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ABSTRACT 

The objective of Grid computing is to make processing power as accessible and easy to 
use as electricity and water. The last decade has seen an unprecedented growth in Grid 
infrastructures which nowadays enables large-scale deployment of applications in the 
scientific computation domain. One of the main challenges in realizing the full potential 
of Grids is making these systems dependable. 

In this paper we present FailRank, a novel framework for integrating and ranking 
information sources that characterize failures in a grid system. After the failing sites have 
been ranked, these can be eliminated from the job scheduling resource pool yielding in 
that way a more predictable, dependable and adaptive infrastructure. We also present 
the tools we developed towards evaluating the FailRank framework. In particular, we 
present the FailBase Repository which is a 38GB corpus of state information that char-
acterizes the EGEE Grid for one month in 2007. Such a corpus paves the way for the 
community to systematically uncover new, previously unknown patterns and rules be-
tween the multitudes of parameters that can contribute to failures in a Grid environment. 
Additionally, we present an experimental evaluation study of the FailRank system over 
30 days which shows that our framework identifies failures in 93% of the cases and can 
achieve this by only fetching 65% of the available information sources. We believe that 
our work constitutes another important step towards realizing adaptive Grid computing 
systems. 
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1. Introduction 

Grids have emerged as wide-scale, distributed infrastructures that comprise het-
erogeneous computing and storage resources, operating over open standards and 
distributed administration control [13, 14]. Grids are quickly gaining popularity, 
especially in the scientific sector, where projects like EGEE (Enabling Grids for 
E-sciencE) [8], TeraGrid [25] and Open Science Grid [23] , provide the infrastruc-
ture that accommodates large experiments with thousands of scientists, tens of 
thousands of computers, trillions of commands per second and petabytes of stor-
age [8, 25, 23]. At the time of writing, EGEE assembles over 250 sites around the 
world with more than 30,000 CPUs and 18PB of storage, running over 25,000 con-
current jobs and supporting over 100 Virtual Organizations. 

While the aforementioned discussion shows that Grid Computing will play a 
vital role in many different scientific domains, realizing its full potential will re-
quire to make these infrastructures dependable. As a measure of dependability of 
grids we use the ratio of successfully fulfilled job requests over the total number 
of jobs submitted to the resource brokers of a grid infrastructure. The FlcxX and 
Autodock data challenges of the WISDOM [30] project, conducted in August 2005, 
have shown that only 32% and 57% of the jobs completed successfully (with an 
"OK" status). Additionally, our group conducted a nine-month characterization 
of the South-Eastern-Europe resource broker ( rb l01 .gr id .ucy .ac .cy) in [6] and 
showed that only 48% of the submitted jobs completed successfully. Consequently, 
the dependability of large-scale grids needs to be improved substantially. 

Detecting and managing failures is an important step toward the goal of a de-
pendable grid. Currently, this is an extremely complex task that relics on over-
provisioning of resources, ad-hoc monitoring and user intervention. Adapting ideas 
from other contexts such as cluster computing [21], Internet services [19, 20] and 
software systems [22] seems also difficult due to the intrinsic characteristics of grid 
environments. Firstly, a grid system is not administered centrally; thus it is hard 
to access the remote sites in order to monitor failures. Moreover we cannot easily 
encapsulate failure feedback mechanisms in the application logic of each individual 
grid software, as the grid is an amalgam of pre-existing software libraries, services 
and components with no centralized control. Secondly, these systems arc extremely 
large; thus, it is difficult to acquire and analyze failure feedback at a fine granular-
ity. Lastly, identifying the overall state of the system and excluding the sites with 
the highest potential for causing failures from the job scheduling process, can be 
much more efficient than identifying many individual failures. Of course the latter 
information will be essential to identify the root cause of a failure [20], but this 
operation can be performed in a offline phase, and thus it is complementary to our 
framework. 

In the FailRank architecture, feedback sources (i.e., websites, representative low-
level measurements, data from the Information Index, etc.) arc continuously coa-
lesced into a representative array of numeric vectors, the FailShot Matrix (FSM). 

http://rbl01.grid.ucy.ac.cy
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FSM is then continuously ranked in order to identify the K sites with the highest 
potential to feature some failure. This allows the system to automatically exclude 
the respective sites from the job scheduling process. 

The advantages of our approach are summarized as follows: (i) FailRank is a 
simple yet powerful framework to integrate and quantify the multi-dimensional pa-
rameters that affect failures in a grid system; (ii) our system is tunable, allowing 
system administrators to drive the ranking process through user-defined ranking 
functions; (iii) we eliminate the need for human intervention, thus our approach 
gives space for automated exploitation of the extracted failure semantics; (iv) we 
expect that the FailRank logic will be implemented as a filter outside the Grid job 
scheduler (i.e., Resource Broker or Workload Management System), thus imposing 
minimum changes to the Grid infrastructure. 

2. Background on Grid Computing 

In this section we will describe the anatomy of a Grid system and detail all the 
components pertinent to the operation of a Grid site. In particular, we will focus on 
Grid computing in the context of the EGEE project although other architectures 
feature a similar framework. We also describe the main causes of unsuccessful job 
executions in a grid system. 

