
35 Years of Research:
+ Results; - Results

Lawrence Snyder
www.cs.washington.edu/homes/snyder

9 April 2009

© Larry Snyder, All Rights Reserved

The Situation Today …

 We have ~35 years of research results to
draw upon --
 Many, who have worked in the area, think

much of it is important
 Many, who have NOT worked in the area, think

none of it is useful
 Many, who are encountering parallelism now

for the first time, assume nothing came before
 Where is the truth?

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Parallel Programming State-of-the-Art

 The “parallel programming problem” has been
studied for 35+ years and we learned:
 Parallelism is best when it’s invisible
 Parallelizing compilers do not suffice (more later)
 Hardware has not yet given SW sufficient support
 “Silver Bullet” programming approaches do not

suffice
 “Blue Collar” parallel programs are built with

library-based tools: MPI/PVM, threads, OpenMP

© Larry Snyder, All Rights Reserved

The First Approach Was Easiest
 The original plan for programming Illiac IV, was to

have a compiler process Fortran IV programs,
producing parallel code

 Dave Kuck led the Illinois team
 Extremely Ambitious

 Fortran IV programs notoriously badly structured
 Compilation technology still very primitive
 Program analysis techniques nearly non-existent

 Ultimately, “production programs” written in assembler
 Kuck + many others continued to pursue the goal:

parallel_code = compilation(serial_code)

© Larry Snyder, All Rights Reserved

One (Of Many) Problems

 Loop carried dependences can get in way
 Decide if parentheses are balanced
i = 0;
open = 0;
while (content[i] != '') {
 if (content[i] == '(')
 open = open + 1;
 if (content[i] == ')')
 open = open - 1;
 if (open < 0)
 break;
 i++;
}
balanced = ! open;

content: a-f(c)*(d+f(e))
 open:0000110011112210

content: a-f)c)*(d+f(e))
 open:0000-1

© Larry Snyder, All Rights Reserved

Compiling: Graph Abstractions

Programs are
represented
as graphs

i = 0 open = 0

content[i]=="

content[i]==')'

content[i]=='('
open = open+1

open = open-1

open < 0

i = i + 1

balanced=!open

© Larry Snyder, All Rights Reserved

Compiling: Iterations - 0

i = 0 open = 0

content[i]=="

content[i]==')'

content[i]=='('
open = open+1

open = open-1

open < 0

i = i + 1

balanced=!open

Add edges to
mark where
uses are defined

© Larry Snyder, All Rights Reserved

Compiling: Iterations - 1

i = 0 open = 0

content[i]=="

content[i]==')'

content[i]=='('
open = open+1

open = open-1

open < 0

i = i + 1

balanced=!open

Add edges to
mark where
uses are defined

© Larry Snyder, All Rights Reserved

Compiling: Iterations - 2

i = 0 open = 0

content[i]=="

content[i]==')'

content[i]=='('
open = open+1

open = open-1

open < 0

i = i + 1

balanced=!open

Add edges to
mark where
uses are defined

© Larry Snyder, All Rights Reserved

Difficult To Analyze

 The computation is embodied in the “flow
dependences” and the truth of predicates
that specify it … it is difficult to analyze

Defs Uses

open = 0

open = open+1

open = open-1

open = open+1

open = open-1

open < 0

balanced=!open

© Larry Snyder, All Rights Reserved

After 35 years of research …
 In 2006 Kuck summed up the situation at a

workshop, “I still think it [parallelizing sequential
code] is possible, but it can’t be done yet.”

 In the intervening years
 Architectures kept changing … a problem; not serious
 Compiler transformations “worked” for vector machines
 Enormous funding was available
 Many of best researchers worked on the problem
 Program analysis became a sophisticated technology
 Source languages got much better, more structured
 Progress was made in many aspects of the task
 Commercial products were deployed

© Larry Snyder, All Rights Reserved

Why Hasn’t It Worked?
 In many restricted cases it has worked …

but those cases are not sufficient to
compile “general” programs

 I think the problem is fundamentally not
solvable based on the observation:
 The best sequential program and the best

parallel program for a task tend to be different
 The difference is not a simple transformation or

series of transformations
 The two programs embody different solution

paradigms This seems to be a fundamental barrier

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Recall Parallel Prefix Algorithm

6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

What does this
picture mean?

