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Abstract— In this paper, we introduce a probabilistic modeling
approach for addressing the problem of Web robot detection
from Web-server access logs. More specifically, we construct a
Bayesian network that classifies automatically access-log sessions
as being crawler- or human-induced, by combining various pieces
of evidence proven to characterize crawler and human behavior.
Our approach uses machine learning techniques to determine
the parameters of the probabilistic model. We apply our method
to real Web-server logs and obtain results that demonstrate the
robustness and effectiveness of probabilistic reasoning for crawler
detection.

I. INTRODUCTION

Crawlers (a.k.a. robots, wanderers, spiders, or harvesters)
are programs that traverse the Web autonomously in order to
retrieve content and knowledge from the Web on behalf of
various Web-based systems and services. The growing need
for advanced information- and knowledge-retrieval tools on
the Web has led to a remarkable increase in the number of
crawlers actively engaged in various types of Web harvesting,
and has turned crawlers into an essential component of the
Web infrastructure. Currently, there is a growing need to
distinguish robots from humans when analyzing the HTTP-
request arrivals at Web servers of interest in order to avoid
problems such as click fraud[1] or the overloading of busy
Web servers by agressive robots. To this end, we need to be
able to isolate the behavior of robots from that of the general
population of (human) Web users. However, the openness, the
lack of central control, the sheer size, and the dynamic nature
of the Internet, render the identification and registration of
active crawlers and operational search engines a very difficult
challenge. Public lists of known-robots’ domain names and IP
addresses do exist [2], [3], but these lists are neither exhaustive
nor up-to-date. Furthermore, it is very hard to detect a Web
robot automatically from the HTTP activity it induces upon
an individual Web server. This difficulty is due to the fact that
different crawlers exhibit widely differing behaviors in their
navigation and HTTP-traffic patterns [4].

In this paper, we introduce a novel approach that addresses
successfully the challenging problem of automatic crawler
detection using probabilistic modeling [5], [6]. In particular,
we construct a Bayesian network that classifies automatically
access-log sessions as being crawler- or human-induced. To
this end, we combine various pieces of evidence, which,
according to earlier studies [4], [7], were shown to distinguish
the navigation patterns of crawler and human user-agents of
the World-Wide Web. Our approach uses machine learning

to determine the parameters of our probabilistic model. The
resulting classification is based on the maximum posterior
probability of each class (crawler or human), given the avail-
able evidence.

The remaining of this paper is organized as follows. In
Section II we present an overview of our approach and
describe its pre-processing steps. The proposed Bayesian
network classifier is introduced in Section III. An extensive
discussion of our experiments and experimental results is given
in Section IV, and we conclude in Section V.

II. OVERVIEW

A. Session Identification

The goal of our work is to classify automatically an HTTP
user-agent either as a crawler or a human, according to the
characteristics of that agent’s visit upon a Web server of
interest. These characteristics are captured in the Web-server’s
access logs, which record the HTTP interactions that take
place between user agents and the server. A typical access-
log file is comprised of thousands of entries, sorted by the
time the request was posted; each entry represents an HTTP
request arriving at the Web server from some user agent along
with the server’s reply. Each access-log captures a number
of sessions, where each session is a sequence of requests
issued by a single user-agent on a particular server, i.e. the
“click-stream” of one user [8]. A session ends when the user
completes her navigation of the corresponding site. Session
identification is the task of dividing an access log into sessions.
This is usually performed by grouping all requests that have
the same IP address and using a timeout method to break the
click-stream of a user into separate sessions [8]. According
to the timeout method, a session is defined as a sequence
of requests issued by a single user-agent, such that the time-
interval between two consecutive requests is shorter than a pre-
defined threshold. A drawback of this method is that it is hard
to determine a proper threshold-value, as different user-agents
exhibit different navigation behaviors. Usually, a 30-minutes
period is adopted as the threshold in Web-mining studies [8].

