
Parallel Processing Letters, Vol. 18, No. 3 (2008) 371-390 M L _
^ w u o • 4.-B D KI• i.- n l i s World Scientific
© World scientific Publishing Company V P ' ••••-., ,„„,M..»;„„.;<;
^ ^ o x- ^ ^ ^ www.worlascientific.com

METADATA RANKING AND PRUNING FOR FAILURE
DETECTION IN GRIDS*

DEMETRIOS ZEINALIPOUR-YAZTI
Pure and Applied Science, Open University of Cyprus, 1304, Nicosia, Cyprus

dzeina@cs.ucy.ac.cy

HARRIS PAPADAKIS
Foundation of Research and Technology - Hellas, Institute of Computer Science

Heraklion, Crete, Greece

CHRYSSIS GEORGIOU, MARIOS D. DIKAIAKOS
Department of Computer Science, University of Cyprus, 1678, Nicosia, Cyprus

Received May 2008
Revised July 2008

Communicated by P. Fragopoulou

ABSTRACT

The objective of Grid computing is to make processing power as accessible and easy to
use as electricity and water. The last decade has seen an unprecedented growth in Grid
infrastructures which nowadays enables large-scale deployment of applications in the
scientific computation domain. One of the main challenges in realizing the full potential
of Grids is making these systems dependable.

In this paper we present FailRank, a novel framework for integrating and ranking
information sources that characterize failures in a grid system. After the failing sites have
been ranked, these can be eliminated from the job scheduling resource pool yielding in
that way a more predictable, dependable and adaptive infrastructure. We also present
the tools we developed towards evaluating the FailRank framework. In particular, we
present the FailBase Repository which is a 38GB corpus of state information that char-
acterizes the EGEE Grid for one month in 2007. Such a corpus paves the way for the
community to systematically uncover new, previously unknown patterns and rules be-
tween the multitudes of parameters that can contribute to failures in a Grid environment.
Additionally, we present an experimental evaluation study of the FailRank system over
30 days which shows that our framework identifies failures in 93% of the cases and can
achieve this by only fetching 65% of the available information sources. We believe that
our work constitutes another important step towards realizing adaptive Grid computing
systems.

Keywords: Data Ranking Algorithms, Computational Grids, Failures, Scheduling

"This work is supported in part by the European Union under projects CoreGRID (# IST-2002-
004265) and EGEE (#IST-2003-508833). A Preliminary version of this paper has appeared in [32]
and [33]. The second author was supported by a CoreGRID REP Fellowship during 2008.

371

http://www.worlascientific.com
mailto:dzeina@cs.ucy.ac.cy

372 D. Zeinalipour-Yazti et al.

1. Introduction

Grids have emerged as wide-scale, distributed infrastructures that comprise het-
erogeneous computing and storage resources, operating over open standards and
distributed administration control [13, 14]. Grids are quickly gaining popularity,
especially in the scientific sector, where projects like EGEE (Enabling Grids for
E-sciencE) [8], TeraGrid [25] and Open Science Grid [23] , provide the infrastruc-
ture that accommodates large experiments with thousands of scientists, tens of
thousands of computers, trillions of commands per second and petabytes of stor-
age [8, 25, 23]. At the time of writing, EGEE assembles over 250 sites around the
world with more than 30,000 CPUs and 18PB of storage, running over 25,000 con-
current jobs and supporting over 100 Virtual Organizations.

While the aforementioned discussion shows that Grid Computing will play a
vital role in many different scientific domains, realizing its full potential will re-
quire to make these infrastructures dependable. As a measure of dependability of
grids we use the ratio of successfully fulfilled job requests over the total number
of jobs submitted to the resource brokers of a grid infrastructure. The FlcxX and
Autodock data challenges of the WISDOM [30] project, conducted in August 2005,
have shown that only 32% and 57% of the jobs completed successfully (with an
"OK" status). Additionally, our group conducted a nine-month characterization
of the South-Eastern-Europe resource broker (rb l01 .gr id .ucy .ac .cy) in [6] and
showed that only 48% of the submitted jobs completed successfully. Consequently,
the dependability of large-scale grids needs to be improved substantially.

Detecting and managing failures is an important step toward the goal of a de-
pendable grid. Currently, this is an extremely complex task that relics on over-
provisioning of resources, ad-hoc monitoring and user intervention. Adapting ideas
from other contexts such as cluster computing [21], Internet services [19, 20] and
software systems [22] seems also difficult due to the intrinsic characteristics of grid
environments. Firstly, a grid system is not administered centrally; thus it is hard
to access the remote sites in order to monitor failures. Moreover we cannot easily
encapsulate failure feedback mechanisms in the application logic of each individual
grid software, as the grid is an amalgam of pre-existing software libraries, services
and components with no centralized control. Secondly, these systems arc extremely
large; thus, it is difficult to acquire and analyze failure feedback at a fine granular-
ity. Lastly, identifying the overall state of the system and excluding the sites with
the highest potential for causing failures from the job scheduling process, can be
much more efficient than identifying many individual failures. Of course the latter
information will be essential to identify the root cause of a failure [20], but this
operation can be performed in a offline phase, and thus it is complementary to our
framework.

In the FailRank architecture, feedback sources (i.e., websites, representative low-
level measurements, data from the Information Index, etc.) arc continuously coa-
lesced into a representative array of numeric vectors, the FailShot Matrix (FSM).

http://rbl01.grid.ucy.ac.cy

Metadata Ranking and Pruning for Failure Detection in Grids 373

FSM is then continuously ranked in order to identify the K sites with the highest
potential to feature some failure. This allows the system to automatically exclude
the respective sites from the job scheduling process.

The advantages of our approach are summarized as follows: (i) FailRank is a
simple yet powerful framework to integrate and quantify the multi-dimensional pa-
rameters that affect failures in a grid system; (ii) our system is tunable, allowing
system administrators to drive the ranking process through user-defined ranking
functions; (iii) we eliminate the need for human intervention, thus our approach
gives space for automated exploitation of the extracted failure semantics; (iv) we
expect that the FailRank logic will be implemented as a filter outside the Grid job
scheduler (i.e., Resource Broker or Workload Management System), thus imposing
minimum changes to the Grid infrastructure.