© Larry Snyder, All Rights Reserved

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

Recall Parallel Prefix Algorithm

8 Processors &
comm pattern

0 1 2 3 4 5 6 7

© Larry Snyder, All Rights Reserved

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Recall Parallel Prefix Algorithm

0 1 2 3 4 5 6 7

8 Processors &
comm pattern

© Larry Snyder, All Rights Reserved

Use Parallel Prefix Abstraction …

 Thinking abstractly of “parallel prefix
computations”
 Abstract as combining adjacent pairs of

sequences: xxxxxxxx = llll + rrrr
 3 parts to the abstraction --

 initialize a descriptor (tally) for a singleton (i)
 combine tallies of 2 adjacent sequences (c)
 finish by extracting the answer from tally (f)

f(c(c(c(i(x) i(x)) c(i(x) i(x))) c(c(i(x) i(x)) c(i(x) i(x)))))

© Larry Snyder, All Rights Reserved

Applying || Prefix To Balanced ()s

 Consider
 Information to be carried along: tally
 How to join tallies of two independently

computed subsequences
 Consider what the output must be from tally

 The tally for “balanced parens” is two ints,
excess open parens opCount and excess
closed parents clCount

© Larry Snyder, All Rights Reserved

A || Prefix Solution

 Visualize a processor per point (not really*)
 Each point is initialized to a tally data structure
 Pairs are combined in some way
 Process continues until there is one tally
 Compute the final result

 Initialize on this problem:
a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a-f(c)*(d+f(e))

opCount

clCount

*compilers produce “coarse-grain” code

© Larry Snyder, All Rights Reserved

Tri-Partite Parallel Prefix

Combine two tallies:
tally.clCount = ltally.clCount;
tally.opCount = rtally.opCount;
int temp = ltally.opCount - rtally.clCount;
if (temp < 0)
 tally.clCount += abs(temp);
else
 tally.opCount += temp;

Initialize a tally:
if (inval == '(')
 int tally.opCount = 1;
else
 int tally.opCount = 0;
if (inval == ')')
 int tally.clCount = 1;
else
 int tally.clCount = 0;

Finalize result from tally:
outval = (tally.opCount == 0) && (tally.clCount == 0);

xxxxxxxx = llll + rrrr

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
a- f(c) *(d+ f(e))
0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
a- f(c) *(d+ f(e))
0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
a- f(c) *(d+ f(e))
0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1
a-f(c)*(d+f(e))
1 1 1 0
0 1 0 2

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
a- f(c) *(d+ f(e))
0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1
a-f(c)*(d+f(e))
1 1 1 0
0 1 0 2
a-f(c)*(d+f(e))
1 0
0 1
a-f(c)*(d+f(e))
0
0

© Larry Snyder, All Rights Reserved

Tri-Partite Parallel Prefix

Combine two tallies:
tally.clCount = ltally.clCount;
tally.opCount = rtally.opCount;
int temp = ltally.opCount - rtally.clCount;
if (temp < 0)
 tally.clCount += abs(temp);
else
 tally.opCount += temp;

Initialize a tally:
if (inval == '(')
 int tally.opCount = 1;
else
 int tally.opCount = 0;
if (inval == ')') {
 int tally.clCount = 1;
else
 int tally.clCount = 0;

Finalize result from tally:
outval = (tally.opCount == 0) && (tally.clCount == 0);

xxxxxxxx = llll + rrrr

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
a- f) c) *(d+ f(e))
0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
a- f) c) *(d+ f(e))
0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
a- f) c) *(d+ f(e))
0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 1
a-f) c)*(d+f(e))
0 1 1 0
1 1 0 2

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
a- f) c) *(d+ f(e))
0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 1
a-f) c)*(d+f(e))
0 1 1 0
1 1 0 2
a-f)c)*(d+f(e))
1 0
2 1
a-f)c)*(d+f(e))
0
2