Nevertheless, in our experiments we noticed that using the
30-minute threshold as the only criterion for breaking the
click-stream into sessions was not sufficient. We observed
the sessions extracted when using the 30-minute value and
noticed that, for longer sessions (in terms of number of
requests), click-streams belonging to a semantically contin-
uous navigation activity were split into separate sessions. To
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cope with this issue, we introduce a procedure which adapts
the threshold value dynamically, according to the number of
session requests. In particular, for sessions with less than rmax

requests, we set the threshold value to t1. For sessions with
more than rmax requests, we increase the threshold value
to t2 > t1. In other words, we allow a bigger time lapse
between consecutive requests for larger sessions. By trying
various threshold values and studying the resulted sessions,
we determined that setting rmax to 100, t1 to 30 minutes
and t2 to 60 minutes gave the best results. Undoubtedly,
there is inherent uncertainty in this approach and in any
method used to identify Web sessions based on originating
IP addresses. For instance, requests posted from the same IP
address during the same time period do not come necessarily
from the same user-agent [8]: sometimes, different user-agents
may use the same IP address to access the Web (for instance,
when using the same proxy server); in those cases, their
activity is registered as coming from the same IP address, even
though it represents different users. Also, session identification
based on the heuristic timeout method carries a certain degree
of uncertainty regarding the end of a user-agent’s navigation
inside a Web site of interest. Uncertainty in the data and the
actual detection problem itself are the reasons that we believe
a probabilistic approach is an ideal application to this problem.

B. System Overview

Our system uses training to learn the parameters of a
probabilistic model (Bayesian network) that classifies the user-
agent of each Web session as crawler or human. To this
end, the system combines evidence extracted from each Web
session. Classification is based on the maximum posterior
probability given the extracted evidence. The classification
process comprises three main phases: (i) Access-log analysis
and session identification; (ii) Learning, and (iii) classification.
An overview of the functionality of our crawler-detection
system is given in Algorithm 1.

III. A BAYESIAN NETWORK CLASSIFIER

A. Feature Selection and Labeling Training Data

We base our selection of features on our earlier charac-
terization study of crawler behavior [4], [7]. These features
(attributes) are extracted for each session and provide the
distinguishable characteristics between Web robots and hu-
mans. They are as follows: (i) Maximum sustained click rate:
This feature corresponds to the maximum number of HTML
requests (clicks) achieved within a certain time-window inside
a session. The intuition behind this is that there is an upper
bound on the maximum number of clicks that a human can
issue within some specific time frame t, which is dictated by
human factors. To capture this feature, we first set the time-
frame value of t and then use a sliding window of time t over a
given session in order to measure the maximum sustained click
rate in that session. The sliding window approach starts from
the first HTML request of a session and keeps a record of the
maximum number of clicks within each window, sliding the
window by one HTML request until we reach the last one of

1) Access-log analysis and session identification.
2) Session features are selected to be used as variables (nodes) in the

Bayesian network. These include:
a) Maximum sustained click-rate.
b) Session duration.
c) Percentage of image requests.
d) Percentage of pdf/ps requests.
e) Percentage of requests with 4xx response code.
f) robots.txt file requests.

3) Construction of the Bayesian network structure.
4) Learning:

a) Labeling of the set of training examples. At this step, sessions
are classified as crawler- or human-initiated sessions to form the
set of examples of the two classes.

b) Learning the required Bayesian network parameters using the set
of training examples derived from step 4a.

c) Quantification of the Bayesian network using the learned param-
eters.

5) Classification: we extract the features of each session and use them as
evidence to be inserted into the Bayesian network model. A probability
of each session being a crawler is thus derived.

Algorithm 1: Crawler detection system

the given session. The maximum of all the maximum clicks per
window gives the value of this attribute/feature. (ii) Duration
of session: This is the number of seconds that have elapsed
between the first and the last request. Crawler-induced sessions
tend to have a much longer duration than human sessions.
Human browsing behavior is more focused and goal-oriented
than a Web-robot’s. Moreover, there is a certain limit to the
amount of time that a human can spend navigating inside
a Web site. (iii) Percentage of image requests: This feature
denotes the percentage of requests to image files (e.g. jpg,
gif). Our earlier study showed that crawler requests for image
resources are negligible [4]. In contrast, human-induced ses-
sions contain a high percentage of image requests since the
majority of these image files are embedded in the Web-pages
they are trying to access. (iv) Percentage of pdf/ps requests:
This denotes the percentage requests seeking postscript(ps)
and pdf files. In contrast to image requests, some crawlers, tend
to have a higher percentage of pdf/ps requests than humans [4].
(v) Percentage of 4xx error responses: Crawlers have a higher
proportion of 4xx error codes in their requests. This can be
explained by the fact that human users are able to recognize,
memorize and avoid erroneous links, unavailable resources and
servers [4]. (vi) Robots.txt file request: This feature denotes
whether a request to the robots.txt file was made during a
session. From our studies, we also noticed that the majority of
crawlers do not request the robots.txt file. Therefore, a strong
feature for determining the identity of a session as crawler-
induced is the access to the robots.txt.