2. Background on Grid Computing

In this section we will describe the anatomy of a Grid system and detail all the
components pertinent to the operation of a Grid site. In particular, we will focus on
Grid computing in the context of the EGEE project although other architectures
feature a similar framework. We also describe the main causes of unsuccessful job
executions in a grid system.

2.1. The Anatomy of a Grid

A Grid interconnects a number of remote clusters, or sites. Each site features het-
erogeneous resources (hardware and software) and the sites are interconnected over
an open network such as the Internet. Figure 1 illustrates the anatomy of a typical
grid (rectangles represent hardware while ellipses the services). The figure shows
how sites with different capabilities and capacities are contributing their resources
to the Grid infrastructure. In particular, each site features one or more Worker
Nodes, which are usually rack-mounted PCs. The Computing Element shown in the
same figure runs various services responsible for authenticating users, accepting jobs,
performing resource management and job scheduling. Additionally, each site might
feature a Local Storage site, on which temporary computation results can reside,
and local Software libraries, that can be utilized by executing processes. The Grid
middleware is the component that glues together local resources and services and
exposes high-level programming and communication functionalities to application
programmers and end-users. For instance EGEE uses the gLite middleware [16],
while NSF's TeraGrid is based on the Globus Toolkit [15]. A Grid system also
features some global services which are described in the next subsection.

2.2. Lifecycle of Grid Jobs

A Grid job, or computation, consists of a set of input files that defines the elements
of a given computation (code, custom libraries, input files, etc). Grid jobs can be

374 D. Zeinalipour-Yazti et al.

Fig. 1. The Anatomy of a GRID Infrastructure.

classified as CPU-intensive and data-intensive, depending on the type of work per-
formed. For clarity we divide the lifecyclc of a grid job into the following three
conceptual phases:
(i) Assignment Phase: Jobs are submitted to a Grid by users through some
authenticated remote workstation, denoted as the User Interface (UI). Besides ob-
taining the output from completed jobs, the UI might also provide supplementary
functionality for requesting the status of a job and the status of resources in the
system. Jobs submitted to the UI are directed to some Resource Broker (RB), a
central global grid service that performs matching between requests and available
resources using the matchmaking approach [24]. Being able to quickly identify fail-
ures, would obviously be very helpful information to the RB as it would be able to
avoid bottlenecks and resources leading to errors. Although this is not currently pos-
sible, our work sets the foundation towards this goal. The matchmaking performed
by the RB is based on the information provided by another central service, the
Information Index, which provides information about the state of grid resources. If
the matchmaking is successful, the job is sent to the respective computing elements
for execution.
(ii) Execution Phase: During job execution, if any input files arc necessary, these
have to be pushed to a remote grid site at runtime. Alternatively these files could
have been pushed to the grid site during the assignment phase. In both occasions,
a service called the Replica Catalog maintains the location of various replicas of a
file held in remote Storage Elements.
(iii) Completion Phase: When the job completes successfully, the user is in-
formed through the User Interface with a set of output files that arc a superset of
the command line outputs, had the job run on a standalone computer. Although
the user will be notified in the event of a failure, there is no indication about the
possible cause.

Metadata Ranking and Pruning for Failure Detection in Grids 375

2.3. Causes of Failures

In this section we identify the main causes of failures in Grid infrastructures. These
observations are extrapolated from the experiences we acquired by operating an
EGEE grid site that consists of: (i) a Regional Resource Broker (3.6GHz/lGB
RAM), (ii) a Regional Information Service which features the same aforementioned
characteristics, (iii) a 72 CPU cluster of Worker Nodes which utilizes a blend of
2.6GHz AMD Opteron and 2.8GHz Xeon CPUs, and (iv) a Storage Element which
features 4x250GB disk space in RAID 5. Our analysis takes into account 37,860 job
submissions (wl9K normalized CPU hours), between March 2005 and June 2006.
We combine our observations with others obtained by fellow-researchers [30, 18] to
conclude the following:
Grid component failures: One or more of the components involved in the Grid
infrastructure could malfunction due to hardware failures (e.g., hard drive burns,
RAM or motherboard failures, power supply failures and overheating) and software
faults (e.g., O/S mis-configurations and middleware bugs). Such problems may result
to a total collapse of a component (crash failure) or to a component becoming
partially unresponsive or extremely slow.
Network failures: Network links could cause permanent or transient network dis-
connections leading to a loss, corruption or delay of messages and data transfers.
Network disconnections may result to total inaccessibility of a Grid component, a
condition that is equivalent to a crash failure of that component. Network access
mis-configuration (firewall changes or updates) lead to the same effect.
Information faults: The information provided by the Grid Information Service,
which provides state information about the distributed grid sites, may be erroneous
or obsolete due to administrator errors, software faults, and network delays. As
a result, the Resource Broker, a central service that performs matching between
resources and requests based on this information, may take sub-optimal decisions
that result to excessive delays in job processing or even to failures in job execution.
Excessive delays: In the large, shared and dynamic Grid infrastructure, unusual
workload conditions, like those triggered by flash crowds and denial of service at-
tacks, may lead to long queuing delays in Computing or Storage Elements, to re-
duced Grid service throughput, and to long network delays in data transfers. Such
conditions may result to job turnaround times that are substantially longer than
those expected by Grid users. A similar effect may arise also because of the het-
erogeneity of the Grid: jobs may end-up being executed on very slow resources,
resulting to unacceptably slow execution times. Because of the resource virtualiza-
tion imposed by many Grids, end-users have limited control over the performance
characteristics of resources allocated to their jobs.

