich the keyword sets of software-
related file-vertices, Minersoft identifies edges that connect
software-documentation file-vertices with software file-vertices,
and copies selected keywords from the former into the zones
of the latter.

Content association mining: Similar to [6] and [23], we
further improve the density of SG by calculating the cosine
similarity between the SG vertices of source files. To imple-
ment this calculation, we represent each source-file vertex
as a weighted term-vector derived from its source-code com-
ments. To improve the performance of content association
mining, we apply a feature extraction technique to estimate
the quantity of information of individual terms and to disre-
gard keywords of low value. Source codes that exhibit a high
cosine-similarity value are joined through an edge that de-
notes the existence of a content relationship between them.

Inverted index construction: To support full-text search
for software resources, Minersoft creates an inverted index of
software-related file-vertices of the SG. The inverted index
has a set of terms, with each term being associated to a

“posting” list of pointers to the software files containing the
term. The terms are extracted from the zones of SG vertices.

In the subsequent sections, we provide more details on the
algorithms for finding relationships between documentation
and software-related files (section 4.1), keyword extraction
and keyword flow (section 4.2), and content association min-
ing (section 4.3).

4.1 Context Enrichment

During the structural dependency mining phase, Minersoft
seeks to discover associations between documentation and
software leaves of the file-system tree. These associations
are represented as edges in the SG and contribute to the en-
richment of the context of software resources. The discovery
of such associations is relatively straightforward in the case
of Unix/Javadoc online manuals since, by convention, the
normalized name of a file storing a manual is identical to
the normalized file name of the corresponding executable.
Minersoft can easily detect such a connection and insert an
edge joining the associated leaves of the file-system tree. The
association represented by this edge is considered strong and
the edge is assigned a weight equal to 1.

In the case of readme files, however, the association between
documentation and software is not obvious: software en-
gineers do not follow a common, unambiguous convention
when creating and placing readme files inside the directory of
some software package. Therefore, we introduce a heuristic
to identify the software-files that are potentially described
by a readme, and to calculate their degree of association.
The key idea behind this heuristic is that a readme file de-
scribes its siblings in the file-system tree; if a sibling is a
directory, then the readme-file’s “influence” flows to the di-
rectory’s descendants so that equidistant vertices receive the
same amount of influence and vertices that are farther away
receive a diminishing influence. If, for example, a readme-
file leaf v" has a vertex-set V" of siblings in the file-system
tree, then:

e Each leaf v; € V" receives from v" an “influence” of 1.

e Fach leaf f that is a descendant of an internal node
vy € V7, receives from v" an “influence” of 1/(d — 1),
where d is the length of the FST path from v" to f.

The association between software-file and readme-file ver-
tices can be computed easily with a simple linear-time breadth-
first search traversal of the FST, which maintains a stack to
keep track of discovered readme files during the FST traver-
sal. For each discovered association we insert a correspond-
ing edge in the SG; the weight of the edge is equal to the
association degree.

4.2 Content Enrichment
Minersoft performs the “keyword-flow” step, which enriches
software-related vertices of the SG with keywords mined

from associated documentation-related vertices. The keyword-

flow algorithm is simple: for all software-related vertices v,
we find all adjacent edges eq = (v,y) in the SG, where y is
a documentation vertex. For each such edge ey, we attach a
documentation zone to v.

As we referred in the previous section, each software file
is described by a number of zones. A zone includes a set
of keywords. If there is an edge in G between a software-
description document (i.e., readme, manual) and a software
file (i.e., executable file, library, source code), then we enrich
the content of the software file by adding a new zone. Such
an action improves keyword-based searching since software
files contain little or no free-text descriptions. So, the soft-
ware files are represented by a number of zones. However,
each zone has a different degree of importance in terms of
describing the content of a software file. For instance, the
content zone of a vertex v is more important for the descrip-
tion of v than its documentation zones. Thus, each zone;(v)
is assigned a weight g; so that Z = >";", g; = 1, where z, is
the total number of zones for a software file v. The weight of
each zone is computed as follows: the weight of zone which
includes the textual content of v takes the value a. The
weights of the other zones of each file are determined by the
edge weights of the SG G that has been occurred by exploit-
ing the file-system tree, multiplied by «. The value of « is
a normalization constant calculated so that the sum of the
weights of the zones attached to each vertex equals 1. Re-
call that a software file is enriched by a zone if there already
exists an edge between this file and a software-description
document. Each zone includes the selected terms of the un-
derlying software-description document.