These features form the nodes (variables) of our Bayesian
network. The Bayesian network framework enables us to
combine all these pieces of evidence and derive a probability
for each hypothesis (crawler vs. human) that reflects the total
evidence gathered.

Our training dataset consists of a number of sessions,
each one with its associated label (crawler or human). Since
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Fig. 1. A Bayesian network used as a classifier

the original dataset contained thousands of sessions, it was
prohibitively large to be labeled manually. Therefore, we
developed a semi-automatic method for assigning labels to
sessions, using heuristics. All sessions are initially assumed to
be human. Then, we took into account a number of heuristics
to label some of the sessions as crawlers: (i) IP addresses of
known crawlers; (ii) The presence of HTTP requests for the
Robots.txt file; (iii) Session duration values extending over a
period of three hours; (iv) An HTML-to-image request ratio
of more than 10 HTML files per image file. More information
on these heuristics is given in [9]

It should be noted that we only use the first of the heuristics
above to determine conclusively the label of the session as
crawler. The other heuristics are used to give a recommended
labeling of the session as crawler. These latter sessions are
then manually inspected by a human expert to confirm or deny
the suggested crawler labeling. By this semi-automatic method
we aimed at minimizing the noise introduced in our training
set.

B. Network Structure

Bayesian Networks [10], [6], [5] are directed acyclic graphs
in which the nodes represent multi-valued variables, com-
prising a collection of mutually exclusive and exhaustive
hypotheses. The arcs signify direct dependencies between the
linked variables and the direction of the arcs is from causes
to effects 1. The strengths of these dependencies are quantified
by conditional probabilities. More specifically, each node Xi

has a conditional probability distribution P (Xi|Parents(Xi))
that quantifies the effect of the parents on the node, where
Parents(Xi) denotes the parent variables of Xi. This con-
ditional probability distribution, which defines the conditional
probability table of the variable, describes the probability dis-
tribution of the variable for each configuration of its parents.2

The graph encodes that each node is conditionally independent
of its non-descendants, given its parents [10].

Naive Bayes is a special case of a Bayesian network, where
a single cause (the class) directly influences a number of
effects (the features) and the cause variable has no parents.
This network is shown in figure 1. Again, the independence
assumption encoded by this model is that each feature is
conditionally independent given the class value.

Considering Figure 1, assume that F1, F2,..,Fn are n
features and fi represents the value of feature Fi. Assume

1If there is an arc from node X to node Y , then X influences (or causes)
Y . In such a case X is the parent of Y

2In this paper we consider Bayesian networks with discrete variables.

also that C is the class variable and let c represent a possible
value (label) of C. Using Bayes rule and the conditional inde-
pendence assumption, we can derive the posterior probability
of each class label c ∈ C, i.e. the probability of the class label
given the features observed, to be given by the formula:

P (c|f1, ..., fn) =
P (c)

∏n
i=1 P (fi|c)

P (f1, f2, · · · , fn)
(1)

Finally, the class variable C is assigned the label that
gives the maximum posterior probability given the features
observed. More specifically:

class = argmaxc∈CP (c)
n∏

i=1

P (fi|c) (2)

Notice that the denominator in equation 1 is a constant and
can be ignored in the last step.

The proposed Bayesian Network for crawler detection has
the structure shown in Figure 1. Before we explain the
reasoning behind this structure, we first give an interpretation
of each of the nodes. Each child node corresponds to one of
the features we presented earlier in section III-A. The root
node represents the class variable.

All nodes used in the network have been abbreviated as
follows:

• Class: The classification of the session. This variable
takes two values: robot or human. This is the root node
of the network of Figure 1.

• Clicks: Maximum number of clicks within a certain
time frame. This variable takes values in the range
[0, ..,maxClicks] where maxClicks is determined by
our training data.

• Duration: The number of seconds between the first
and the last request. It takes values in the range
[0, ..,maxDuration] where maxDuration is deter-
mined by our training data.