3. Monitoring Failures in a Grid Environment

In this subsection we overview typical failure feedback sources provided in a grid
environment. These sources contain information that is utilized by our system in

376 D. Zeinalipour-Yazti et al.

order to deduct, in an a priori manner, the failing sites. Our discussion is in the
context of the EGEE infrastructure, but similar tools and sources exist in other
grids [25, 23].
Meta-information sources: Several methods for detecting failures have been de-
ployed so far. Examples include (for a detailed description see [27]): (i) Information
Index Queries: these are performed on the Information Service and enable the ex-
traction of fine-grained information regarding the complete status of a grid site; (ii)
Service Availability Monitoring (SAM) [31]: a reporting web site that is maintained
for publishing periodic test-job results for all sites of the infrastructure; (iii) Grid
statistics: provided by services such as GStat [17]; (iv) Network Tomography Data:
these can be obtained by actively pinging and tracerouting other hosts in order
to obtain delay, loss and topological structure information. Network tomography
enables the extraction of network-related failures; (v) Global Grid User Support
(GGUS) ticketing system [9]: system administrators use this system to report com-
ponent failures as well as needed updates for sites. Such tickets are typically opened
due to errors appearing in the SAM reports; (vi) Core Infrastructure Center (CIC)
broadcasts [5]: allow site managers to report site downtime events to all affected
parties through a web-based interface; and (vii) Machine log-files: administrators
can use these files to extract error information that is automatically maintained by
each grid node.
Active benchmarking: Deploying a number of lower level probes to the remote
sites is another direction towards the extraction of meaningful failure semantics. In
particular, one can utilize tools such as GridBench [26, 28], the Grid Assessment
Probes [4] and DiPerF [7], in order to determine in real time the value of certain
low level and application-level failure semantics that can not be furnished by the
meta-information sources. For example, the GridBench tool developed by our group
provides a corpus of over 20 benchmarks that can be used to evaluate and rank the
performance of Grid sites and individual Grid nodes.
Both the Meta-information Sources and the Active Benchmarking approaches have
a major drawback: their operation relies heavily on human intervention. As Grid in-
frastructures become larger, human intervention becomes less feasible and efficient.
As we would like Grid Dependability to be scalable, our proposed architecture does
not rely on human intervention but instead provides the means for acquiring and
analyzing the data from the above resources in an automated manner.

4. The FailRank System

In this section we describe the underlying structure that supports the FailRank
system. We start out with an architecture overview and then proceed with basic
definitions in order to formalize our description. We follow with the description of
the failure ranking mechanism deployed in FailRank.

Metadata Ranking and Pruning for Failure Detection in Grids 377

Fig. 2. The FailRank System Architecture: Feedback sources are continuously coalesced
into a representative array of numeric vectors, the FailShot Matrix (FSM). FSM is then
continuously ranked in order to identify the K sites with the highest potential to feature
some failure.

4.1. Architecture Overview

The FailRank architecture (see Figure 2), consists of four major components: (i) a
FailShot Matrix (FSM), which is a compact representation of the parameters that
contribute to failures, as these are furnished by the feedback sources; (ii) a temporal
sequence of FSMs defines an FSM timeseries which is stored on local disk; (iii) a
Top-K Ranking Module which continuously ranks the FSM matrix and identifies
the K sites with the highest potential to run into a failure using a user defined
scoring function; and (iv) a set of data exploration tools which allow the extraction
of failure trends, similarities, enable learning and prediction. FailRank is tunable
because it allows system administrators and domain experts to drive the ranking
process through the provisioning of custom scoring functions.

4.2. Definitions and System Model

In this section we will provide some definitions and our system model upon which
we will structure our presentation in the subsequent sections.

Definition 1 (FailShot Matrix (FSM)): Let S denote a set of n grid sites
(i.e., S = {s\,S2, ...,sn}). Also assume that each element in S is characterized by
a set of m attributes (i.e., A = {ai,a.2, . . . ,am}). These attributes are obtained by
the feedback sources described in Section 3. The rows in Table 1 represent the
sites while the columns represent the respective attributes. The j t h attribute of
the ith site is denoted as Sij. The j-th attribute specifies a rating (or score) which
characterizes some grid site Si (i < n) at a given time moment. These ratings are
extracted by custom-implemented parsers, which map the respective information
to real numerical values in the range [0..1] (1 denotes a higher possibility towards
failure). The mx n table of scores defines the FailShot Matrix (FSM), while a Site
Vector is any of the n rows of FSM.

A graphical illustration for some synthetic example is given in Table 1. The
figure shows five sites {s\,..., s$} where each site is characterized by five attributes:
CPU (% of CPU units utilized), DISK (% of storage occupied), QUEUE (% of job

378 D. Zeinalipour-Yazti et al.

queue occupied), NET (% of dropped network packets) and FAIL (% of jobs that
don't complete with an "OK" status).
Definition 2 (FSM Timeseries): A temporal sequence of / FailShot Matrices
defines an FSM Timeseries of order I.

Keeping a history of the failure state for various prior time instances is important
as it enables the automatic post-analysis of the dimensions that contributed to
a given failure, enables the prediction of failures and others (Section 7 provides
an overview). It is important to notice that the FSM timeseries can be stored
incrementally in order to reduce the amount of storage required to keep the matrix
on disk. Nevertheless, even the most naive storage plan of storing each FSM in its
entirety, is still much more storage efficient than keeping the raw html/text sources
provided by the feedback sources. In constructing FailBasc, described in Section 5,
wc found that the FSM representation saves us approximately 350GB of storage
per month.

4.3. The Ranking Module

Although the snapshot of site vectors in FSM greatly simplifies the representation
of information coming from different sources, observing individually hundreds of
parameters in real time in order to identify the sites that arc running into trouble
is still a difficult task. For example a typical LDAP query to the Grid Information
Service returns around 200 attributes. Monitoring these parameters in separation is
a cumbersome process that is very expensive in terms of human resources, can rarely
lead to any sort of a priori decision-making and is extremely prone to mistakes and
human omissions. Instead, automatically deducting the sites with the highest poten-
tial to suffer from failures is much more practical and useful. Since this information
will be manipulated in high frequencies, we focus on computing the K sites with
the highest potential to suffer from failures rather than finding all of them (K is a
user-defined parameter). Therefore we don't have to manipulate the whole universe
of answers but only the K most important answers, quickly and efficiently. The
answer will allow the Resource Broker to automatically and dynamically divert job
submissions away from sites running into problems as well as notify administrators
in advance (compared to SAM & tickets) to take preventive measures for the sites
more prone to failures. Finally, we developed a mechanism for selective extraction
of monitoring information for selecting those K sites, which we describe later on.
This mechanism is capable of reducing the information we need to fetch and process
by approximately one third.
Scoring Function: In order to rank sites we utilize some aggregate scoring function
which is provided by the user (or system administrator). For case of exposition wc
use, similarly to [2], the function:

m
Score{Si) = ^w.j * Sij (1)

Metadata Ranking and Pruning for Failure Detection in Grids 379

where s^ denotes the score for the j t h attribute of the ith site and Wj (vjj >
0) a weight factor which calibrates the significance of each attribute according to
the user preferences. For example if the CPU load is more significant than the
DISK load, then the former parameter is given a higher weight . Should we need to
capture more complex interactions between different dimensions of FSM we could
construct, with the help of a domain expert, a custom scoring function or we could
train such a function automatically using historic information (Section 6.3 conducts
an evaluation of this parameter). It is expected that the scoring function will be
much more complex in a real setting (e.g., a linear combination of averages over n'
correlated attributes, where n' « n).