4.3 Content Association
Minersoft enriches the SG with edges that capture content
association between source-code files in order to support,

later on, the automatic identification of software packages
in the SG.

To this end, we represent each source file s as a weighted

=
term-vector V (s) in the Vector Space Model (VSM). We
estimate the similarity between any two source-code files
s; and s; as the cosine similarity of their respective term-

vectors: l—/)(sl) - Y—/)(sj). If the similarity score is larger than
a specific threshold (for our experiments we have set the
threshold > 0,05), we add a new typed, weighted edge to
the SG, connecting s; to s;. The weight w of the new edge
equals the calculated similarity score.

The components of the term-vectors correspond to terms
of our dictionary. These terms are derived from comments
found inside source-code files and their weights are calcu-
lated using a TF-IDF weighing scheme. To reduce the di-
mensionality of the vectors and noise, we apply a feature
selection technique in order to choose the most important
terms among the keywords assigned to the content zones
source files. Feature selection is based on the quantity of in-
formation Q(t) metric that a term ¢ has within a corpus, and
is defined by the following equation: Q(t) = —log2(P(t)),
where P(t) is the observed probability of occurrence of term
t inside a corpus [22]. In our case, the corpus is the union of
all content zones of SG vertices of source files. To estimate
the probability P(t), we measure the percentage of content
zones of SG vertices of source files wherein ¢ appears; we do
not count the frequency of appearance of ¢ in a content-zone,
as this would create noise.

Subsequently, we drop terms which their quantity of in-
formation values from the content-zones of SG vertices of
source files are lower than a specific threshold (for our exper-
iments we remove the terms where Q(t) < 3,5). The reason
is that low-@ terms would be useful for identifying different
classes of vertices. In our case, however, we already know
the class where each vertex belongs to (this corresponds to
the type of the respective file). Therefore, by dropping terms
that are frequent inside the source-code class, we maintain
terms that can be useful for discriminating between files in-
side a source-code class.

4.4 Parallelization

For the efficient implementation of the SG construction algo-
rithm in a Grid setting, we should take advantage of various
parallelization techniques in order to:

e Distribute parts of the Minersoft computation to Grid
sites, in order to take advantage of the Grid comput-
ing and storage power, to reduce the communication
exchange between the Minersoft system and local Grid
sites, and to sustain the scalability of Minersoft with
respect to the total number of Grid sites. Minersoft
tasks are wrapped as Grid jobs that are submitted to
Grid sites via the Grid workload-management system.

e Avoid overloading Grid sites by applying load-balancing
techniques when deploying Minersoft jobs to the Grid.

e Improve the performance of Minersoft jobs by employ-
ing multi-threading to overlap local computation with

1/0.

e Adapt to the policies put in place by different Grid
sites regarding the number of jobs that can be accepted
by their queuing systems, the total time that each of
these jobs is allowed to run on a given site, etc.

More details on the parallelization of the Minersoft algo-
rithm and its deployment on the EGEE Grid are given in
the following section.

5. MINERSOFT ARCHITECTURE

Creating a search engine for software that can cope with the
scale of emerging Grid infrastructures presents several chal-
lenges. Fast crawling technology is required to gather the
Grid software resources and keep them up to date. Storage
space must be used efficiently to store indices and the files
themselves. The indexing system must process hundreds of
gigabytes of data efficiently.

In this section, we will provide a description of how the whole
system works as depicted in Figure 1. Minersoft architecture
is a Map-Reduce-like system; the crawling and indexing is
done by several distributed multi-threaded crawler and in-
dexer Grid jobs, which run in parallel on different Grid sites
for improved performance and efficiency. The crawler and
indexer jobs process a specific number of files, called splits.
A key component of the Minersoft architecture is the Grid
job manager, which has the overall supervision for crawler
and indexer jobs. The graph constructor module is respon-
sible for constructing the SG exporting data from the full-
text inverted indexes which are distributed in the Grid sites.

For each site, this module performs structural dependency
mining, keyword scrapping, keyword flow and content asso-
ciation mining tasks (described in previous section). These
tasks result in enriching the full-text inverted indexes of Grid
sites. The query processor module is responsible for provid-
ing quality search results efficiently.