2.1. The Anatomy of a Grid 

A Grid interconnects a number of remote clusters, or sites. Each site features het-
erogeneous resources (hardware and software) and the sites are interconnected over 
an open network such as the Internet. Figure 1 illustrates the anatomy of a typical 
grid (rectangles represent hardware while ellipses the services). The figure shows 
how sites with different capabilities and capacities are contributing their resources 
to the Grid infrastructure. In particular, each site features one or more Worker 
Nodes, which are usually rack-mounted PCs. The Computing Element shown in the 
same figure runs various services responsible for authenticating users, accepting jobs, 
performing resource management and job scheduling. Additionally, each site might 
feature a Local Storage site, on which temporary computation results can reside, 
and local Software libraries, that can be utilized by executing processes. The Grid 
middleware is the component that glues together local resources and services and 
exposes high-level programming and communication functionalities to application 
programmers and end-users. For instance EGEE uses the gLite middleware [16], 
while NSF's TeraGrid is based on the Globus Toolkit [15]. A Grid system also 
features some global services which are described in the next subsection. 

2.2. Lifecycle of Grid Jobs 

A Grid job, or computation, consists of a set of input files that defines the elements 
of a given computation (code, custom libraries, input files, etc). Grid jobs can be 
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Fig. 1. The Anatomy of a GRID Infrastructure. 

classified as CPU-intensive and data-intensive, depending on the type of work per-
formed. For clarity we divide the lifecyclc of a grid job into the following three 
conceptual phases: 
(i) Assignment Phase: Jobs are submitted to a Grid by users through some 
authenticated remote workstation, denoted as the User Interface (UI). Besides ob-
taining the output from completed jobs, the UI might also provide supplementary 
functionality for requesting the status of a job and the status of resources in the 
system. Jobs submitted to the UI are directed to some Resource Broker (RB), a 
central global grid service that performs matching between requests and available 
resources using the matchmaking approach [24]. Being able to quickly identify fail-
ures, would obviously be very helpful information to the RB as it would be able to 
avoid bottlenecks and resources leading to errors. Although this is not currently pos-
sible, our work sets the foundation towards this goal. The matchmaking performed 
by the RB is based on the information provided by another central service, the 
Information Index, which provides information about the state of grid resources. If 
the matchmaking is successful, the job is sent to the respective computing elements 
for execution. 
(ii) Execution Phase: During job execution, if any input files arc necessary, these 
have to be pushed to a remote grid site at runtime. Alternatively these files could 
have been pushed to the grid site during the assignment phase. In both occasions, 
a service called the Replica Catalog maintains the location of various replicas of a 
file held in remote Storage Elements. 
(iii) Completion Phase: When the job completes successfully, the user is in-
formed through the User Interface with a set of output files that arc a superset of 
the command line outputs, had the job run on a standalone computer. Although 
the user will be notified in the event of a failure, there is no indication about the 
possible cause. 
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2.3. Causes of Failures 

In this section we identify the main causes of failures in Grid infrastructures. These 
observations are extrapolated from the experiences we acquired by operating an 
EGEE grid site that consists of: (i) a Regional Resource Broker (3.6GHz/lGB 
RAM), (ii) a Regional Information Service which features the same aforementioned 
characteristics, (iii) a 72 CPU cluster of Worker Nodes which utilizes a blend of 
2.6GHz AMD Opteron and 2.8GHz Xeon CPUs, and (iv) a Storage Element which 
features 4x250GB disk space in RAID 5. Our analysis takes into account 37,860 job 
submissions (wl9K normalized CPU hours), between March 2005 and June 2006. 
We combine our observations with others obtained by fellow-researchers [30, 18] to 
conclude the following: 
Grid component failures: One or more of the components involved in the Grid 
infrastructure could malfunction due to hardware failures (e.g., hard drive burns, 
RAM or motherboard failures, power supply failures and overheating) and software 
faults (e.g., O/S mis-configurations and middleware bugs). Such problems may result 
to a total collapse of a component (crash failure) or to a component becoming 
partially unresponsive or extremely slow. 
Network failures: Network links could cause permanent or transient network dis-
connections leading to a loss, corruption or delay of messages and data transfers. 
Network disconnections may result to total inaccessibility of a Grid component, a 
condition that is equivalent to a crash failure of that component. Network access 
mis-configuration (firewall changes or updates) lead to the same effect. 
Information faults: The information provided by the Grid Information Service, 
which provides state information about the distributed grid sites, may be erroneous 
or obsolete due to administrator errors, software faults, and network delays. As 
a result, the Resource Broker, a central service that performs matching between 
resources and requests based on this information, may take sub-optimal decisions 
that result to excessive delays in job processing or even to failures in job execution. 
Excessive delays: In the large, shared and dynamic Grid infrastructure, unusual 
workload conditions, like those triggered by flash crowds and denial of service at-
tacks, may lead to long queuing delays in Computing or Storage Elements, to re-
duced Grid service throughput, and to long network delays in data transfers. Such 
conditions may result to job turnaround times that are substantially longer than 
those expected by Grid users. A similar effect may arise also because of the het-
erogeneity of the Grid: jobs may end-up being executed on very slow resources, 
resulting to unacceptably slow execution times. Because of the resource virtualiza-
tion imposed by many Grids, end-users have limited control over the performance 
characteristics of resources allocated to their jobs. 