• Images: Percentage of requests to image files (e.g. jpg,
gif). This takes values in the range [0, .., 100].

• PDF/PS: Percentage requests to postscript(ps) and pdf
files. This takes values in the range [0, .., 100].

• Code 4xx: Percentage of 4xx error responses. This takes
values in the range [0, .., 100].

• Robots.txt: This a variable has only two values: 1 or 0.
The value 1 means that the session included a request to
the robot.txt file, otherwise the value is 0.

The network structure indicates that the class in which the
session belongs (i.e. crawler or human), “causes” its features
(attributes) and thus the direction of the arrow from class to
feature. This model encodes that the “effect” variables are
conditionally independent given the cause. For more details
on causality and learning causal structures see [6], [5].

Regarding the “weight” that each piece of evidence bears
on the classification (i.e. the fact that a certain feature may
be more significant than an other in determining the classifi-
cation of a session), is implicitly encoded in the conditional
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probability distributions that relate a child (the feature in this
case) with the parent (the class).

Having defined the structure of the network, we now have
to (i) Discretize all continuous variables; (ii) Define the
conditional probability tables that quantify the arcs of the
network. In the next two section we show how we use machine
learning to achieve the above tasks.

C. Learning Network Parameters

The learning phase of the system uses the training data that
have been created as described in section III-A. The training
data set consists of a number of sessions, each one with its
associated label (crawler or human). For each of these sessions,
we obtain the values of each of the features, described in
section III-B above, and which are represented as nodes in the
Bayesian network. We use the data for variable quantization,
based on the entropy, as well as for learning the conditional
probability tables, as described in the next two sections.

1) Variable Quantization: Since, in this implementation,
the Bayesian Network is developed for discrete variables,
the continuous variables need to be quantized- divided into
meaningful states (meaningful in terms of our goal, i.e. to
detect crawlers). One well-known measure which characterizes
the purity of the class membership of different variable states
is information content or entropy [11]. The procedure used
here was as follows: We observe the values of the variables
for a set of Crawler and Human session examples. For a
given quantization into c classes, the entropy is given by:

E =
c∑

i=1

−PCilog2PCi − PHilog2PHi (3)

where PCi is the probability of crawler sessions in class i
and PHi is the probability of human sessions in class i. The
entropy is then weighted by the fraction of examples that
belong in each interval. The number and range of classes
which result in the minimum total weighted entropy are chosen
to quantize the variable.

This minimum entropy principle was applied on all the
continuous variables (nodes), i.e. on five out of the six fea-
tures presented in section III-B: Clicks, Duration, Images,
PDF/PS and Code 4xx.

2) Conditional Probabilities: Having constructed the net-
work nodes, we need to define the conditional proba-
bilities which quantify the arcs of the network. More
specifically, we need to define the a priori probabil-
ity for the root node, P (Class) as well as the con-
ditional probability distributions for all non-root nodes:
P (Clicks|Class), P (Duration|Class), P (Images|Class),
P (PDF/PS|Class), P (Code 4xx|Class), with variables
abbreviated as in section III-B. Each of these tables gives the
conditional probability of a child node to be in each of its
states, given all possible parent state combinations.

We derived these probabilities from statistical data. For
example, the conditional probability of Duration being in
class (state) 1 given Class = Crawler, is determined from

data, by counting the number of Crawler examples with a
duration within class 1, and so on.

D. Classification

Once the network structure is defined and the network is
quantified with the learned conditional probability tables, we
proceed with the classification phase of our crawler detection
system.

For each session to be classified, we extract the set of six
features that characterize the behavior of clients and that form
the variables of our Bayesian Network. An example feature
vector, based on the feature description given in III-A, could
be (17, 135.5, 67, 2, 0, 0) which can be described as follows:
the session in question had reached a pick of 17 clicks (in
a pre-set 12-second window), had a session length of 135.5
seconds, 67% of of its requests were to image files, 2% of
its requests were to pdf/ps files, there were 0% requests with
response code greater than 400 and, finally, that the robots.txt
file was not requested (indicated by the last binary value
being set to 0). As described above, the network contains only
discrete variables whereas the first five of the six features are
continuous-valued. Each of these feature values is therefore
mapped on to a discrete state according to the ranges derived
by the quantization step of section III-C.1.