5.1 Crawling phase

Crawling the Grid is a challenging task that needs to address
various performance, reliability and site-policy issues since
it involves interaction with hundreds of Grid sites, which are
beyond the control of the system. Minersoft undertakes the
crawling of Grid sites in a distributed manner. The Grid
job manager sends a number of multi-threaded crawler jobs
to each Grid site. A challenge for crawler jobs is to harvest
all the software resources residing within Grid sites, without
exceeding the time constraints imposed by site policies: jobs
which run longer than the allowed time are terminated by
the sites’ batch systems. The maximum wall clock time for
a Grid site usually ranges between 2 and 72 hours.

Considering that a Grid site contains a large volume of files,
we decompose the file system of each Grid site into a num-
ber of splits, where the size of each split is chosen so that
the crawling can be distributed evenly and efficiently within
the time constraints of the underlying site. The splits are
assigned by the Grid job manager to crawler jobs on a con-
tinuous basis: As a site finishes with its assigned splits, it is
receives more splits for processing. If a site becomes laggard,
the crawler job is canceled and rescheduled to run when the
site’s workload is reduced. Furthermore, if the batch system
queue of a Grid site is full and does not accept new jobs,
the Grid job manager stops submitting crawler jobs to that
site until the batch system becomes ready to accept more.
Minersoft crawlers undertake the task of classifying software
files into categories, as described earlier (e.g., binaries, li-
braries, documentations). The files found to be irrelevant
are dropped from the FST data structure. The results of a
crawler are stored at the Storage Element of each Grid site.
In particular, we keep in a metadata store file the file-id,
name, type, path, size and structural dependencies of the
identified software resources. Then, the Grid job manager
fetches the resulted metadata store files from all Grid sites
and merges them into a file index. The file indexr comprises
information about each software resource and is stored in
Minersoft’s dedicated infrastructure. From this index we
can easily construct the first version of the SG, which cap-
tures software-related files and their structural relationships.

5.2 Indexing phase

During the indexing phase, the file index is used by the Grid
job manager in order to create multi-threaded indexer jobs,
and to dispatch them for execution to Grid sites. The task
of the indexers is to read and parse local files of interest
and create a full-text inverted index. Since most sites do
not allow jobs running more than 48 hours, several indexer
jobs should be submitted and executed simultaneously on
each site, to improve the file-processing throughput and to
reduce the overall indexing time per site. Each indexer job
is responsible for a specific number of files in a Grid site.

Similarly to the crawling process, the list of files of each
Grid site is decomposed into a number of splits where the

Users Minersoft

Graph
Constructor

< . Query

Processor

£
——
Global
inverted
index

Grid Job
Manager

Full text
inverted

d
<

Grid Site N

% Griasi
54 Max Wall Clock Time
Cl—

xt

Full te

—
inverted
index

Figure 1: Minersoft architecture.

size of the split is chosen to ensure that indexing can be
distributed evenly and efficiently within the time constraints
of the system. In this context, the Grid job manager assigns
the splits to a number of indexer jobs, taking into account
the current status of the Grid site. As a site finishes indexing
the assigned splits, it receives the next ones. When the
indexing has been completed, each Grid site has a full-text
inverted index.

Since a large percentage of duplicate software resources ex-
ists in Grid sites, Minersoft uses a duplicate reduction policy
to preprocess the file inder and identify the exact duplicate
files. Its ultimate goal is to further improve the performance
of indexing. Specifically, a file may belong to more than
one Grid sites. Files with the same name, path and size
are considered to be duplicates. According to our policy,
a duplicate file is assigned to the Grid site which has the
minimum number of assigned files that should be indexed.
The key idea behind this policy is to distribute the dupli-
cate software resources in Grid sites so as to prevent their
overloading. In this context, for each Grid site, the following
steps take place:

1. The file index is sorted in ascending order with respect
to the count of sites that a file exists.

2. The files which do not have duplicates are directly as-
signed to the corresponding Grid site.

3. If a file belongs to more than one Grid sites, the file
is assigned to the site with the minimum number of
assigned files.

Finally, the Grid job manager fetches all the resulted local
inverted-indexes and merges them into a global full-text in-
verted index which is stored in the Minersoft repository.

5.3 Harvester Implementation and Deployment
The implementation of the Grid job manager relies upon the
Ganga system [10], which is used to create and submit jobs
as well as to resubmit them in case of failure. We adopted
Ganga in order to have full control of the jobs and their
respective arguments and input files. The Grid job manager
(through Ganga scripts) monitors the status of jobs after
their submission and keeps a list of sites and their failure
rate. If there are sites with a very high failure rate, the Grid
job manager eventually puts them in a black list and stops
submitting jobs to them.