3. Monitoring Failures in a Grid Environment 

In this subsection we overview typical failure feedback sources provided in a grid 
environment. These sources contain information that is utilized by our system in 
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order to deduct, in an a priori manner, the failing sites. Our discussion is in the 
context of the EGEE infrastructure, but similar tools and sources exist in other 
grids [25, 23]. 
Meta-information sources: Several methods for detecting failures have been de-
ployed so far. Examples include (for a detailed description see [27]): (i) Information 
Index Queries: these are performed on the Information Service and enable the ex-
traction of fine-grained information regarding the complete status of a grid site; (ii) 
Service Availability Monitoring (SAM) [31]: a reporting web site that is maintained 
for publishing periodic test-job results for all sites of the infrastructure; (iii) Grid 
statistics: provided by services such as GStat [17]; (iv) Network Tomography Data: 
these can be obtained by actively pinging and tracerouting other hosts in order 
to obtain delay, loss and topological structure information. Network tomography 
enables the extraction of network-related failures; (v) Global Grid User Support 
(GGUS) ticketing system [9]: system administrators use this system to report com-
ponent failures as well as needed updates for sites. Such tickets are typically opened 
due to errors appearing in the SAM reports; (vi) Core Infrastructure Center (CIC) 
broadcasts [5]: allow site managers to report site downtime events to all affected 
parties through a web-based interface; and (vii) Machine log-files: administrators 
can use these files to extract error information that is automatically maintained by 
each grid node. 
Active benchmarking: Deploying a number of lower level probes to the remote 
sites is another direction towards the extraction of meaningful failure semantics. In 
particular, one can utilize tools such as GridBench [26, 28], the Grid Assessment 
Probes [4] and DiPerF [7], in order to determine in real time the value of certain 
low level and application-level failure semantics that can not be furnished by the 
meta-information sources. For example, the GridBench tool developed by our group 
provides a corpus of over 20 benchmarks that can be used to evaluate and rank the 
performance of Grid sites and individual Grid nodes. 
Both the Meta-information Sources and the Active Benchmarking approaches have 
a major drawback: their operation relies heavily on human intervention. As Grid in-
frastructures become larger, human intervention becomes less feasible and efficient. 
As we would like Grid Dependability to be scalable, our proposed architecture does 
not rely on human intervention but instead provides the means for acquiring and 
analyzing the data from the above resources in an automated manner. 

4. The FailRank System 

In this section we describe the underlying structure that supports the FailRank 
system. We start out with an architecture overview and then proceed with basic 
definitions in order to formalize our description. We follow with the description of 
the failure ranking mechanism deployed in FailRank. 
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Fig. 2. The FailRank System Architecture: Feedback sources are continuously coalesced 
into a representative array of numeric vectors, the FailShot Matrix (FSM). FSM is then 
continuously ranked in order to identify the K sites with the highest potential to feature 
some failure. 

4.1. Architecture Overview 

The FailRank architecture (see Figure 2), consists of four major components: (i) a 
FailShot Matrix (FSM), which is a compact representation of the parameters that 
contribute to failures, as these are furnished by the feedback sources; (ii) a temporal 
sequence of FSMs defines an FSM timeseries which is stored on local disk; (iii) a 
Top-K Ranking Module which continuously ranks the FSM matrix and identifies 
the K sites with the highest potential to run into a failure using a user defined 
scoring function; and (iv) a set of data exploration tools which allow the extraction 
of failure trends, similarities, enable learning and prediction. FailRank is tunable 
because it allows system administrators and domain experts to drive the ranking 
process through the provisioning of custom scoring functions. 

4.2. Definitions and System Model 

In this section we will provide some definitions and our system model upon which 
we will structure our presentation in the subsequent sections. 

Definition 1 (FailShot Matrix (FSM)): Let S denote a set of n grid sites 
(i.e., S = {s\,S2, ...,sn}). Also assume that each element in S is characterized by 
a set of m attributes (i.e., A = {ai,a.2, . . . ,am}). These attributes are obtained by 
the feedback sources described in Section 3. The rows in Table 1 represent the 
sites while the columns represent the respective attributes. The j t h attribute of 
the ith site is denoted as Sij. The j-th attribute specifies a rating (or score) which 
characterizes some grid site Si (i < n) at a given time moment. These ratings are 
extracted by custom-implemented parsers, which map the respective information 
to real numerical values in the range [0..1] (1 denotes a higher possibility towards 
failure). The mx n table of scores defines the FailShot Matrix (FSM), while a Site 
Vector is any of the n rows of FSM. 

A graphical illustration for some synthetic example is given in Table 1. The 
figure shows five sites {s\,..., s$} where each site is characterized by five attributes: 
CPU (% of CPU units utilized), DISK (% of storage occupied), QUEUE (% of job 
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queue occupied), NET (% of dropped network packets) and FAIL (% of jobs that 
don't complete with an "OK" status). 
Definition 2 (FSM Timeseries): A temporal sequence of / FailShot Matrices 
defines an FSM Timeseries of order I. 