© Larry Snyder, All Rights Reserved

Summary on || Prefix

 By thinking abstractly of carrying along
information that describes the sequence,
combining adjacent subsequences, and
finally extracting a value, it is possible to
move directly to a || prefix solution

 Using the abstraction is an intellectually
different way of thinking about
computations

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Parallel Programming Problem
 Virtually all || programs should be platform independent

 Recall: Machines have 1/2 life of years; programs have 1/2 life
of decades

 Parallel Software Development Problem: How do we
neutralize the machine differences given that
 Some knowledge of execution behavior is needed to write

programs that perform … the only interesting || programs?
 Programs must port across platforms effortlessly, meaning, by

at most recompilation

 Compare Sequential and Parallel Cases

© Larry Snyder, All Rights Reserved

RAM or von Neumann Model
 The Random Access Machine is our friend

 Control, ALU, (Unlimited) Memory, [Input, Output]
 Fetch/execute cycle runs 1 inst. pointed at by PC
 Memory references are “unit time” independent of

location
 Gives RAM it’s name in preference to von Neumann
 “Unit time” is not literally true, but caches fake it

 Executes “3-address” instructions
 Most other details (caches, I/O, etc.) ignored

It’s so intuitive, it seems like there’s no other way to compute!

© Larry Snyder, All Rights Reserved

Machine Model Problem (|| Case)
 In || programming, there is no single, logical machine to

imagine to be executing the program; parallel variations are
numerous
 SIMD | MIMD
 Shared memory | Distributed Memory
 Shared memory | Shared address space
 Narrow bisection bandwidth | Wide BiBW
 Cluster | MPP
 Etc.

 It’s not likely the perfect || machine invented soon
 How we think about parallel execution is the Parallel

Programming Problem

© Larry Snyder, All Rights Reserved

Options for Solving the PPP
 Adopt a very abstract language that can

target to any platform & ignore details …

© Larry Snyder, All Rights Reserved

Options for Solving the PPP
 Adopt a very abstract language that can

target to any platform & ignore details …
 How does a programmer know how efficient or

effective his/her code is? Interpreted code?
 What are the “right” abstractions and statement

forms for such a language?
 Emphasize programmer convenience?
 Emphasize compiler translation effectiveness?

 No one wants to learn a new language, no
matter how cool

© Larry Snyder, All Rights Reserved

Options for Solving the PPP

 Agree on a set of parallel primitives (spawn
process, lock location, etc.) and create
libraries that work w/ sequential code …

© Larry Snyder, All Rights Reserved

Options for Solving the PPP

 Agree on a set of parallel primitives (spawn
process, lock location, etc.) and create
libraries that work w/ sequential code …
 Libraries are a mature technology
 To work with multiple languages, limit base

language assumptions … L.C.D. facilities
 Libraries use a stylized interface (fcn call)

limiting possible parallelism-specific abstractions
 Achieving consistent semantics is difficult

© Larry Snyder, All Rights Reserved

Options for Solving the PPP

 Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …

© Larry Snyder, All Rights Reserved

Options for Solving the PPP

 Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …
 Not a full solution until languages are available
 The solution works in sequential world (RAM)
 Requires discovering (and predicting) what the

common capabilities are
 Solution needs to be (continually) validated

against actual experience

© Larry Snyder, All Rights Reserved

Summary of Options for PPP
 Adopt a very abstract language that can

target to any platform & ignore details …
 Agree on a set of parallel primitives (spawn

process, lock location, etc.) and create
libraries that work w/ sequential code …

 Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Generalization of RAM: PRAM
 Parallel Random Access Machine (PRAM)

 Unlimited number of processors
 Processors are standard RAM machines, executing

synchronously
 Memory reference is unit time
 Outcome of collisions at memory specified

 CRCW, CREW, EREW …

 The PRAM might approximate a multicore or
SMP, but it doesn’t abstract larger machines, so
not suitable for algorithm analysis