The crawler is written in Python. The Python code scripts
are put in a tar file and copied on a storage element be-
fore job submission starts. The tar file is being downloaded
and untarred to the target site before the crawler execution
starts. By doing that, the size of the jobs’ input sandbox
is reduced, thus job submission is accelerated because the
Workload Management System has to deal with much less
files per job. The indexer is written in Java and Bash and
uses an open-source high performance, full-text index and
search library (Apache Lucene [1]). In order to execute the
indexer jobs, we follow the same code-deployment scenario
as with crawlers.

Before the job submission starts, the Grid job manager has
to distribute the crawling/indexing workload. This is done
by creating splits for each site that Minersoft has to crawl.
The input file for each split is uploaded on a storage element
and registered to an LCG File Catalog (LFC). Every Job
has its own ID (given as an argument during submission). A
job’s ID is the split number that the job will have to process.
The split input is then downloaded from a storage element
and used to start the processing of files. The split input is
a text file containing the list of files that have to be crawled
or indexed. After execution, the jobs upload their outputs
on storage elements and register the output files to an LFC.

The logical file names and the directories containing them
in the LFC are properly named so that they implicitly state
the split number and the site that they came from or going
to.

6. EVALUATION

The software design of Minersoft enables the distribution
of its crawling and indexing tasks to the computing nodes
of EGEE [2]. In the current implementation we used Java,
Python, and an open-source high performance, full-text in-
dex and search library (Apache Lucene). In [17], we evalu-
ated the performance of the overall system on 9 Grid sites
of EGEE infrastructure and we concluded to the following
empirical observations:

e A large percentage of duplicate files exists in Grid sites.
Specifically, 33% of files belongs to more than one Grid
sites.

e The crawling and indexing is significantly affected by
the hardware (local disk, shared file system), file types
and the current workload of Grid sites.

e [t is important to establish advanced software discov-
ery services in the Grid since, in most cases, more than
50% of files that exist in the workernodes file systems
of Grid sites are software files.

In this work, we evaluate the effectiveness of the Minersoft
search engine for locating software on the EGEE. A diffi-
culty in the evaluation of such a system is that there are not
widely accepted any benchmark data collections dedicated
to software (e.g., TREC, OHSUMED etc). On the other
hand, the usefulness of the findings of any study depends on
the realism of the data upon which the study operates. For
this purpose, the experiments are conducted on EGEE. In
this context, we use the following methodology in order to
evaluate the performance of Minersoft:

e Data collection: Our dataset consists of the software
installed in 6 Grid sites of EGEE infrastructure. Ta-
ble 1 presents the software resources that have been
identified by Minersoft on those sites.

o Queries: We use a collection of 27 queries, which were
provided to us by EGEE users, and which comprise
either single- or multiple-keywords. Each query has an
average of 2.3 keywords; this is comparable to values
reported in the literature for Web search engines [27].
To further investigate the sensitivity of Minersoft, we
have classified the queries into two categories: general-
content and software-specific (see Table 2).

e Relevance judgment: A software resource is considered
relevant if it addresses the stated information need and
not because it just happens to contain all the keywords
in the query. A software resource returned by Miner-
soft in response to some query is given a binary classi-
fication as either relevant or non-relevant with respect
to the user information need behind the query. In ad-
dition, the result of each query has been rated at three
levels of user satisfaction: “not satisfied,” “satisfied,”

General-content
queries

Software-specific
queries

linear algebra package;
fast fourier transforma-
tions; symbolic algebra

ImageMagick; lapack li-
brary; GSL library; crab;
k3b cd burning; xerces

computation library; |[xml; gcc fortran; oc-
mathematics statistics || tave numerical compu-
analysis; earthquake || tations; matlab; hpc
analysis; scientific data || netlib; scalapack; mpich;
processing; statistical || autodock docking; boost
analysis software; atlas [| c++ library; subversion
software client; java virtual ma-

chine; ffmpeg video pro-
cessing; FFTW library

Table 2: Queries.

“very satisfied.” These classifications are referred to
as the gold standard and have been done manually by
EGEE administrators and/or experienced users.