Keeping a history of the failure state for various prior time instances is important 
as it enables the automatic post-analysis of the dimensions that contributed to 
a given failure, enables the prediction of failures and others (Section 7 provides 
an overview). It is important to notice that the FSM timeseries can be stored 
incrementally in order to reduce the amount of storage required to keep the matrix 
on disk. Nevertheless, even the most naive storage plan of storing each FSM in its 
entirety, is still much more storage efficient than keeping the raw html/text sources 
provided by the feedback sources. In constructing FailBasc, described in Section 5, 
wc found that the FSM representation saves us approximately 350GB of storage 
per month. 

4.3. The Ranking Module 

Although the snapshot of site vectors in FSM greatly simplifies the representation 
of information coming from different sources, observing individually hundreds of 
parameters in real time in order to identify the sites that arc running into trouble 
is still a difficult task. For example a typical LDAP query to the Grid Information 
Service returns around 200 attributes. Monitoring these parameters in separation is 
a cumbersome process that is very expensive in terms of human resources, can rarely 
lead to any sort of a priori decision-making and is extremely prone to mistakes and 
human omissions. Instead, automatically deducting the sites with the highest poten-
tial to suffer from failures is much more practical and useful. Since this information 
will be manipulated in high frequencies, we focus on computing the K sites with 
the highest potential to suffer from failures rather than finding all of them (K is a 
user-defined parameter). Therefore we don't have to manipulate the whole universe 
of answers but only the K most important answers, quickly and efficiently. The 
answer will allow the Resource Broker to automatically and dynamically divert job 
submissions away from sites running into problems as well as notify administrators 
in advance (compared to SAM & tickets) to take preventive measures for the sites 
more prone to failures. Finally, we developed a mechanism for selective extraction 
of monitoring information for selecting those K sites, which we describe later on. 
This mechanism is capable of reducing the information we need to fetch and process 
by approximately one third. 
Scoring Function: In order to rank sites we utilize some aggregate scoring function 
which is provided by the user (or system administrator). For case of exposition wc 
use, similarly to [2], the function: 

m 
Score{Si) = ^w.j * Sij (1) 
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where s^ denotes the score for the j t h attribute of the ith site and Wj (vjj > 
0) a weight factor which calibrates the significance of each attribute according to 
the user preferences. For example if the CPU load is more significant than the 
DISK load, then the former parameter is given a higher weight . Should we need to 
capture more complex interactions between different dimensions of FSM we could 
construct, with the help of a domain expert, a custom scoring function or we could 
train such a function automatically using historic information (Section 6.3 conducts 
an evaluation of this parameter). It is expected that the scoring function will be 
much more complex in a real setting (e.g., a linear combination of averages over n' 
correlated attributes, where n' « n). 

Table 1: The FailShot Matrix (FSM). 

Site 
Sl=USC-LCG2 
s2=TAU-LCG2 
s3=ELTE 
s4=UCL-CCC 
s5=CY01-KIMON 

CPU 
0.63 
0.66 
0.48 
0.99 
0.44 

DISK 
0.61 
0.91 
0.01 
0.90 
0.07 

QUEUE 
0.01 
0.92 
0.16 
0.75 
0.70 

NET 
0.28 
0.56 
0.56 
0.74 
0.19 

FAIL 
0.35 
0.58 
0.54 
0.67 
0.67 

Example: In order to stimulate our description, consider the example of Ta-
ble 1. In order to infer the overall rank for two site vectors, such as s2 = 
{0.66,0.91,0.92,0.56,0.58} and s4 = {0.99,0.90,0.75,0.74,0.67}, we apply the scor-
ing function with Wj — 1 (i.e., all dimensions arc of equal importance), and find 
that s2 = 3.63 and s4 = 4.05. 

In order to minimize the computation of the scoring function, which potentially 
has to join hundreds of columns in each run, we can utilize the Threshold Algorithm 
(TA) [12]. TA is one of the most widely recognized algorithms for finding the K 
highest rank answers in database and middleware scenarios. Suppose that we arc 
interested in finding the K — 1 objects with the highest score. TA starts out by 
performing a parallel access to the n lists of the Sortcd-FSM table, which is similar 
to Table 1 with the exception that each column is sorted in descending order of 
the value. While an object Si is seen, TA performs a random access to the other 
lists to find the exact score for Si using the given scoring function. In our working 
example the exact score would be computed for the two objects in the first row 
(i.e., S4 — 4.05 and s2 — 3.63) since sorted access is executed on a row-at-a-time 
basis. It then computes a threshold value r as the sum of all scores in the first row 
(i.e., T = .99 + .91 + .92 + .74 + .67 = 4.23). Since r is larger than both scores of 
S4 and s2, the TA algorithm performs another iteration in which the threshold r is 
refined as the sum of scores across the second row (i.e., r = 3.54). It also computes 
the exact score for s$ = 2.07 (the only unresolved object in the second row). Now 
the algorithm finds at least K—\ objects above the threshold (i.e., S^>T and S2>T) 
and therefore terminates. It is easy to prove that no other object can have a score 
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above S4 thus the score function calculation can be omitted for these objects. 

5. The EGEE FailBase Repository 

In the previous section we outlined the main components of the FailRank archi-
tecture. In this section we present the tools we developed in order to evaluate the 
proposed architecture. In particular, we present the FailBase Repository which is a 
38GB corpus of state information that we constructed and which characterizes the 
EGEE Grid for one month in 2007. Such a corpus paves the way for the community 
to systematically uncover new, previously unknown patterns and rules between the 
multitudes of parameters that can contribute to failures in a grid environment. 