Table 1: The FailShot Matrix (FSM).

Site
Sl=USC-LCG2
s2=TAU-LCG2
s3=ELTE
s4=UCL-CCC
s5=CY01-KIMON

CPU
0.63
0.66
0.48
0.99
0.44

DISK
0.61
0.91
0.01
0.90
0.07

QUEUE
0.01
0.92
0.16
0.75
0.70

NET
0.28
0.56
0.56
0.74
0.19

FAIL
0.35
0.58
0.54
0.67
0.67

Example: In order to stimulate our description, consider the example of Ta-
ble 1. In order to infer the overall rank for two site vectors, such as s2 =
{0.66,0.91,0.92,0.56,0.58} and s4 = {0.99,0.90,0.75,0.74,0.67}, we apply the scor-
ing function with Wj — 1 (i.e., all dimensions arc of equal importance), and find
that s2 = 3.63 and s4 = 4.05.

In order to minimize the computation of the scoring function, which potentially
has to join hundreds of columns in each run, we can utilize the Threshold Algorithm
(TA) [12]. TA is one of the most widely recognized algorithms for finding the K
highest rank answers in database and middleware scenarios. Suppose that we arc
interested in finding the K — 1 objects with the highest score. TA starts out by
performing a parallel access to the n lists of the Sortcd-FSM table, which is similar
to Table 1 with the exception that each column is sorted in descending order of
the value. While an object Si is seen, TA performs a random access to the other
lists to find the exact score for Si using the given scoring function. In our working
example the exact score would be computed for the two objects in the first row
(i.e., S4 — 4.05 and s2 — 3.63) since sorted access is executed on a row-at-a-time
basis. It then computes a threshold value r as the sum of all scores in the first row
(i.e., T = .99 + .91 + .92 + .74 + .67 = 4.23). Since r is larger than both scores of
S4 and s2, the TA algorithm performs another iteration in which the threshold r is
refined as the sum of scores across the second row (i.e., r = 3.54). It also computes
the exact score for s$ = 2.07 (the only unresolved object in the second row). Now
the algorithm finds at least K—\ objects above the threshold (i.e., S^>T and S2>T)
and therefore terminates. It is easy to prove that no other object can have a score

380 D. Zeinalipour-Yazti et al.

above S4 thus the score function calculation can be omitted for these objects.

5. The EGEE FailBase Repository

In the previous section we outlined the main components of the FailRank archi-
tecture. In this section we present the tools we developed in order to evaluate the
proposed architecture. In particular, we present the FailBase Repository which is a
38GB corpus of state information that we constructed and which characterizes the
EGEE Grid for one month in 2007. Such a corpus paves the way for the community
to systematically uncover new, previously unknown patterns and rules between the
multitudes of parameters that can contribute to failures in a grid environment.

5.1. Overview

FailBase currently contains 32 days of monitoring data obtained from tests executed
on the EGEE Grid Infrastructure between 16/3/2007 and 17/4/2007. The trace
was collected at the High Performance Computing systems Lab (HPCL) at the
University of Cyprus. We utilized a dual Xeon 2.4GHz CPU machine with 1GB of
RAM connected to the European Academic Network (GEANT) at 155Mbps.

The trace maintains information for 2,565 Computing Element (CE) queues.
It is important to note that resource brokers perform the matchmaking between
the requests and the available and appropriate queues at the CE-qucue granularity
rather than on individual nodes. Thus, we focus on characterizing failures at the
same granularity as well. Each CE-queue is stored in an individual folder that
currently contains 72 attributes (i.e., files) and each file characterizes the CE-qucue
it is stored in. For example, cel01.grid.ucy.ac.cy_ jobmanager-lcgpbs-atlas
is the directory that contains measurements specific to the ATLAS experiment job
queue that is maintained on the Computing Element ce l01 .gr id .ucy .ac .cy .

Each of the files in the CE-queue folders can be thought of as a timescrics
(i.e., a sequence of [timestamp,value] pairs) for the given attribute using a time
step of approximately 1 to 10 minutes (varies according to the type of source). We
currently share the Failbase repository with the researchers of our group using the
UNIX filcsystem interface which maintains openness and portability. In the future
we have plans to store the information in a relational database on the EGEE grid in
order to allow researchers from other institutes to access and manipulate the stored
information using the expressive power of the Structured Query Language (SQL).

5.2. Meta-information Sources

We shall next describe the adopted methodology for acquiring the 72 failure-related
attributes from the respective meta-information sources:
(i) Service Availability Monitoring (SAM): We obtained approximately 260MB of
data in raw html form (one html file for each CE) using the UNIX system utility
curl. We then processed these pages using a set of perl scripts and generated 18

http://cel01.grid.ucy.ac.cy_
http://cel01.grid.ucy.ac.cy

Metadata Ranking and Pruning for Failure Detection in Grids 381

Round Trip Time

CE-queue: ce01 .kallisto.hellasgrid.griObmanager-pbs-ops

Packet Loss

CE-queue: ce01.kallisto.hellasgrid.griObmanager-pbs-ops

140

120 -

100

I 8°
j - 60
a.