Following this step, each session is now characterized
by six features represented as values of discrete variables
corresponding to the Bayesian network. In order to classify
a session, each variable in the network is instantiated by
the corresponding feature value. The Bayesian network then
performs inference and derives the belief in the Class vari-
able, i.e. the posterior probability of the Class to take on
each of its values given the evidence (features) observed. In
other words we derive: P (Class = crawler|evidence) and
P (Class = human|evidence). The maximum of the two
probabilities is the final classification given to the session.

IV. EXPERIMENTAL RESULTS

In this section we present the experiments performed in
order to apply our methodology and evaluate the performance
of our crawler detection system.

A. Training Data sets

For the purposes of evaluating the performance of our
crawler detection system, we obtained access logs from two
servers of two academic institutions: the University of Toronto
and the University of Cyprus (a detailed description of these
log files can be found in [4]). The access logs were processed
by our log analyzer to extract the sessions. These sessions,
the majority being from the University of Toronto, were used
for training. Sessions were then labeled using our approach
described in section III-A.

The learning stage proved to be challenging task. The
problem encountered with this stage is one of class
imbalance [12], [13], [14]. The data sets present a class
imbalance when there are many more examples of one class
than of the other. It is usually the case that this latter class,
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i.e. the unusual class, is the one that people are interested in
detecting. Because the unusual class is rare among the general
population, the class distributions are very skewed [12]. In
our earlier study [4] we have concluded that crawler activity
in access logs amount to less than 10 per cent of the total
number of requests.

The problem that arises from training with imbalanced data
set is that classifiers tend to be biased toward the majority
class, i.e. the class with the largest number of examples. In
the case of the Naive Bayes classifiers, the prior probability
in the majority class overshadows the differences that exist in
the conditional probability entries that quantify the relationship
between feature and class variables.

To tackle the problem of imbalanced data sets we use
resampling. More specifically we adopted two resampling
approaches in our experiments: random oversampling and ran-
dom undersampling. In the former method, the minority cases,
i.e. crawler sessions, are randomly chosen for duplication until
the ratio of majority to minority reaches a desirable level. In
the latter method of random undersampling, the majority cases,
i.e. human sessions, are randomly eliminated until the ratio is
at the desirable level. We performed 5 experiments, based on
resampling (both oversampling and undersampling) at various
ratios.

Table I shows the number of Crawler and Human sessions in
each of the 5 training data sets created via resampling. The last
column shows the prior probability distributions of variable
Class, considering the distribution of sessions actually used
for training.

We constructed five Bayesian network classifiers, one for
each experiment. The networks had the same structure but
differed in their parameters, i.e. prior probabilities, conditional
probability tables and quantization ranges. Each time a new
training data set was introduced, new network parameters were
derived using training on the new set.

B. Testing the system

A different access log, from the ones not used during train-
ing, was randomly chosen for testing. Since the majority of the
sessions used for training were extracted from the University
of Toronto log, we have chosen a different institution server
altogether to evaluate our detection system. This access log
used for testing was obtained from the University of Cyprus
and spanned a period of one month. A human expert did an
entirely manual classification of each session, extracted by
our log analyzer from this the testing set, in order to provide
us with the ground truth by which we were to evaluate our
classifier’s performance. It should be noted that we did not do
any resampling for the testing.

We tested the performance of all five Bayesian networks
(one for each data set), on the same testing dataset3. The
testing set contained 685 actual human sessions and 99 actual
crawler sessions, as labeled by an independent human expert.
Throughout this section we will refer to the 5 classifiers as

3The networks were implemented using the ErgoTM tool [15]
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Fig. 2. An evaluation of the crawler-detection classifiers.

follows: (i) Classifier C1: Obtained using learning of Data set
1 (no resampling); (ii) Classifier C2: Obtained using learning
of Data set 2 (oversampling to 15%); (iii) Classifier C3:
Obtained using learning of Data set 3 (oversampling to 50%-
equally represented classes); (iv) Classifier C4: Obtained using
learning of Data set 4 (undersampling to 85%); (v) Classifier
C5: Obtained using learning of Data set 5 (undersampling to
50%-equally represented classes).