Performance Measures. The effectiveness of Minersoft
should be evaluated on the basis of how much it helps users
achieve their software searches efficiently and effectively. In
this context, we used the following performance measures:

e Precision@20: reports the fraction of software resources
ranked in the top 20 results that are labeled as rele-
vant. The relevance of the retrieved results is deter-
mined by the gold standard. By default, we consider
that the results are ranked with respect to the rank-
ing function of Lucene, which is based on TF-IDF of
documents and has extensively been used in the liter-
ature [8, 12]. The maximum Precision@20 value that
can be achieved is 1.

e NDCG (Normalized Discounted Cumulative Gain) [16]:
is a retrieval measure devised specifically for evaluating
user satisfaction. For a given query q, the K ranked re-
sults are examined in decreasing order of rank, and the

NDCG computed as: NDOGy = M35 (2201
where each r(j) is an integer relevance label (0=“not
satisfied”, 1="satisfied”, 2="“very satisfied”) of the re-
sult returned at position j and Mq is a normalization
constant calculated so that a perfect ordering would

obtain NDCG of 1.

e NCG: This is the predecessor of NDCG and its main
difference is that it does not take into account the po-
sition of the results. For a given query ¢, the NCG is
computed as: NCGq = My - Zf::fo r(j4). A perfect
ordering would obtain NCG of 1.

Cumulative gain measures (NDCG, NCG) and precision com-
plement each other when evaluating the effectiveness of IR
systems [4, 11].

Examined Approaches. In order to evaluate the SG ef-
ficiency, we conducted experiments during the construction
of inverted index. Specifically, we examine the following:

Grid Site Binaries Sources Libraries Docs Irrelevant
AEGIS01-PHY-SCL 6.064 31.734 7.669 66.810 38.559
CY-03-INTERCOLLEGE 26.971 8.925 3.644 23.064 27.296
CY-01-KIMON 28.691 166.294 22.571 295.074 45.666
RO-08-UVT 8.134 56.793 4.199 68.335 146.940
HG-05-FORTH 28.351 495.995 65.507 759.571 114.138
BG04-ACAD 46.330 960.824 93.663 1.305.390 298.039
Total 144.541 | 1.720.565 | 197.253 | 2.518.244 670.638
Table 1: Files Categories.
| Grid Sites \ | E (total edges) | Esp Eca | Index Size(GB) |
AEGIS01-PHY-SCL 120.369 1.007.508 207.080 800.428 0.73
CY-03-INTERCOLLEGE 72.424 209.243 154.998 54.245 0.34
CY-01-KIMON 565.799 20.670.759 1.050.076 19.620.683 2
RO-08-UVT 157.591 862.005 228.299 633.706 0.66
HG-05-FORTH 1.508.986 164.657.942 3.632.165 161.025.777 15
BG04-ACAD 2.632.193 617.084.993 6.359.610 610.725.383 16
| Total | 5.057.362 | 804.492.450 | 11.632.228 | 792.860.222 | 34.73 |

Table 3: Software Graphs Statistics.

o ['le-search: Inverted index terms are only extracted
from the full-text content of discovered files in EGEE
infrastructure without any preprocessing. This ap-
proach searches files matching given query terms and
it is relevant to the desktop search systems (e.g., Con-
fluence [15], Wumpus [30]). File — search is used as a
baseline for our experiments.

o (Context-enhanced search: The files have been classi-
fied into file categories. The terms of inverted index
are extracted from the content zone and path of SG
vertices. The irrelevant files are discarded. We also
exclude the software-description documents from the
posting lists.

e Software-description-enriched search: The terms of in-
verted index are extracted from the content of SG ver-
tices as well as from the zones of documentation files
(i.e., man-pages and readme files) and the path of SG
vertices.

e Text-file-enriched search: The terms of inverted index
are extracted from the content, the path and the zones
from the other text files of SG vertices with the same
normalized filename.