40

20

~i—i—i—i—i—i—i—r
RTT De iy

JIIMAJA^ Mukii
-J 1 I I L

9 11 13 15 17 19 21 23 25 27 29
Time (days)

11 13 15 17 19
Time (days)

21 23 25 27 29

Fig. 3. Round-Trip-Time (left) and Packet Loss (right) for the
CE-queue ce01.kal l is to .hel lasgrid.gr_jobmar±ager-pbs-ops. These attributes are two of the
72 attributes maintained for the 2,565 CE-queues in the Failbase Repository.

attributes. These attributes contain information such as the version number of the
middleware running on the CE, results of various replica manager tests and results
from test job submissions.
(ii) Information Index Queries (BDII): We used the Idapsearch system utility tool to
perform approximately 2 million LDAP queries on the Information Index hosted on
bdiil01.grid.ucy.ac.cy. We then performed a projection in order to extract another
15 failure-related attributes. This yielded attributes such as the number of free
CPUs and the maximum number of running and waiting jobs for each respective
CE-queue.
(iii) Grid Statistics (GStat): We downloaded, again using curl, and parsed data
files from the monitoring website of Academia Sinica. From these files we generated
19 attributes for each given center and then replicated these attributes to all the
respective queues. The 19 attributes contain information such as the geographical
region of a Resource Center, the available storage space on the Storage Element
used by a particular CE, and results from various tests concerning BDII hosts.
(iv) Host sensor data (GridlCE): We performed over 500,000 LDAP queries on every
EGEE Computing Element host that published GridlCE [10] sensor data (i.e., on
«184 computing element hosts). The interval between consecutive probes was 10
minutes. We were able to extract 18 attributes of interest that includes information
such as the total and available sizes of RAM, virtual memory and the filcsystcm.
(v) Network Tomography Data (SmokePing): We obtained a 313MB snapshot of the
gPing database from ICS-FORTH (Greece) for the studied period. The database
contains network monitoring data for all the EGEE sites. From this collection we
measured the average round-trip-time (RTT) and the packet loss rate relevant to
each South East Europe CE (see Figure 3) which therefore yielded 2 additional
attributes. In order to make the information consistent with the FailBase repository
schema, we replicated files from the CE-level to CE-queue-level using a one-to-one
mapping function.

http://bdiil01.grid.ucy.ac.cy

382 D. Zeinalipour-Yazti et al.

5.3. Pruning the Meta-Information Retrieval Space

Although the Failbase repository is an invaluable tool for offline data exploration
and analysis it is quite expensive (with regards to network I/O, processing and stor-
age) to construct and maintain such a repository in an online manner. Additionally,
a huge mcta-information repository could also impose a limitation on how often
the ranking function can be executed, consequently limiting the failure detection
capability of our system. Therefore, we seek to prune the space of possible FSM
values and only focus on those values that will determine the final top-k result.

In this subsection we will sketch a greedy algorithm to prune the mcta-
information space in an online manner without compromising the accuracy of the
FailRank framework. In particular, we devise an iterative algorithm which consists
of the following steps: We first sort the m attributes of A = {ai,a,2,... ,aJn} in
descending weight order (i.e., u>i > w2 > • • • > wm). Next, we fetch the informa-
tion from the meta-information source with the highest weight (i.e., wi). Let this
column be the j t h attribute of the FSM table (i.e., a.j = (si,S2, • • • , s n)) , where
j < m. For each value in the aj vector we construct an upper bound high(si)
(i < n) by substituting the value of the missing m — j attributes by their maximum
possible value (i.e., high(si) — s; + (m — j) * a, where a is the maximum possible
value for each attribute). Obviously, the final score for each site si (i < n) lies
somewhere in the range [s*... high(si)}. The problem that wc arc now challenged
to solve is that of identifying the K sites with the highest overall value (i.e., even for
the attributes that have not been fetched yet). To achieve this without fetching all
respective attributes we process the [SJ . . . high(si)] ranges in descending high(si)
order discarding any range with an upper bound lower than the Kth highest-ranked
lower bound s.;. The latter one defines a threshold r below which all tuples can
safely be eliminated. In particular, it can be proven that any pruncd-away tuple sx

can not be in the final top-K result-set, thus sx can safely be excluded from further
consideration. The same procedure is iterativcly repeated until K sites have been
identified.

6. Experimental Evaluation

In this section we describe our experimental methodology and the results of our
evaluation.

6.1. Methodology

Wc have implemented a trace-driven tool in GNU C + + and JAVA which processes
the Failbase repository and then simulates the execution of the FailRank framework.
In particular, we replay the trace in our simulator and at each timestamp wc evaluate
a variety of evaluation metrics, as these are described next, in order to assess the
efficiency of our framework:

Metadata Ranking and Pruning for Failure Detection in Grids 383

i. Prediction Accuracy: this metric quantifies how accurately FailRank can
identify the failing sites. In particular, we replay the trace in our simulator and
at each timestamp we identify the K sites that might fail to respond. We will
denote these (timestamp, sitelD) tuples as the Identified Set (I„et)- The 75et

is constructed by selecting the K highest-ranked answers from the execution of
the scoring function described in Section 4.3 with equal weights on FSM.

Note the system can compute the Iset directly from the FSM matrix, before
the timestamp at which the actual error happens, thus such an approach pro-
vides an a priori failure detection mechanism. In order to assess this claim and
validate that the 7set corresponds to the actual sites that have failed to respond,
we need a set of (timestamp, sitelD) tuples at which real site failures have hap-
pened. We shall denote such a set as the Real Set (Rset) and we construct it
by combining the 18 attributes provided by the SAM service (described in 5.2)
using the scoring function described in Section 4.3. These attributes provide an
accurate view of the failure state for each CE-qucue a. That yields an average
score per site for every timestamp. For each timestamp, we then again choose
the K sites with the highest score. We define the penalty, for not finding the
correct sites at timestamp i, using a set-theoretic notation as follows:

Penalty-i = \Rset - Iset\ (2)

where \Rset\ — \het\ = K and the penalty at each timestamp i is defined as the
cardinality of the set difference Rset—Iset- In our experimentation, we shall also
use the Aggregate Penalty (i.e., A = X^L^T* ampi Penalty-i), which provides a
measure of overall efficiency for the Iset in all timestamps. Having identified the
correct Iset sites, our objective is to blacklist these sites and exclude them from
the job scheduling process, decreasing in that way the number of failures,

ii. Pruning Efficiency: this metric quantifies the efficiency of our pruning algo-
rithms which eliminates the values of the FSM table that can not contribute
to the final top-k result. Practically, that means that the FailRank system will
need to acquire less information in order to derive the K highest ranked answers
all this without compromising the top-k retrieval accuracy. In particular, we re-
play the trace in our simulator and identify at each timestamp i all the FSM
values that arc below the threshold r and that can be excluded. We will denote
the remaining (timestamp, value) tuples, those that will be downloaded from
the meta-information sources, as the Fetched Set (Fetchedset(i))- Note that the
FailRank system computes Fetchedset(i) incrementally as the data gradually
streams from the distributed meta-information sources. The upper bound on
the number of all possible values that arc available to the FailRank system
on time instance i is denoted as the All Values Set (AVset(i))- AVset(i) has a
known cardinality o f m x n , where m is the number of attributes available to

aNote that the SAM attributes unveil a posteriori the failure state of each individual grid site,
thus these can not be taking into account for the derivation of the IBet-

