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The Situation Today …
 Consumer and business software cannot

achieve further performance improvements
without parallelism.

 Is that a problem … or an opportunity?
 My goal today is not to “sell” new and

wondrous results, but to give a global
perspective on the parallel “problem”
answering:
 Why is it so hard?
 Where do we go from here?
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Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help



© Larry Snyder, All Rights Reserved

Today’s
Facts

Figure courtesy of Kunle 
Olukotun, Lance Hammond, 
Herb Sutter & Burton Smith

2x in 2yrs
Single
Processor

Opportunity
Moore’s law
continues, so
use more gates
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Today’s Facts

 Laptops, desktops, servers, etc. now are
parallel (mulitcore) computers … why?

 Multi-core gives “more” computation and
solves difficult hardware design problems
 What to do with all of the transistors: Replicate
 Power Issues
 Clock speeds

… consider each issue
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Multi-core Replicates Designs

 Traditionally we have used transistors to
make serial processors more aggressive
 Deeper pipelining, more look-ahead
 Out of order execution
 Branch prediction
 Large, more sophisticated TLBs, caches, etc.

 Why not continue the aggressive design?
… Diminishing returns, limit on ILP, few new ideas

Bottom Line: Sequential instruction execution reaching limits
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Size vs Power
 Power5 (Server)

 389mm^2
 120W@1900MHz

 Intel Core2 sc (laptop)
 130mm^2
 15W@1000MHz

 ARM Cortex A8 (automobiles)
 5mm^2
 0.8W@800MHz

 Tensilica DP (cell phones / printers)
 0.8mm^2
 0.09W@600MHz

 Tensilica Xtensa (Cisco router)
 0.32mm^2 for 3!
 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each processor operates with 0.3-0.1 efficiency
of the largest chip: more threads, lower power
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Multi-core Design Space

 Smaller, slower implies more modest design

Gflops/W200.9power capacity

Gflops/mm130.6area capacity

Gflop/s12832peak throughput

words wide164vector operations

relative perf0.31single thread

42threads

GHz44frequency

W6.2537.5power

mm^21050size

in orderout of ordermicro-architecture

Source: Doug Carmean, Intel

Traditional Core Design



© Larry Snyder, All Rights Reserved

Multi-cores Have Their Problems
 Single threaded computation doesn’t run faster (it

may run slower than a 1 processor per chip design)
 Few users benefit from m-c ||ism today

 Existing software is single threaded
 Compilers don’t help and often harm parallelism
 It’s often claimed that OS task scheduling is one easy

way to keep processors busy, but there are problems
 limited numbers of tasks available
 contention for resources, e.g. I/O bandwidth
 co-scheduled tasks often have dependences -- no

advantage to or prevented from running together
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Legacy Code

 Even casual users use applications with a
total code base in the 100s of millions LOC
… and it’s not parallel

 There are not enough programmers to
rewrite this code, even if it had || potential

 With single processor speeds flat or falling,
this code won’t improve

Challenge
How to bring performance
to existing programs
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What Can Microsoft Do?

 “Parallelism requires adjustments at every
level of the stack … the repartitioning of
different tasks to different layers … So look
for a rebalancing of roles and runtimes. We
need to formalize that in the operating
system. Expect the first pieces in the next
generation of Windows.” Craig Mundy, Microsoft
Chief Research & Strategy Officer, 3 October 2008
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Legacy Code

 Even casual users use applications with a
total code base in the 100s of millions LOC
… and it’s not parallel

 There are not enough programmers to
rewrite this code, even if it had || potential

 With single processor speeds flat or falling,
this code won’t improve

Challenge
How to bring performance
to existing programs

Opportunity
Much legacy code
supports backward
compatibility -- ignore



© Larry Snyder, All Rights Reserved

Potential of Many Threads - Amdahl

 Maximum performance improvement by
parallelism is S-fold if sequential part is1/S

 “Everyone is taught Amdahl’s Law in school,
but they quickly forget it” -- T. R. Puzak, IBM

 More complex in multi-core case: programs
that are 99% parallel get speedup of 72 on
256 cores [Hill & Marty]

TP  = 1/S⋅TS  + (1 - 1/S) ⋅ TS /P
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Summary So Far
 Opportunities --