PRAM is too abstract, though not entirely irrelevant

© Larry Snyder, All Rights Reserved

CTA Model
 Candidate Type Architecture (CTA): A || model with P

standard processors, d degree, λ latency

 Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

Key Property: Local memory ref is 1, global memory is λ

© Larry Snyder, All Rights Reserved

What CTA Doesn’t Describe
 CTA has no global memory … but memory could

be globally addressed
 Mechanism for referencing memory not specified:

shared, message passing, 1-side
 Interconnection network not specified, but there

are some details
 λ is not specified beyond λ>>1 -- cannot be

because every machine is different
 d is not specified except that it is “small”, one digit
 Controller, combining network “optional”

© Larry Snyder, All Rights Reserved

Interprocessor Communication
 The communication mechanism (shared memory,

1-sided, message passing) is not specified
 Implications

 Principles of operation are independent of communication
choice

 For shared memory machine, interpret “local memory” as
L1/L2 cache, privately used L3/RAM
 Avoid hazards of “memory consistency” by “staying local”
 Could simplify hardware by relaxing cache coherence

 Scalability potentially spans from multi-core to largest
MPPs

© Larry Snyder, All Rights Reserved

More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

Fat Tree

© Larry Snyder, All Rights Reserved

More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

Fat Tree

© Larry Snyder, All Rights Reserved

More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

Fat Tree

© Larry Snyder, All Rights Reserved

More On the CTA
 Consider what the diagram doesn’t mean…

 After ACKing that CTA doesn’t model
buses, accept that it could be a good
approximation

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

BUS

© Larry Snyder, All Rights Reserved

Typical Values for λ

 Lambda can be estimated for any machine
(given numbers include no contention or
congestion)

5000BlueGene/LSuper
4100-5100Itanium + MyrinetCluster
400-660Sun Fire E25KSMP
100AMDCMP

As with merchandizing: It’s location, location, location!

Lg λ range
=> cannot
be ignored

© Larry Snyder, All Rights Reserved

Programming Implications

 How does CTA influence programming?
 Consider …

 Expression evaluation: Same/Different?
 Relationship among processors?
 Data structures?
 Organization of work?
 …

© Larry Snyder, All Rights Reserved

Expression Evaluation
 The CTA processors are vN machines, so

normal sequential execution is unaffected if
the operands are local
 This stresses locality
 Insures caches work
 Exploits the architectural progress in processor

design over last 20 years … “basic blocks” that
stay in L1/L2 cache execute at maximum speed

 Therefore: Basic scalar computation preserved
with customary performance

© Larry Snyder, All Rights Reserved

Relationship Among Processors
 The processors are autonomous
 Memory is not coherent -- it’s a problem for the

programmer
 Each process has it’s own view on the computation --

must synchronize as needed
 Synchronization carries double cost, affecting both

“sides” of the handshake
 Reducing interactions speeds processing (locality again!)
 Managing interactions (they’re necessary) to lower their

impact is essential to success

© Larry Snyder, All Rights Reserved

Implications for Data Structures
 A key implication is that a process cannot be

oblivious to which portion of a data structure
that it has local

 Implications of decomposed data structures
 Working on partitioned data structures is more

complicated than working one unitary ones
 Load balancing and data structure partitioning

are intimately connected
 Races are easier to identify, handle
 Automatic isolation is beneficial

© Larry Snyder, All Rights Reserved

Organization of Work
 The computation must be explicitly parallel
 Implications

 Algorithms need to be rethought
 Very fine grain parallelism is a waste of time
 Minimize frequency of thread interaction
 Expect to compute things redundantly
 “First thing to try” is determine if existing (seq)

techniques can solve a local portion of the
problem, then combine results

Adopting the CTA implies significant change to algorithm development

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Why CTA Is Right & PRAM is Wrong
 The machine model drives our thinking on

algorithms: It’s the basis for choosing solutions to
programming problems
 Compare the CTA and PRAM in this role
 Both models are simple
 Both models take RAM machines as nodes
 Both models have sequentially consistent memory, but