384 D. Zeinalipour-Yazti et al.

the system and n the number of CE-queues that the FailRank system monitors.
We investigate the achieved pruning of our system using two different criteri-

ons. The first criterion measures the amount of pruning (denoted as Pruning-,)
that is achieved at each timestamp i of the trace. In particular, this metric is
defined as the cardinality ratio of the Fetchedset(i) over the AVset(i), formally:

Prunina- - \Fetched°^\ (3)
Pruning, - ^ ^ (3)

The second criterion measures the number of iterations our pruning algo-
rithm requires in order to derive the Fetchedset and consequently determine
the K highest-ranked answers. In particular, since the pruning algorithm is an
iterative algorithm in each iteration it fetches the next attribute of the FSM
table with the highest weight and we are interested in finding how many it-
erations it takes until our algorithm converges. For this reason wc define the
Level-Wise Pruning metric (denoted as Cj) which defines the number of FSM
rows pruncd-away in each algorithm iteration j . In particular, for each iteration
wc calculate the average for all time instances using the following summation:

- timestamps
£,• = (—) > Rows-Pruned-Awayi (4)

J K timestamps' 4^

6.2. Evaluating the Prediction Accuracy

In this subsection we evaluate the efficiency of the FailRank framework in identifying
the sites that will fail. In particular, we obtain the Iset using two alternative strate-
gics: i) FailRank Selection, which utilizes the FSM matrix and selects the K = 20
sites (« 10% of all sites) that maximize the scoring function of Section 4.3 with
equal weights; and ii) Random Selection, which does not utilize the FSM matrix
and simply selects the K = 20 sites at random.

We then measure the respective penalty using our provided definition. Note
that for this experiment we utilize a subset of the Failbasc repository (i.e., 197 OPS
queues monitored for 32 days) for which we had the largest number of available
attributes. We also apply a spline interpolation smoothing between consecutive
time points in our graph in order to facilitate presentation.

Figure 4 illustrates that FailRank selection always has an extremely low penalty
(i.e., on average 2 . M i l . 4 1 with A = 92, 596) while Random selection is always very
close to 20 (i.e., on average 18.19 ± 3.5 with A — 786,148). We can conclude that
FailRank misses the correct sites in only 9% of the cases while Random misses the
correct results in 91% of the cases. Another observation is at time instances 6000,
16000 and 39000, both selection curves drop to zero. This is attributed to the fact
that our mcta-information trace contained missing values at the given points (i.e.,
Isat — R-net — 0). One final observation is that the Random selection curve is in
some cases above 20. This is attributed to the fact that the cardinality of the Rset

might be bigger than K, instead of equal to K, in certain cases. This is explained

Metadata Ranking and Pruning for Failure Detection in Grids 385

25

a 20 *

2-

15 -

10

0

Penalty for selecting the K=20 worst sites (Random vs. Failrank Selection)

Random Selection
Failrank Selection (naive scoring)

£Ax iW

5000 10000 15000 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
Time (minutes)

Fig. 4. FailRank se lect ion vs .Random selection: FailRank identifies the site that have failed
as opposed to Random which always identifies very few of the K=20 sites.

5*.
2

Fig. 5.
by an
scores

Penalty for selecting the K=20 worst sites in Failrank (Naive Scoring vs. Expert Scoring)

5000 10000 15000 30000 35000 40000 20000 25000
Time (minutes)

FailRank Scoring Function Evaluation: When the FailRank scoring function is tuned
expert (Expert scoring) it yields more accurate results than the alternative of setting the
uniformly (Naive Scoring).

as follows: to construct the Rset we identified the K highest ranked tuples for each
timestamp. In some cases the Kth tuple has an equal score to the Kth + 1 tuple
(or maybe even the Kth + 2 tuples, etc.). As a result, |-Rset| might be bigger than
|/set| which consequently might yield a penalty larger than K (e.g., consider the
case where Rset n Iset = 0).

6.3. Scoring Function Evaluation

In the second experimental series we study whether we can further decrease the
penalty of the FailRank approach by tuning the scoring function. Since some of
the 75 attributes might be more important in denning the failure, we asked our
administrators to manually provide weights to the 75 attributes given in the trace.
Of course this assignment might not be optimal but it provides us with a lower bound

386 D. Zeinalipour-Yazti et al.

Pruning Efficiency (Naive Scoring vs. Expert Scoring)
i i — -

Expert Scoring
i Naive Scoring [-

0 5000 10000 15000 20000 25000 30000 35000 40000
Time (minutes)

Fig. 6. Pruning Efficiency: The ratio of attribute values not fetched in each time instance.

on the feasible improvement of the penalty metric. We will denote this edition of
the FailRank algorithm as the Expert Scoring approach while the former approach,
that assigned equal weights to all attributes, as the Naive Scoring approach.

Figure 5 illustrates that by fine-tuning the weights using the expert scoring
method we can achieve a significant reduction in the penalty. In particular, the
penalty is now on average 1.48 ± 1.04 (with A = 64,008) which presents a 31%
improvement from the naive scoring approach. The FailRank method with expert
scoring misses failures in only 7.4% of the cases which is clear improvement to the
Random method presented in the previous subsection.

6.4. Pruning Efficiency Evaluation

In the last experimental series we assess the two pruning evaluation metrics we
defined earlier.

Figure 6, presents the Pruningi evaluation metric for the 43,200 timestamps
by utilizing the Naive Scoring scheme and the Expert Scoring scheme. The figure
shows that by utilizing the naive scoring scheme we can still retrieve the K highest-
ranked answers by spending 11% less on retrieving data from the meta-information
sources. Notice that the FailRank system will conduct the meta-information gather-
ing very frequently, thus even a seemingly small increase in the pruning magnitude
has a significant benefit on the performance of the system. The result is even more
encouraging for the Expert Scoring approach in which we achieve a 34% pruning
magnitude. That means that the system will require to fetch only the 2/3 of the
available metadata in order to derive the correct answer.