 Moore’s law continues to give us gates
 Multi-core is easy design via replication
 Replicating small, slower processors fixes power

problems & improves ops/second
 Challenges --

 Smaller, slower designs are smaller, slower on 1 thread
 Huge legacy code base not improved
 Parallelism doesn’t speed-up sequential code. Period.
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Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help
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But There’s More To Consider
 Two processors may be

‘close’ on the silicon, but
sharing information is still
expensive

 r1  L1  L2  coherency
protocol  L2  L1  r2

 Opteron Dual Core: more
than 100 instruction times

 Latency between cores only
gets worse

Challenge
On Chip Latency
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Latency -- Time To Access Data
 Latencies (relative to instruction execution) have

grown steadily over the years, but (transparent)
caching has saved us

 No more
 Interference of multiple threads reduces the benefits of

spatial and temporal locality
 Cache coherence mechanisms are

 good for small bus-based SMPs
 slower and complex as size, distance and

decentralization increase

 Thus, latency growth is a problem
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Bandwidth On/Off Chip

 Many applications that are time-consuming
are also data intensive e.g. MPEG compress

 C cores share the bandwidth to memory:
available_bandwidth/C

 Caching traditionally solves BW problems,
but Si devoted to cache reduces number of
cores

 A problem best solved with better technology
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Memory Model Issues
 When we program, we usually think of a single

memory image with “one” history of transitions:
s0, s1, …, sk, …

 Not true in the parallel context
 Deep technical problem
 Two cases

 Shared memory
 Distributed memory

 The consequences of this fact are the largest
challenges facing parallel programming
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Facts of Life Summary: Challenges

 Latency on chip will increase as core count
increases
 significant already
 both logic complexity and “electronic” distance

 Bandwidth to L3 and memory shared
 Memory model for programmers

 Presently broken
 Extensive research has failed to find alternate
 May be a “show stopper”
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Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help
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Large Parallel Facts

 A parallel computer (IBM Roadrunner) has
achieved 1 Peta Flop/S (1.1×1015 Flop/S)
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Large Parallel Facts

 A parallel computer (IBM Roadrunner) has
achieved 1 Peta Flop/S (1.1×1015 Flop/S)

?
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Roadrunner Specs
 12,562 dual-core AMD Opteron® chips and

12,240 STI PowerXCell 8i chips (25.6 GF SP,
12.8 GF DP per SPE) … each AMD core gets a
Cell chip

 98 terabytes of memory
 3.8 MW total delivering 376 MFlops/W
 278 refrigerator-sized racks; 5,200 ft^2 footprint
 Other Data:

 10,000 connections – both Infiniband and Gigabit
Ethernet

 55 miles of fiber optic cable
 500,000 lbs.
 Shipped to Los Alamos in 21 tractor trailer trucks
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Performance: Top 500



Source: Top 500 Supercomputers
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Performance: Top 500



Source: Top 500 Supercomputers

We are on track for
exa-scale computing 
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Performance: From 1st To Last



6-8 Years
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Earth Simulator

 Started at #1 June 2002, 35.8 TF
 Decommissioned Sept 2008; still at #73 #500=12.6TF
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Speed Increase: An Opportunity



1000 Yrs
1 Gflop/s

1 Year
1 Tflop/s

~8 Hrs
1 Pflop/s

~1 Sec
1 Eflop/s
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Node Structure of RoadRunner
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Hybrid Machine

•Opteron
•PPC
•SPE

3 ISAs
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Three Programming Levels: Challenge

 Programming Multiple Levels is not simply just 3
compilations
 SPE is difficult to program -- few HW goodies
 PPC is mostly orchestrating local data flow
 Opteron (contributes 3% of performance) mostly

orchestrates more global data flow
 Library support different for each ISA

 LINPAC has very favorable work/word character
 LINPAC benchmark has been developed over

many years; writing new HPC programs for this
architecture will be time consuming
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Interprocessor Communication

 Communication between two arbitrary
processors (latency) is a serious problem

 (Not considered today, but in Lecture1)

5000BlueGene/LSuper
4100-5100Itanium + MyrinetCluster
400-660Sun Fire E25KSMP
100AMDCMP