Results and Analysis. Figures 2, 3 and 4 present the re-
sults of the examined approaches with respect to the query
types. For completeness of presentation, we present the av-
erage and median values of the examined metrics. The gen-
eral observation is that context-enhanced search improves
significantly both the Precision@20 and the examined cu-
mulative gain measures compared with file-search for both
types of queries. Specifically, context-enhanced search im-
proves the Precision@20 about 97% and NDCG about 87%
with respect to the baseline approach. Another interest-
ing observation is that most of software-specific queries in-
dicate average Precision@20 close to 1 (see median val-
ues), whereas the average Precision@20 for all the queries
is about 0,8. Regarding the software-description-enriched

search, we make the following observations: Although the
enrichment of software-description documents decreases the
precision (about 5%) with respect to contezt-enhanced search,
it does increase user satisfaction achieving higher cumulative
gain measures (on average about 7%). The decrease of pre-
cision is due to the side-effects of stemming. On the other
hand, the text-file-enriched search deteriorates the general
system’s performance. This is explained by the fact the soft-
ware developers use similar filenames in their software pack-
ages. On the other hand, text-file-enriched search improves
user satisfaction for general-content queries since more re-
sults are returned to users than the previous examined ap-
proaches. To sum up, the results show that Minersoft is
a powerful tool since it achieves high effectiveness for both
types of queries.

Table 3 presents the statistics of the resulted SGs. Recall
that Minersoft harvester constructs a SG in each Grid site.
In this context, Table 3 presents the edges that have been
added due to structure dependency (Esp) and content asso-
ciations (Eca). For completeness of presentation, the index
size of each graph is presented. One observation is that the
SGs are not sparse. Specifically, we found that they follow
the relation £ = V<, where 1.1 < a < 1.37; note that a = 2
corresponds to an extremely dense graph where each node
has, on average, edges to a constant fraction of all nodes.
Another observation is that most of the edges are due to
content associations. However, most of these edges have
lower weights (0,05 < w < 0,2) than the edges which are
due to structure dependency associations.

7. CONCLUSION AND FUTURE WORK

In this paper, we present the design and implementation
of the core information retrieval component of Minersoft -
the Software Graph. Experimental results showed that SG
represents in an efficient way the software resources, improv-
ing the searching of software packages in large-scale network
environments. Except of Grids, Minersoft can also be used
as keyword-based paradigm for any large-scale distributed

" O Total Queries O Generak content Queries O Software-specific Clueries
09 A =
08 A — L —
s 071 ||]
&) 05 A
5
@ 057
@ 04
o
03 A
02
01 A
a
average | median | average | median | average | median | average | median
File-search Context-enhanced- |Software-description-| Textfile-enriched-
search enriched-search search
Figure 2: Precision Results.
07 - O Total Queries & Generak content Queries O Software-specific Gueries
05 1 B
05 A — BB [TV
o 044]
[x]
=]
Z 31
0,27
0,1 7
a
average | median | average | median | average | median | average | median
File-search Context-enhanced- |Software-description-| Text-fileenriched-
search enriched-search search
Figure 3: NDCG Results.
087 O Total Queries O General-content Queries O Software-specific Queries
0g 4 —
07 1
0g A
O 051
b &
= 04
031
02
019
0
average | median average | median | average | median average | median
File-search Context-ehhanced- | Software-description- Text-file-enriched-
search enriched-search search

Figure 4: NCG Results.

computing platform, such as Clouds, as well as, for stand-
alone computers. We are currently extending Minersoft for
harvesting and indexing software resources in Cloud com-
puting infrastructures. In future work we also intend to
exploit the linkage structure of SG so as to identify coherent
clusters of “correlated” software resources and improve the
ranking of results.

Acknowledgement: It was supported in part by the European
Commission under the Seventh Framework Programme through
the SEARCHIN project (Marie Curie Action, contract number
FP6-042467) and the Enabling Grids for E-sciencE project (con-
tract number INFSO-RI-222667). The authors would like to
thank EGEE users that provided characteristic queries for evalu-
ating Minersoft.

8. REFERENCES

[1] Apache Lucene. http://lucene.apache.org/java/docs/(last
accessed December 2008).

[2] Enabling Grids for E-SciencE project.
http://www.eu-egee.org/ (last accessed June 2009).

[3] R. Agrawal and et al. The claremont report on database
research. SIGMOD Rec., 37(3):9-19, 2008.

[4] A. Al-Maskari, M. Sanderson, and P. Clough. The
relationship between ir effectiveness measures and user
satisfaction. In SIGIR 07, pages 773-774, New York, NY,
USA, 2007. ACM.

[5] A. Ames, C. Maltzahn, N. Bobb, E. L. Miller, S. A.
Brandt, A. Neeman, A. Hiatt, and D. Tuteja. Richer file
system metadata using links and attributes. In MSST 05,
pages 49—-60, Washington, DC, USA, 2005. IEEE Computer
Society.