Figure 7 (top-bottom), presents the level-wise pruning efficiency Cj, where j is
in the range 1-25. From the two figures we can draw the following conclusions: i)
The Expert Scoring approach convergences much faster than the Naive Scoring ap-
proach. In particular, the bottom figure shows the Expert scheme will complete in
21 iterations while naive scoring in 25 iterations. This observation can be explained

U . t J

d/
al

l
(fe

tch
e

>*

Ef
fic

ien
c

en
c

Pr
un

i

0.4

0.35

0.3

0.25

0.2

0.15

0.1

Pruning wit
Pruning wi

Metadata Ranking and Pruning for Failure Detection in Grids 387

Level-Wise Pruning Efficiency (Naive Scoring)

--
m

Gr
i

§
•? • n

ru
n

Q .
0)

< a ?
m
u. *

1W1
1HII
140
1V0
100

an
60
40
20

0

--.
m

•a

Gn

=* S
7
T>

ru
n

a CO
•s 2
?
to LL

*
Fig.
the

1R0

1HII
140

VA)
100
RO
60

40
20

0

7.
prun

I i - i r I •••

• • • * + * * * • + * < t * I + * » 1 •

• •

;--

: -

i
10 15 20

Algorithm Iteration (1 attr. / iteration)

Level-Wise Pruning Efficiency (Expert Scoring)

25

Level-Wise Pruning with Expert Scoring

20 25 0 5 10 15
Algorithm Iteration (1 attr. / iteration)

Level-Wise Pruning Evaluation: The number of rows excluded in each iteration of
pruning algorithm using Naive Scoring (top) and Expert Scoring (bottom).

by the fact the Expert method assigns different weights to the m attributes, con-
sequently the pruning algorithm can eliminate much faster the tuples below the r
threshold. Related to the above comment is also the observation that the Expert
Method maintains this relative advantage over the Naive method for all time in-
stances. For instance, when j=21 the expert method prunes away 61% of the rows
while the naive method only 17%. ii) A second observation is that in both scoring
schemes the first 10-12 iterations yield no pruning. Consequently, a real implemen-
tation can request the retrieval of these attributes in the first iteration.

7. FailRank Extensions

In this section we review some exploratory data analysis, learning and prediction
applications that can be built on top of the FailRank architecture,
(i) Finding State-related Sites: An interesting question is whether any pair of
sites features a similar site vector. This is an indication that two or more sites are in
a similar failure state, with regards to the attributes of FSM. In order to answer this
question we need a method that compares two vectors (q, si), and finds if these are
similar. An efficient technique, widely used in the information retrieval domain, is

388 D. Zeinalipour-Yazti et al.

the cosine similarity [11]. The cosine similarity finds the cosine of the angle between
two vectors. If two vectors are identical then the cosine similarity is 1 (because the
angle between them is 0). On the contrary if two vectors arc different then the
similarity is closer to 0. The cosine similarity is calculated as following:

sim(q, Si) = £(?* *|L= (5)

By executing the cosine similarity for the sites in Table 1, we find that the highest
similarity is sim(s2, S4) = 0.97 while the smallest is sim(si, SQ) = 0.57. This means
that S2 and S4 have a close relation across the different dimensions of the Failshot
Matrix while si and S5 have a very distant relation.
(ii) Timeseries Similarity Search: Identifying which attribute timeseries arc
similar allows us to find the correlated attributes in FSM. For instance we can find
that the QUEUE timeseries is correlated to the CPU timcserics for some site. To
formalize our description, let P — (pi,P2, • ••-,Pi) and Q = (qi,q2, ••••,Qi) denote two
1-dimcnsional timeseries of length I (each point denotes some item s-ij in FSM).

The most straightforward way to compute the similarity between P and Q is to
apply the Euclidean distance (L2) which is given by d = \P—Q\ = y X ^ = i \Pt ~ Q'\2-
Since data points are only matched at identical time positions, the running time
of this approach is 0(1). However this distance is not able to handle out-of-phase
matches. To understand this consider two identical timcserics P and Q, where Q is
shifted in time by some offset t (i.e., p* = g.;+4, Vi < /)• Using L2 would obviously
not yield any similarity between P and Q. The Dynamic Time Warping (DTW) [1],
Longest Common Sub-Sequence (LCSS) [3] and the Upper LCSS method [29] allow
local stretching by matching each point of P with other points of Q within some
window 6 (i.e., pi is matched with qi±s, Vi < I). This allows us to correlate noisy
failure timeseries with out-of-phase matches again in 0(1) time.
(iii) Decision Tree Learning: Given a site vector s; = {ai,...,am}, we want to
predict if s; will fail (with some statistical confidence). To answer this question, we
train a Decision tree T [11] in an offline phase using a corpus of annotated failures.
We then extract the classification rules that are utilized by the FailRank system.
For instance if we learn that a site vector of the form {CPU>0.70, DISK>0.90,
QUEUE>0.85, any, any} fails in 95% of the cases, then sites satisfying this rule are
excluded from the job scheduling process. An interesting problem is to provide a
decision tree which continues its learning behavior even after the initiation of the
system and which gracefully adapts to changes.
(iv) Prominent Future Challenges: In order to further improve the FailRank
architecture we are challenged with the task of further improving metadata informa-
tion gathering. In particular, we expect that the following two tasks will significantly
boost the accuracy and performance of our system:

• Failure Exchange Interfaces: The first challenge is to develop efficient in-
terfaces and protocols to exchange fault information between grid sites. The

Metadata Ranking and Pruning for Failure Detection in Grids 389

development of such protocols are currently difficult as the lack of a central-
ized authentication and administration scheme makes it intrinsically difficult to
access the remote sites and monitor failures. Furthermore, it is currently also
very hard to encapsulate failure feedback mechanisms in the application logic
of individual grid software as the grid is an amalgam of pre-existing software
libraries, services and components with no centralized control. What is required
is a generic component that can be statically or dynamically linked to the soft-
ware stack of grid software and which can enable the communication of relevant
data through a common interface.