Lge range
=> cannot
be ignored
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Summary So Far, Large Scale
 Opportunities

 Moore’s law continues
 Large Scale on track for exa-scale machines

by about 2019, though there is much to do
 The advancement will be significant

1Kyears --> seconds
 Challenges

 Hybrid design requires difficult multilevel
programming

 Hardware “lifetimes” are short -- be general
 Latencies will continue to grow
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Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help
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Life Times / Development Times
 Hardware -- has a “half-life” measured in

years
 Software -- has a “half-life” measured in

decades
 Exploiting specific parallel hardware

features risks introducing architecture
dependences the next platform cannot fulfill

 In parallel programming architecture “shows
through” … don’t make the view too clear
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Sequential Algorithms No Good Guide
 What makes good sequential and parallel

algorithms are different
 Resources

 S: Reduce instruction count
 P: Reduce communication

 Best practices
 S: Manipulate references, exploit indirection
 P: Reduce dependences, avoid interaction

 Look for algorithms with
 S: Efficient data structures
 P: Locality, locality, locality
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Good Algorithms Not Well Known

 What is the best way to multiply two dense
matrices in parallel?

 We all know good serial algorithms and
sequential programming techniques

 Parallel techniques not widely known, and
because they are different from sequential
techniques, should we be teaching them to
Freshmen in college?

Ans: In Lecture 1
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Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help
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Programmer Challenge: Education

 Most college CS graduates have
 No experience writing parallel programs
 No knowledge of the issues, beyond

concurrency from OS classes
 Little concept of standard parallel algorithms
 No model for what makes a parallel algorithm

good

 Where do the programmers come from?
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Illustrating the Issues

 Consider the trivial problem of counting the
number of 3s in a vector of values on m-c
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Try # 1

 Assume array in shared memory; 8 way ||-ism
void count3s() {
   int count=0; int i=0; /* Create t threads */
   for (i=0;i<t;i++){
      thread_create(count3s_thread,i);
   }
   return count;
}
void count3s_thread(int id){
   int j;
   int length_per_thread=length/t;
   int start=id*length_per_thread;
   for (j=start; j<start+length_per_thread;j++) {
      if (array[j]==3) 
          count++;
   }
}

…
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Try #1 Assessment

 Try #1 doesn’t even get the right answer!
 The count variable is not protected, so

there is a race as threads try to increment it
Thread i
...
lw   $8,count-off(gp)
addi $8,1
sw   $8,count-off(gp)
...
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Try #2
 Protect the shared count with a mutex lock

 This solution at least gets the right answer

void count3s_thread(int id){
   int j;
   int length_per_thread=length/t;
   int start=id*length_per_thread;
   for (j=start; j<start+length_per_thread;j++) {
      if (array[j]==3) {
          mutex_lock(m); 
          count++;
          mutex_unlock(m);
      }
   }
}
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Try #2 Assessment

 It doesn’t perform, however
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Try #3
 Include a private variable

 Contention, if it happens is limited

void count3s_thread(int id){
   int j;
   int length_per_thread=length/t;
   int start=id*length_per_thread;
   for (j=start; j<start+length_per_thread;j++) {
      if (array[j]==3) {
         private_count[id]++;
      }
   }
   mutex_lock(m); 
   count += private_count[id];
   mutex_unlock(m);
}
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Try #3 Assessment

 The performance got better, but still no
||-ism
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Try #3 False Sharing

 The private variables were allocated to one
or two cache lines

 Cache coherency schemes, which keep
everyone’s cache current operate on the
cache-line granularity … still contention
 Suppose two processors have the cache line
 When one writes, other is invalidated; refetch

priv_count[0] priv_count[1] priv_count[2] priv_count[3] …
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Try #4

 By simply adding padding to give each
private count its own cache line Try #3 works

 Notice that false sharing is a sensitivity
hardware dependent on f, the cache line size

 Machine features “show through”

struct padded_int {
  int val;
  char padding [60];
} private_count[t];
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Try #4 Assessment

 Finally, speed-up over serial computation

 It wasn’t so easy, and it wasn’t so great

1 processor  : 0.91
2 processors: 1.6
4 processors: 3.1
8 processors: 3.2
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Programming Challenges
 Today’s programmers not ||-programmers
 Much to worry about