5.1. Overview 

FailBase currently contains 32 days of monitoring data obtained from tests executed 
on the EGEE Grid Infrastructure between 16/3/2007 and 17/4/2007. The trace 
was collected at the High Performance Computing systems Lab (HPCL) at the 
University of Cyprus. We utilized a dual Xeon 2.4GHz CPU machine with 1GB of 
RAM connected to the European Academic Network (GEANT) at 155Mbps. 

The trace maintains information for 2,565 Computing Element (CE) queues. 
It is important to note that resource brokers perform the matchmaking between 
the requests and the available and appropriate queues at the CE-qucue granularity 
rather than on individual nodes. Thus, we focus on characterizing failures at the 
same granularity as well. Each CE-queue is stored in an individual folder that 
currently contains 72 attributes (i.e., files) and each file characterizes the CE-qucue 
it is stored in. For example, cel01.grid.ucy.ac.cy_ jobmanager-lcgpbs-atlas 
is the directory that contains measurements specific to the ATLAS experiment job 
queue that is maintained on the Computing Element ce l01 .gr id .ucy .ac .cy . 

Each of the files in the CE-queue folders can be thought of as a timescrics 
(i.e., a sequence of [timestamp,value] pairs) for the given attribute using a time 
step of approximately 1 to 10 minutes (varies according to the type of source). We 
currently share the Failbase repository with the researchers of our group using the 
UNIX filcsystem interface which maintains openness and portability. In the future 
we have plans to store the information in a relational database on the EGEE grid in 
order to allow researchers from other institutes to access and manipulate the stored 
information using the expressive power of the Structured Query Language (SQL). 

5.2. Meta-information Sources 

We shall next describe the adopted methodology for acquiring the 72 failure-related 
attributes from the respective meta-information sources: 
(i) Service Availability Monitoring (SAM): We obtained approximately 260MB of 
data in raw html form (one html file for each CE) using the UNIX system utility 
curl. We then processed these pages using a set of perl scripts and generated 18 

http://cel01.grid.ucy.ac.cy_
http://cel01.grid.ucy.ac.cy
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Round Trip Time 

CE-queue: ce01 .kallisto.hellasgrid.griObmanager-pbs-ops 
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Fig. 3. Round-Trip-Time (left) and Packet Loss (right) for the 
CE-queue ce01.kal l is to .hel lasgrid.gr_jobmar±ager-pbs-ops. These attributes are two of the 
72 attributes maintained for the 2,565 CE-queues in the Failbase Repository. 

attributes. These attributes contain information such as the version number of the 
middleware running on the CE, results of various replica manager tests and results 
from test job submissions. 
(ii) Information Index Queries (BDII): We used the Idapsearch system utility tool to 
perform approximately 2 million LDAP queries on the Information Index hosted on 
bdiil01.grid.ucy.ac.cy. We then performed a projection in order to extract another 
15 failure-related attributes. This yielded attributes such as the number of free 
CPUs and the maximum number of running and waiting jobs for each respective 
CE-queue. 
(iii) Grid Statistics (GStat): We downloaded, again using curl, and parsed data 
files from the monitoring website of Academia Sinica. From these files we generated 
19 attributes for each given center and then replicated these attributes to all the 
respective queues. The 19 attributes contain information such as the geographical 
region of a Resource Center, the available storage space on the Storage Element 
used by a particular CE, and results from various tests concerning BDII hosts. 
(iv) Host sensor data (GridlCE): We performed over 500,000 LDAP queries on every 
EGEE Computing Element host that published GridlCE [10] sensor data (i.e., on 
«184 computing element hosts). The interval between consecutive probes was 10 
minutes. We were able to extract 18 attributes of interest that includes information 
such as the total and available sizes of RAM, virtual memory and the filcsystcm. 
(v) Network Tomography Data (SmokePing): We obtained a 313MB snapshot of the 
gPing database from ICS-FORTH (Greece) for the studied period. The database 
contains network monitoring data for all the EGEE sites. From this collection we 
measured the average round-trip-time (RTT) and the packet loss rate relevant to 
each South East Europe CE (see Figure 3) which therefore yielded 2 additional 
attributes. In order to make the information consistent with the FailBase repository 
schema, we replicated files from the CE-level to CE-queue-level using a one-to-one 
mapping function. 

http://bdiil01.grid.ucy.ac.cy
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5.3. Pruning the Meta-Information Retrieval Space 

Although the Failbase repository is an invaluable tool for offline data exploration 
and analysis it is quite expensive (with regards to network I/O, processing and stor-
age) to construct and maintain such a repository in an online manner. Additionally, 
a huge mcta-information repository could also impose a limitation on how often 
the ranking function can be executed, consequently limiting the failure detection 
capability of our system. Therefore, we seek to prune the space of possible FSM 
values and only focus on those values that will determine the final top-k result. 