• Failure Information Schema: The second challenge is to develop a global
schema that will define the nature of information to be exchanged. The lack of
common parameters that characterize failures makes it hard to obtain a global
understanding regarding failures. For instance, a given monitoring system might
count I/O reads and writes, defined as the distinct number of I/O operations
performed, while another grid monitoring system might count I/O bytes read
and write, defined as the accumulative number of bytes that were spent on
the given I/O operations. Additionally, it also remains to be shown that a fine
granularity is or is not appropriate for the prognosis of failures. Large content
distribution networks tend to collect low-level probes (e.g., ping and trace route
data) in order to enable a variety of network tomography operations. Although
such probes arc essential in the establishment of these services, they incur an
enormous network traffic. In the context of Grids, it is still not shown that such
low-level information is efficient and that it can be obtained in a viable fashion.

8. Conclusions & Future Work

In this paper we introduce FailRank, a novel framework for integrating and ranking
information sources that characterize failures in a grid system. This perspective is
to our knowledge new and fits well the computation model of grid infrastructures.
Another advantage is that FailRank streamlines the very complex task of monitoring
large-scale distributed resources in an automated manner. In the future we plan to
provide more elaborate ranking algorithms and perform an in-depth assessment of
our prototype system under development.

References
[1] Berndt D. , Clifford J., "Using Dynamic Time Warping to Find Patterns in Time

Scries", In KDD 1994.
[2] Bruno N., Gravano L. and Marian A., "Evaluating Top-K Queries Over Web Acces-

sible Databases", In ICDE 2002.
[3] Das G., Gunopulos D., Mannila H., "Finding Similar Time Series", In PKDD, 1997.
[4] Chun G., Dail H., Casanova H., and Snavcly A., "Benchmark probes for grid assess-

ment" , In IEEE IPDPS 2004.
[5] "CIC", http://cic.gridops.org/
[6] Da Costa G., Orlando S., Dikaiakos M.D., "Nine months in the life of EGEE: a look

from the South", In IEEE MASCOTS 2007.

http://cic.gridops.org/

390 D. Zeinalipour-Yazti et al.

[7] Dumitrcscu C , Raicu I., Ripcanu M., Foster I., "DiPcrF: An automated Distributed
PERformance testing Framework", In IEEE/ACM Grid 2004.

[8] "EGEE", http://www.eu-cgee.org/.
[9] "Global Grid User Support (GGUS) ticketing", https://gus.fzk.de/pages/homc.php

[10] "GridlCE", http://grid.infn.it/gridicc/
[11] Han J. Kambcr M., "Data Mining: Concepts and Techniques", 2E, Elsevier, 2006.
[12] Fagin R., Lotcm A. and Naor M., "Optimal Aggregation Algorithms For Middleware",

In PODS 2001.
[13] Foster I. and Kessclman C , "The Grid: Blueprint for a New Computing Infrastruc-

ture", Elsevier, 2004.
[14] Foster I., Kesselman C , and Tueckc S., "The Anatomy of the Grid: Enabling Scalable

Virtual Organizations", In Intl. J. Supercomputer Applications, 15(3):200-222, 2001.
[15] Foster I., "Globus Toolkit Version 4: Software for Service-Oriented Systems", In

ICNP'05.
[16] Glitc middleware http://glitc.org/
[17] Grid Statistics (GStat) http://goc.grid.sinica.edu.tw/gstat/
[18] Junqueira, F. P., and Marzullo, K., "The virtue of dependent failures in multi-site

systems", In HotDep 2005.
[19] Kiciman E. and Fox A., "Detecting Application-Level Failures in Component-based

Internet Services", In IEEE Transactions on Neural Networks, 2004.
[20] Kiciman E. and Subramanian L., "Root Cause Localization in Large Scale Systems",

In HotDep 2005.
[21] Krishnamurthy S., Sanders W.H., Cukier M.: "A Dynamic Replica Selection Algo-

rithm for Tolerating Timing Faults", In DSN 2001.
[22] Locasto M.E., Sidiroglou S., and Keromytis A.D., "Application Communities: Using

Monoculture for Dependability", In HotDep 2005.
[23] "OSG", http://www.opensciencegrid.org.
[24] Raman R., Livny M., Solomon M.H., "Matchmaking: An extensible framework for

distributed resource management", In Cluster Computing, Vol 2, pp 129-138, 1999.
[25] "TcraGrid", http://www.teragrid.org/
[26] Tsouloupas G., Dikaiakos M.D., "GridBench: A Tool for the Interactive Performance

Exploration of Grid Infrastructures", In Journal of Parallel and Distributed Comput-
ing, Vol 67, pp 1029-1045, 2007.

[27] Ncokleous K., Dikaiakos M.D., Fragopoulou P., Markatos E.P., "Failure Management
in Grids: The Case of the EGEE Infrastructure", In Parallel Processing Letters (in
press, Dec. 2007).

[28] Tsouloupas G. and Dikaiakos M.D., "Grid Resource Ranking using Low-level Perfor-
mance Measurements.", In Euro-Par 2007.

[29] Vlachos M., Hadjieleftheriou M., Gunopulos D. , Keogh E., "Indexing multi-
dimensional time-series with support for multiple distance measures" In KDD 2003.

[30] "WISDOM", http://wisdom.eu-egee.fr/
[31] "Service Availability Monitoring (SAM)", http://goc.grid.

sinica.edu.tw/gocwiki/SAM
[32] Zeinalipour-Yazti D., Ncocleous K., Georgiou C , Dikaiakos M.D„ "FailRank: To-

wards a Unified Grid Failure Monitoring and Ranking System", In CoreGRID Work-
shop on Grid Programming Models and P2P Systems Architecture (Goregrid 2007
Workshop) Heraklion, Crete, Greece, June 12-13, 2007,

[33] Zeinalipour-Yazti D., Neocleous K., Georgiou C , Dikaiakos M.D., "Identifying Fail-
ures in Grids through Monitoring and Ranking", In The 7th IEEE International
Symposium on Network Computing and Applications (IEEE NCA '08), July 2008,

http://www.eu-cgee.org/
https://gus.fzk.de/pages/homc.php
http://grid.infn.it/gridicc/
http://glitc.org/
http://goc.grid.sinica.edu.tw/gstat/
http://www.opensciencegrid.org
http://www.teragrid.org/
http://wisdom.eu-egee.fr/
http://goc.grid
http://sinica.edu