 Standard abstractions (locks, etc.) too low level
 Memory Model (mentioned before) busted
 Parallelism “shows through”
 Hardware sensitivity (false sharing)
 Heavy intellectual investment

 Small task took serious effort
 Modest performance achieved
 Not yet a general solution

Houston, We Have Problem
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Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help
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Overcoming Sequential Control
 Many computations on a data sequence seem to

be “essentially sequential”
 Prefix sum is an example: for n inputs, the ith

output is the sum of the first i items
 Input:    2    1    5    3    7
 Output: 2    3    8  11  18

 Given x1, x2, …, xn find
y1, y2, …, yn s.t.

yi = Σ j≤i xj

246 810 16 1416
10

26

52
66

36

68 76
y5

x5
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Naïve Use of Parallelism
 For any yi a height log i tree finds the prefix: find it, add xi

 Much redundant computation
 Requires O(n2) parallelism for n prefixes

 Look closer at meaning of tree’s intermediate sums

46 10 1616

10 26

36

52y5

x5
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Naïve Use of Parallelism
 For any yi a height log i tree finds the prefix: find it, add xi

 Much redundant computation
 Requires O(n2) parallelism for n prefixes

 Look closer at meaning of tree’s intermediate sums

246 810 16 1416

10 26 30 10

36 40

76

46 10 1616

10 26

36

52y5

x5
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Naïve Use of Parallelism
 For any yi a height log i tree finds the prefix: find it, add xi

 Much redundant computation
 Requires O(n2) parallelism for n prefixes

 Look closer at meaning of tree’s intermediate sums

246 810 16 1416

10 26 30 10

36 40

76

root summarizes its leaves

46 10 1616

10 26

36

52y5

x5
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Speeding Up Prefix Calculations

 Putting the observations together
 One pass over the data computes global sum
 Intermediate values are saved
 A second pass over data uses intermediate

sums to compute prefixes
 Each pass will be logarithmic for n = P
 Solution is called: The parallel prefix algorithm

R. E. Ladner and M. J. Fischer
Parallel Prefix Computation
Journal of the ACM 27(4):831-838, 1980
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10

46 16 10 16 14 2 8

26 30 10

36 40

76

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up
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10

46 16 10 16 14 2 8

26 30 10

36 40

76

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Introduce a virtual
parent, the sum of
values to tree’s left: 0
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10

46 16 10 16 14 2 8

26 30 10

36 40

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree



© Larry Snyder, All Rights Reserved

10

46 16 10 16 14 2 8

26 30 10

36 40

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree

0 36
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10

46 16 10 16 14 2 8

26 30 10

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree

0 36
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10

46 16 10 16 14 2 8

26 30 10

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree

0 36

0 10 36 66
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10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8
6         10             26         36             52         66           68         76

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree
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10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8
6         10             26         36             52         66           68         76

Each prefix is computed
in 2log n time, if P = n
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Available || Prefix Operators

 Most languages have reduce and scan (||
prefix) built-in for: +, *, min, max, &&, ||

 A few languages allow users to define ||
prefix operations themselves … do they?

 Parallel prefix is MUCH more useful
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Available || Prefix Operators

 Most languages have reduce and scan (||
prefix) built-in for: +, *, min, max, &&, ||

 A few languages allow users to define ||
prefix operations themselves … do they?

 Parallel prefix is MUCH more useful
 Length of Longest Run of x 
 Number of Occurrences of x 
 Histogram 
 Mode and Average
 Count Words 

 Length of Longest Increasing Run 
 Binary String Space Compression 
 Run Length Encoding 
 Balanced Parentheses
 Skyline

Why is there no standard programming abstraction?
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Conclusion +
 Most computers sold today are ||, and

nearly all are under-utilized
 No silver bullet will save us (Lecture 1)
 Languages, tools, libraries are not ready

 New software is needed to exploit ||ism
 Naïve parallel programming is difficult, subtle
 Higher abstractions help (Lecture 1 & 2)

 The “payoff” is to keep riding performance
wave
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Homework

  Further Questions?

HW: Use ||-prefix to test for balanced parentheses: ((()())()