PRAM is global, CTA is local
 They differ in two notable ways

 PRAM is synchronous
 PRAM has a “unit cost” memory reference time

 Consider the consequences of this difference

© Larry Snyder, All Rights Reserved

Compare The Models

 Programming decision: What is the best
solution to finding the maximum of n values?
 For PRAM, the best Find_Max is Valiant’s Alg
 For CTA, the best Find_Max is Tournament Alg
 Time bounds for n = P processors

 Valiant (CRCW) O(log log n)
 Tournament O(log n)

 Choice of model determines program written
 Consider both solutions

© Larry Snyder, All Rights Reserved

Valiant’s Find_Max
 At the high level, Valiant’s algorithm

 Operates in rounds
 In each round a processor is used to make just one

comparison
 Groups of processors can decide for a set of values

which is largest; winner moves on to next round

P1
ans[1] = 1

a1:a2
set smaller
to 0 in ans;

promote
winners to
next round

P2
ans[2] = 1

a1:a3
set smaller
to 0 in ans;

promote
winners to
next round

P3
ans[3] = 1

a2:a3
set smaller
to 0 in ans;

promote
winners to
next round

P4
ans[4] = 1

a4:a5
set smaller
to 0 in ans;

promote
winners to
next round

P5
ans[5] = 1

a4:a6
set smaller
to 0 in ans;

promote
winners to
next round

P6
ans[6] = 1

a5:a6
set smaller
to 0 in ans;

promote
winners to
next round

…

{a1,a2,a3} {a4,a5,a6}

© Larry Snyder, All Rights Reserved

Second Round
 Fewer elements implies larger groups, say 7

 Requires 6+5+4+3+2+1 = 21 processors to find largest in
one step

 … until all that remains is a set with one element

a1:a2
a1:a3 a2:a3
a1:a4 a2:a4 a3:a4
a1:a5 a2:a5 a3:a5 a4:a5
a1:a6 a2:a6 a3:a6 a4:a6 a5:a6
a1:a7 a2:a7 a3:a7 a4:a7 a5:a7 a6:a7

{a1, a2, a3, a4, a5, a6, a7}

© Larry Snyder, All Rights Reserved

Analysis
 In the first round, there are n values, and n=P processors

…
 3 = 2+1 processors can find the largest of 3 values
 Round 1: Split n inputs into n/3 sets of 3 items each, requires

P processors to find n/3 maxes
 Now, fewer elements (n/3) and same number processors
 21 = 6+5+…+1 processors can find the largest of 7 values
 Round 2: Split n/3 inputs into n/(3*7) sets of 7 items each,

requires 21*n/(3*7) = P processors to find the maxes …
 Per round overhead is constant
 Analysis shows a double exponential reduction in problem

size, thus O(log log n) phases

Beautiful!

© Larry Snyder, All Rights Reserved

CTA Find_Max

 The CTA embeds a tree in the
interconnection network, and implements
the familiar tournament

246 810 16 1416

 6 16 16 8

16 16

16







  



© Larry Snyder, All Rights Reserved

PRAM Mispredicts Preferred Alg
 For task of finding maximum of n numbers
 Best algorithm

 CRCW PRAM: Valiant’s algorithm O(log log n) ★
 CTA Model: Tournament algorithm O(log n)

 What’s observed performance real implementation?
 PRAM communication on physical machine takes at least Ω

(log n) time, but generally much more
 Observed performance

 Valiant: O(log n log log n)
 Tournament: O(log n) ★
 The PRAM’s guidance is wrong

© Larry Snyder, All Rights Reserved

Drawing Conclusions

 Predicting the wrong solution is not a
happy outcome for a model

 The “problem” is the model ignores cost of
communication, so Valiant’s solution can
have unachievably fast memory reference

 Conclusions
 Model must be accurate on important costs
 Ignoring communication cost (λ) is dangerous

in parallel programming

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Consider Using CTA Model

 Write a dense matrix multiplication program
 Standard sequential code is a place to

begin
for (i = 0; i < m; i++) {
 for (j = 0; j < p; j++) {
 C[i][j]=0;
 for (k = 0; k < n; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
} Can we use this for parallel solution?