Two metrics that are commonly applied to imbalanced
datasets to evaluate the performance of classifiers is recall
and precision. These two metrics are summarized into a third
metric known as the F1-measure [16]. These metrics, applied
to our problem, are defined as follows:

Recall(R) =
No. of Crawler sessions correctly classified

No. of actual crawler sessions

Precision(P ) =
No. of Crawler sessions correctly classified

No. of predicted Crawler sessions

The F1-measure is the harmonic mean between recall and
precision. It summarizes the two metrics into a single value, in
a way that both metrics are given equal importance. Recall and
precision should therefore be close to each other, otherwise the
F1-measure yields a value closer to the smaller of the two.

The values of recall, precision and F1-measure obtained by
classifiers C1, . . . , C5 are given in Table II and plotted in
Figure 2.

Classifier Recall Precision F1 − measure
C1 0.80 0.92 0.855
C2 0.81 0.93 0.866
C3 0.95 0.86 0.903
C4 0.81 0.93 0.866
C5 0.95 0.79 0.863

TABLE II

EVALUATION METRICS OF EACH BAYESIAN NETWORK CLASSIFIER.

As it can be seen from table II, our crawler detection system
yields promising results with both recall and precision being
above 79% in all experiments performed. The lowest F1-
measure is obtained by C1 when we train the system with
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Data Set No. Distinct No. Distinct No. Humans No. Crawlers Prior Probabilities:
No. Humans Crawlers used in training used in training (Human, Crawler)

1 10106 988 10106 988 (0.91, 0.09)
2 10106 988 10106 1784 (0.85, 0.15)
3 10106 988 10106 10106 (0.5, 0.5)
4 10106 988 5599 988 (0.85, 0.15)
5 10106 988 988 988 (0.5, 0.5)

TABLE I

DATA SETS USED FOR FIVE EXPERIMENTS WITH AND WITHOUT RESAMPLING

the dataset without resampling. The prior probability of a
session to be Human in that dataset was 91% and the classifier
was therefore biased towards humans. It missed only 7 out
of the 685 Human sessions but sacrificed recall, by missing
20 out of the 99 actual Crawler sessions. By resampling so
that the Crawler class amounts to 85% of the sessions (either
via oversampling as in C2 or by undesampling as in C4) we
have slightly improved results compared to C1. Both C2 and
C4 have the same precision and recall. The best results are
obtained by C3, which was trained using oversampling of
Crawlers so that they reach the number of Human examples
in the original set. The recall, i.e. the percentage of crawlers
correctly classified increases dramatically to 95%, with 94 ses-
sions correctly classified as Crawlers out of 99 actual crawlers.
This causes a decrease in precision, which is nevertheless not
so dramatic. The same recall as C3 is achieved by C5 which
was trained by undersampling Humans so that both classes are
again, equally represented. However, this caused a significant
decrease in precision to 79%, i.e. we have an increase in the
number of false positives, i.e. Humans incorrectly classified
as Crawlers. The significant decrease in precision of C5, is
not surprising since, with random undersampling there is no
control over which examples are eliminated from the origi-
nal set. Therefore significant information about the decision
boundary between the two classes may be lost. The risk with
random oversampling is to do over-fitting due to placing exact
duplicates of minority examples from the original set and thus
making the classifier biased by “remembering” examples that
were seen many times. The are other alternatives to random
resampling which may reduce the risks outlined above. An
investigation and a comparison of the various resampling
techniques is beyond the scope of the current paper.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the use a Bayesian network,
for detecting Web crawlers from access logs. This Bayesian
approach is well suited for the particular domain due to the
high degree of uncertainty inherent in the problem. Our system
uses machine learning to determine the parameters of the
Bayesian network that classifies the user-agent of each Web
session as crawler or human. The system combines evidence
extracted from each Web session to determine the class it
belongs to. The Bayesian network does not merely output
a classification label, but a probability distribution over all
classes by combining prior knowledge with observed data. We
have used resampling to counter the class imbalance problem

and developed five classifiers by training on five different
datasets.

The high accuracy with which our system detects crawler
sessions, proves the effectiveness of our proposed method-
ology. These results provide a promising direction for fu-
ture work. We are currently investigating the introduction of
additional heuristics for session identification, which is an
important pre-processing step of our proposed system. We also
plan to introduce other interesting features of Web sessions,
such as the navigational semantics of user-agent requests.
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