In this subsection we will sketch a greedy algorithm to prune the mcta-
information space in an online manner without compromising the accuracy of the 
FailRank framework. In particular, we devise an iterative algorithm which consists 
of the following steps: We first sort the m attributes of A = {ai,a,2,... ,aJn} in 
descending weight order ( i.e., u>i > w2 > • • • > wm). Next, we fetch the informa-
tion from the meta-information source with the highest weight (i.e., wi). Let this 
column be the j t h attribute of the FSM table (i.e., a.j = (si,S2, • • • , s n ) ) , where 
j < m. For each value in the aj vector we construct an upper bound high(si) 
(i < n) by substituting the value of the missing m — j attributes by their maximum 
possible value (i.e., high(si) — s; + (m — j) * a, where a is the maximum possible 
value for each attribute). Obviously, the final score for each site si (i < n) lies 
somewhere in the range [s*... high(si)}. The problem that wc arc now challenged 
to solve is that of identifying the K sites with the highest overall value (i.e., even for 
the attributes that have not been fetched yet). To achieve this without fetching all 
respective attributes we process the [SJ . . . high(si)] ranges in descending high(si) 
order discarding any range with an upper bound lower than the Kth highest-ranked 
lower bound s.;. The latter one defines a threshold r below which all tuples can 
safely be eliminated. In particular, it can be proven that any pruncd-away tuple sx 

can not be in the final top-K result-set, thus sx can safely be excluded from further 
consideration. The same procedure is iterativcly repeated until K sites have been 
identified. 

6. Experimental Evaluation 

In this section we describe our experimental methodology and the results of our 
evaluation. 

6.1. Methodology 

Wc have implemented a trace-driven tool in GNU C + + and JAVA which processes 
the Failbase repository and then simulates the execution of the FailRank framework. 
In particular, we replay the trace in our simulator and at each timestamp wc evaluate 
a variety of evaluation metrics, as these are described next, in order to assess the 
efficiency of our framework: 
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i. Prediction Accuracy: this metric quantifies how accurately FailRank can 
identify the failing sites. In particular, we replay the trace in our simulator and 
at each timestamp we identify the K sites that might fail to respond. We will 
denote these (timestamp, sitelD) tuples as the Identified Set (I„et)- The 75et 

is constructed by selecting the K highest-ranked answers from the execution of 
the scoring function described in Section 4.3 with equal weights on FSM. 

Note the system can compute the Iset directly from the FSM matrix, before 
the timestamp at which the actual error happens, thus such an approach pro-
vides an a priori failure detection mechanism. In order to assess this claim and 
validate that the 7set corresponds to the actual sites that have failed to respond, 
we need a set of (timestamp, sitelD) tuples at which real site failures have hap-
pened. We shall denote such a set as the Real Set (Rset) and we construct it 
by combining the 18 attributes provided by the SAM service (described in 5.2) 
using the scoring function described in Section 4.3. These attributes provide an 
accurate view of the failure state for each CE-qucue a. That yields an average 
score per site for every timestamp. For each timestamp, we then again choose 
the K sites with the highest score. We define the penalty, for not finding the 
correct sites at timestamp i, using a set-theoretic notation as follows: 

Penalty-i = \Rset - Iset\ (2) 

where \Rset\ — \het\ = K and the penalty at each timestamp i is defined as the 
cardinality of the set difference Rset—Iset- In our experimentation, we shall also 
use the Aggregate Penalty (i.e., A = X^L^T* ampi Penalty-i), which provides a 
measure of overall efficiency for the Iset in all timestamps. Having identified the 
correct Iset sites, our objective is to blacklist these sites and exclude them from 
the job scheduling process, decreasing in that way the number of failures, 

ii. Pruning Efficiency: this metric quantifies the efficiency of our pruning algo-
rithms which eliminates the values of the FSM table that can not contribute 
to the final top-k result. Practically, that means that the FailRank system will 
need to acquire less information in order to derive the K highest ranked answers 
all this without compromising the top-k retrieval accuracy. In particular, we re-
play the trace in our simulator and identify at each timestamp i all the FSM 
values that arc below the threshold r and that can be excluded. We will denote 
the remaining (timestamp, value) tuples, those that will be downloaded from 
the meta-information sources, as the Fetched Set (Fetchedset(i))- Note that the 
FailRank system computes Fetchedset(i) incrementally as the data gradually 
streams from the distributed meta-information sources. The upper bound on 
the number of all possible values that arc available to the FailRank system 
on time instance i is denoted as the All Values Set (AVset(i))- AVset(i) has a 
known cardinality o f m x n , where m is the number of attributes available to 

aNote that the SAM attributes unveil a posteriori the failure state of each individual grid site, 
thus these can not be taking into account for the derivation of the IBet-
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the system and n the number of CE-queues that the FailRank system monitors. 
We investigate the achieved pruning of our system using two different criteri-

ons. The first criterion measures the amount of pruning (denoted as Pruning-,) 
that is achieved at each timestamp i of the trace. In particular, this metric is 
defined as the cardinality ratio of the Fetchedset(i) over the AVset(i), formally: 

Prunina- - \Fetched°^\ (3) 
Pruning, - ^ ^ (3) 