[6] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo. Recovering traceability links between code and
documentation. IEEE Trans. Softw. Eng., 28(10):970-983,
2002.

[7] M. Armbrust and et al. Above the clouds: A berkeley view
of cloud computing. Technical Report UCB/EECS-2009-28,
EECS Department, University of California, Berkeley, Feb
20009.

[8] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su.
Optimizing web search using social annotations. In WWW
’07, pages 501-510, New York, NY, USA, 2007. ACM.

[9] L. Bass, P. Clements, R. Kazman, and M. Klein.
Evaluating the software architecture competence of
organizations. In WICSA 08, pages 249-252, 2008.

[10] F. Brochu, U. Egede, J. Elmsheuser, and K. H. et al.
Ganga: a tool for computational-task management and
easy access to Grid resources. Computer Physics
Communications (submitted), 2009.
http://ganga.web.cern.ch/ganga/documents/index.php.

[11] C. L. Clarke and et al. Novelty and diversity in information
retrieval evaluation. In SIGIR 08, pages 659—666, New
York, NY, USA, 2008. ACM.

[12] S. Cohen, C. Domshlak, and N. Zwerdling. On ranking
techniques for desktop search. ACM Trans. Inf. Syst.,
26(2):1-24, 2008.

[13] M. D. Dikaiakos, R. Sakellariou, and Y. Ioannidis.
Information Services for Large-scale Grids: A Case for a
Grid Search Engine, chapter Engineering the Grid: status
and perspectives, pages 571-585. American Scientific
Publishers, 2006.

[14] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. James
W. O’Toole. Semantic file systems. In SOSP 91, pages
16-25, New York, NY, USA, 1991. ACM.

[15] K. A. Gyllstrom, C. Soules, and A. Veitch. Confluence:
enhancing contextual desktop search. In SIGIR 07, pages
717718, New York, NY, USA, 2007. ACM.

[16] K. Jarvelin and J. Kekéldinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422-446, 2002.

[17] A. Katsifodimos, G. Pallis, and D. M. Dikaiakos. Harvesting
large-scale grids for software resources. In CCGRID 09,
Shanghai, China, 2009. IEEE Computer Society.

[18] S. Khemakhem, K. Drira, and M. Jmaiel. Sec+: an
enhanced search engine for component-based software
development. SIGSOFT Softw. Eng. Notes, 32(4):4, 2007.

[19] J. Koren, A. Leung, Y. Zhang, C. Maltzahn, S. Ames, and
E. Miller. Searching and navigating petabyte-scale file
systems based on facets. In PDSW 07, pages 21-25, 2007.

[20] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an
effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In SIGMOD 2008,
pages 903-914, New York, NY, USA, 2008. ACM.

[21] D. Lucrédio, A. F. do Prado, and E. S. de Almeida. A
survey on software components search and retrieval. In
Proceedings of the 30th Euromicro Conference, pages
152-159, 2004.

[22] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An
information retrieval approach for automatically
constructing software libraries. IEEE Trans. Softw. Eng.,
17(8):800-813, 1991.

[23] A. Marcus and J. Maletic. Recovering
documentation-to-source-code traceability links using latent
semantic indexing. In ICSE 2003, pages 125-135, May
2003.

[24] D. Robinson, I. Sung, and N. Williams. File systems,
unicode, and normalization. In Unicode ’06, 2006.

[25] F. Silvestri, D. Puppin, D. Laforenza, and S. Orlando. A
search architecture for grid software components. In W1
04, pages 495-498, Washington, DC, USA, 2004. IEEE
Computer Society.

[26] C. A. N. Soules and G. R. Ganger. Connections: using
context to enhance file search. SIGOPS Oper. Syst. Rev.,
39(5):119-132, 2005.

[27] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts.
Information re-retrieval: repeat queries in yahoo’s logs. In
SIGIR 07, pages 151-158, New York, NY, USA, 2007.
ACM.

[28] T. Vanderlei and et. al. A cooperative classification
mechanism for search and retrieval software components. In
SAC 07, pages 866—871, New York, NY, USA, 2007. ACM.

[29] P. Vitharana, F. M. Zahedi, and H. Jain. Design, retrieval,
and assembly in component-based software development.
Commun. ACM, 46(11):97-102, 2003.

[30] P. C. Yeung, L. Freund, and C. L. Clarke. X-site: a
workplace search tool for software engineers. In SIGIR ’07,
New York, NY, USA, 2007. ACM.