© Larry Snyder, All Rights Reserved

C = AB
 Dense Matrix Multiplication

 Could spawn thread to compute “dot product”
No collisions on writing values [almost]
Cached values evicted for (at least one of the) operands
Most data is resident on other processor: communication

 … better consider how data is stored -- blocks

x=

C A B
+ *= * + * + * + *+ * + * + *

© Larry Snyder, All Rights Reserved

Blocked View
 Tiling: a standard (sequential) reformulation

 Size of tile determined by the amount of each
matrix that fits in the cache … tend to be “small”

Sensitive to policy for getting next tile: strip mining
Replicates arrays multiple times
P processor = T tiles? P < T, probably; P < T1/2?

 Tiles are weak abstraction; they focus on reuse
(that’s good) but not data transfer (more critical)

x=

Message: The cost is data motion != reuse

© Larry Snyder, All Rights Reserved

Shift Interest To Operands
 Tiles focus on which processor owns result, but ignores the

cost of data transfer
 Consider which processors own operands

 As stated earlier, blocks avoid bias towards rows/columns …
then consider data motion
Local portion computed without data motion
Completing computation requires blocks of arrays owned by other

processors -- a large communication load

x=

© Larry Snyder, All Rights Reserved

Consider Data Motion
 To complete dot-products already started requires

considerable data transfer

 Slamming network harms contention
 Consider ways of reducing data blast …

 Send portions of subarrays

x=

x= Obvious X-fer but
not very useful

© Larry Snyder, All Rights Reserved

Adopt Compute-As-You-Go
 Algorithm has two phases

Local computation -- no communication
Iterative finish -- send-compute-receive
Data moved only once

 There’s complexity here because of 2 phases

Change point
of view away
from dot-prod

x=

x=

© Larry Snyder, All Rights Reserved

Change In View Point
+ *= * + * + * + *+ * + * + *

+ *= * + * + * + *+ * + * + *

+ *= * + * + * + *+ * + * + *

+ *= * + * + * + *+ * + * + *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

© Larry Snyder, All Rights Reserved

Reorder Computation
 Eliminate the 2-phase property by making second

phase apply to all items

 Benefits
Simplify algorithm
Improve communication when broadcast is available
Reduce communication load by making all processors work

on the same portion of row/column
 Can add tiling as needed …

© Larry Snyder, All Rights Reserved

New Algorithm

 The logic goes as follows:
initialize C array to 0
for (i=1; i <= n; i++) {
 bdcast col (portion) of A to horizontal peers
 bdcast row (portion) of B to vertical peers
 accumulate all local ‘next terms’ of dot prod
}

© Larry Snyder, All Rights Reserved

Voila! We Found SUMMA
 The iterative redesign of the standard “triply nested loops”

algorithm resulted in the SUMMA algorithm (van de Geijn & Watts)
 Important milestones in thinking

 Noticed lack of locality
 Noticed tiles (std solution) focus on reuse and limit flexibility of

applying processors to algorithm
 Noticed block allocation unbiased
 Noticed full locality on local portion
 Noticed that continuing computation moved too much data, but

move of part of row/column per processor OK
 Noticed that “part move” could solve whole problem

Could a compiler have made these transformations?

© Larry Snyder, All Rights Reserved

Apply CTA to SUMMA
 How does CTA guide us understanding SUMMA

algorithm is best?
 Arrays will be partitioned and allocated to local

memories
 Each processor performs its computations locally
 Send row and column parts via the interconnection net
 Performance is

 Full parallelism for local processing
 λ for each row/col portion sent; broadcast
 Overlapping communication/computation may remove

λ charge

But isn’t programming SUMMA a total headache?

© Larry Snyder, All Rights Reserved

Summary

 As with most research areas, in parallel
computation some things worked, some
things didn’t
The parallel approach to computing … does require
that some original thinking be done about numerical
analysis and data management in order to secure
efficient use. In an environment which has
represented the absence of the need to think as the
highest virtue, this is a decided disadvantage.

-- Dan Slotnick, 1967