The second criterion measures the number of iterations our pruning algo-
rithm requires in order to derive the Fetchedset and consequently determine 
the K highest-ranked answers. In particular, since the pruning algorithm is an 
iterative algorithm in each iteration it fetches the next attribute of the FSM 
table with the highest weight and we are interested in finding how many it-
erations it takes until our algorithm converges. For this reason wc define the 
Level-Wise Pruning metric (denoted as Cj) which defines the number of FSM 
rows pruncd-away in each algorithm iteration j . In particular, for each iteration 
wc calculate the average for all time instances using the following summation: 

- timestamps 
£,• = (— ) > Rows-Pruned-Awayi (4) 

J K timestamps' 4^ 

6.2. Evaluating the Prediction Accuracy 

In this subsection we evaluate the efficiency of the FailRank framework in identifying 
the sites that will fail. In particular, we obtain the Iset using two alternative strate-
gics: i) FailRank Selection, which utilizes the FSM matrix and selects the K = 20 
sites (« 10% of all sites) that maximize the scoring function of Section 4.3 with 
equal weights; and ii) Random Selection, which does not utilize the FSM matrix 
and simply selects the K = 20 sites at random. 

We then measure the respective penalty using our provided definition. Note 
that for this experiment we utilize a subset of the Failbasc repository (i.e., 197 OPS 
queues monitored for 32 days) for which we had the largest number of available 
attributes. We also apply a spline interpolation smoothing between consecutive 
time points in our graph in order to facilitate presentation. 

Figure 4 illustrates that FailRank selection always has an extremely low penalty 
(i.e., on average 2 . M i l . 4 1 with A = 92, 596) while Random selection is always very 
close to 20 (i.e., on average 18.19 ± 3.5 with A — 786,148). We can conclude that 
FailRank misses the correct sites in only 9% of the cases while Random misses the 
correct results in 91% of the cases. Another observation is at time instances 6000, 
16000 and 39000, both selection curves drop to zero. This is attributed to the fact 
that our mcta-information trace contained missing values at the given points (i.e., 
Isat — R-net — 0). One final observation is that the Random selection curve is in 
some cases above 20. This is attributed to the fact that the cardinality of the Rset 

might be bigger than K, instead of equal to K, in certain cases. This is explained 
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uniformly (Naive Scoring). 

as follows: to construct the Rset we identified the K highest ranked tuples for each 
timestamp. In some cases the Kth tuple has an equal score to the Kth + 1 tuple 
(or maybe even the Kth + 2 tuples, etc.). As a result, |-Rset| might be bigger than 
|/set| which consequently might yield a penalty larger than K (e.g., consider the 
case where Rset n Iset = 0). 

6.3. Scoring Function Evaluation 

In the second experimental series we study whether we can further decrease the 
penalty of the FailRank approach by tuning the scoring function. Since some of 
the 75 attributes might be more important in denning the failure, we asked our 
administrators to manually provide weights to the 75 attributes given in the trace. 
Of course this assignment might not be optimal but it provides us with a lower bound 
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Pruning Efficiency (Naive Scoring vs. Expert Scoring) 
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Fig. 6. Pruning Efficiency: The ratio of attribute values not fetched in each time instance. 

on the feasible improvement of the penalty metric. We will denote this edition of 
the FailRank algorithm as the Expert Scoring approach while the former approach, 
that assigned equal weights to all attributes, as the Naive Scoring approach. 

Figure 5 illustrates that by fine-tuning the weights using the expert scoring 
method we can achieve a significant reduction in the penalty. In particular, the 
penalty is now on average 1.48 ± 1.04 (with A = 64,008) which presents a 31% 
improvement from the naive scoring approach. The FailRank method with expert 
scoring misses failures in only 7.4% of the cases which is clear improvement to the 
Random method presented in the previous subsection. 

6.4. Pruning Efficiency Evaluation 

In the last experimental series we assess the two pruning evaluation metrics we 
defined earlier. 

Figure 6, presents the Pruningi evaluation metric for the 43,200 timestamps 
by utilizing the Naive Scoring scheme and the Expert Scoring scheme. The figure 
shows that by utilizing the naive scoring scheme we can still retrieve the K highest-
ranked answers by spending 11% less on retrieving data from the meta-information 
sources. Notice that the FailRank system will conduct the meta-information gather-
ing very frequently, thus even a seemingly small increase in the pruning magnitude 
has a significant benefit on the performance of the system. The result is even more 
encouraging for the Expert Scoring approach in which we achieve a 34% pruning 
magnitude. That means that the system will require to fetch only the 2/3 of the 
available metadata in order to derive the correct answer. 

Figure 7 (top-bottom), presents the level-wise pruning efficiency Cj, where j is 
in the range 1-25. From the two figures we can draw the following conclusions: i) 
The Expert Scoring approach convergences much faster than the Naive Scoring ap-
proach. In particular, the bottom figure shows the Expert scheme will complete in 
21 iterations while naive scoring in 25 iterations. This observation can be explained 
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by the fact the Expert method assigns different weights to the m attributes, con-
sequently the pruning algorithm can eliminate much faster the tuples below the r 
threshold. Related to the above comment is also the observation that the Expert 
Method maintains this relative advantage over the Naive method for all time in-
stances. For instance, when j=21 the expert method prunes away 61% of the rows 
while the naive method only 17%. ii) A second observation is that in both scoring 
schemes the first 10-12 iterations yield no pruning. Consequently, a real implemen-
tation can request the retrieval of these attributes in the first iteration. 

7. FailRank Extensions 

In this section we review some exploratory data analysis, learning and prediction 
applications that can be built on top of the FailRank architecture, 
(i) Finding State-related Sites: An interesting question is whether any pair of 
sites features a similar site vector. This is an indication that two or more sites are in 
a similar failure state, with regards to the attributes of FSM. In order to answer this 
question we need a method that compares two vectors (q, si), and finds if these are 
similar. An efficient technique, widely used in the information retrieval domain, is 
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the cosine similarity [11]. The cosine similarity finds the cosine of the angle between 
two vectors. If two vectors are identical then the cosine similarity is 1 (because the 
angle between them is 0). On the contrary if two vectors arc different then the 
similarity is closer to 0. The cosine similarity is calculated as following: 

sim(q, Si) = £(?* *|L= (5) 

By executing the cosine similarity for the sites in Table 1, we find that the highest 
similarity is sim(s2, S4) = 0.97 while the smallest is sim(si, SQ) = 0.57. This means 
that S2 and S4 have a close relation across the different dimensions of the Failshot 
Matrix while si and S5 have a very distant relation. 
(ii) Timeseries Similarity Search: Identifying which attribute timeseries arc 
similar allows us to find the correlated attributes in FSM. For instance we can find 
that the QUEUE timeseries is correlated to the CPU timcserics for some site. To 
formalize our description, let P — (pi,P2, • ••-,Pi) and Q = (qi,q2, ••••,Qi) denote two 
1-dimcnsional timeseries of length I (each point denotes some item s-ij in FSM). 

The most straightforward way to compute the similarity between P and Q is to 
apply the Euclidean distance (L2) which is given by d = \P—Q\ = y X ^ = i \Pt ~ Q'\2-
Since data points are only matched at identical time positions, the running time 
of this approach is 0(1). However this distance is not able to handle out-of-phase 
matches. To understand this consider two identical timcserics P and Q, where Q is 
shifted in time by some offset t (i.e., p* = g.;+4, Vi < /)• Using L2 would obviously 
not yield any similarity between P and Q. The Dynamic Time Warping (DTW) [1], 
Longest Common Sub-Sequence (LCSS) [3] and the Upper LCSS method [29] allow 
local stretching by matching each point of P with other points of Q within some 
window 6 (i.e., pi is matched with qi±s, Vi < I). This allows us to correlate noisy 
failure timeseries with out-of-phase matches again in 0(1) time. 
(iii) Decision Tree Learning: Given a site vector s; = {ai,...,am}, we want to 
predict if s; will fail (with some statistical confidence). To answer this question, we 
train a Decision tree T [11] in an offline phase using a corpus of annotated failures. 
We then extract the classification rules that are utilized by the FailRank system. 
For instance if we learn that a site vector of the form {CPU>0.70, DISK>0.90, 
QUEUE>0.85, any, any} fails in 95% of the cases, then sites satisfying this rule are 
excluded from the job scheduling process. An interesting problem is to provide a 
decision tree which continues its learning behavior even after the initiation of the 
system and which gracefully adapts to changes. 
(iv) Prominent Future Challenges: In order to further improve the FailRank 
architecture we are challenged with the task of further improving metadata informa-
tion gathering. In particular, we expect that the following two tasks will significantly 
boost the accuracy and performance of our system: 

• Failure Exchange Interfaces: The first challenge is to develop efficient in-
terfaces and protocols to exchange fault information between grid sites. The 
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development of such protocols are currently difficult as the lack of a central-
ized authentication and administration scheme makes it intrinsically difficult to 
access the remote sites and monitor failures. Furthermore, it is currently also 
very hard to encapsulate failure feedback mechanisms in the application logic 
of individual grid software as the grid is an amalgam of pre-existing software 
libraries, services and components with no centralized control. What is required 
is a generic component that can be statically or dynamically linked to the soft-
ware stack of grid software and which can enable the communication of relevant 
data through a common interface. 

• Failure Information Schema: The second challenge is to develop a global 
schema that will define the nature of information to be exchanged. The lack of 
common parameters that characterize failures makes it hard to obtain a global 
understanding regarding failures. For instance, a given monitoring system might 
count I/O reads and writes, defined as the distinct number of I/O operations 
performed, while another grid monitoring system might count I/O bytes read 
and write, defined as the accumulative number of bytes that were spent on 
the given I/O operations. Additionally, it also remains to be shown that a fine 
granularity is or is not appropriate for the prognosis of failures. Large content 
distribution networks tend to collect low-level probes (e.g., ping and trace route 
data) in order to enable a variety of network tomography operations. Although 
such probes arc essential in the establishment of these services, they incur an 
enormous network traffic. In the context of Grids, it is still not shown that such 
low-level information is efficient and that it can be obtained in a viable fashion. 

8. Conclusions & Future Work 

In this paper we introduce FailRank, a novel framework for integrating and ranking 
information sources that characterize failures in a grid system. This perspective is 
to our knowledge new and fits well the computation model of grid infrastructures. 
Another advantage is that FailRank streamlines the very complex task of monitoring 
large-scale distributed resources in an automated manner. In the future we plan to 
provide more elaborate ranking algorithms and perform an in-depth assessment of 
our prototype system under development. 
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